Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ecol Evol ; 14(8): e70046, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39161623

RESUMO

Earth is now experiencing declines in insect abundance and diversity unparalleled in human history. The drivers underlying those declines are many, complex, and incompletely known. Here, using a natural experiment, we report the first test of the hypothesis that forest defoliation by an invasive outbreak insect compromises the fitness of a native insect via damage-induced increases in toxicity of the forest canopy. We demonstrate that defoliation by the invasive spongy moth (Lymantria dispar) elicits an average 8.4-fold increase in foliar defense expression among aspen (Populus tremuloides) genotypes. In turn, elevated defense dramatically reduces survivorship, feeding, and growth of a charismatic mega moth (Anthereae polyphemus). This work suggests that changes to the phytochemical landscape of forests, mediated by invasive outbreak insects, are likely to negatively impact native insects, with potential repercussions for community diversity and ecosystem function across expansive scales.

2.
Plants (Basel) ; 13(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891281

RESUMO

Variations in plant genotypes and phenotypes are expressed in ways that lead to the development of defensive abilities against herbivory. Induced defenses are mechanisms that affect herbivore insect preferences and performance. We evaluated the performance of resistant and susceptible phenotypes of Bauhinia brevipes (Fabaceae) against attacks by the gall-inducing insect Schizomyia macrocapillata (Diptera). We hypothesized that there is a positive relationship between resistance to S. macrocapillata and host plant performance because resistance can have a high adaptive value. We evaluated plant architecture, nutritional leaf quality, leaf fluctuating asymmetry, and reproductive capacity between phenotypes. Plant performance was evaluated at three ontogenetic stages: seed, seedling, and juvenile. Overall, there were no differences in vegetative and reproductive performance or asymmetry between the resistant and susceptible mature plants. We found no relationship between leaf nutritional quality and resistance to S. macrocapillata. Plant performance was consistent across ontogeny for both phenotypes, except for five variables. Contrary to our expectations, the susceptible plants performed equally well or better than the resistant plants, suggesting that tolerance and overcompensation to herbivory in B. brevipes may be mediated by induced defense. Our study highlights the importance of multiple layers of plant defense against herbivory, where plant tolerance acts as a secondary barrier in plants susceptible to gall-inducing insects.

3.
Ecotoxicol Environ Saf ; 275: 116263, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547727

RESUMO

Anthropogenic emissions of polycyclic aromatic hydrocarbons (PAHs) cause severe ecological impacts by contaminating natural water bodies, affecting various biological groups, and altering interspecies relationships and ecological functions. This study examined the effects of two typical PAHs, phenanthrene (Phe) and naphthalene (Nap), on the anti-grazing defense mechanisms of Tetradesmus obliquus, a primary producer in freshwater food chains. Four non-lethal concentrations (0.01, 0.1, 1, and 10 mg L-1) of Phe and Nap were tested and the population growth, photosynthetic capacity, pigment content, and morphological defense of T. obliquus were analyzed. The results indicated that Phe and Nap inhibited both the growth rate and formation of defensive colonies of T. obliquus induced by Daphnia grazing cues, and the inhibition ratio increased with concentration. Phe and Nap significantly shortened the defense colony formation time of T. obliquus. Phe and Nap significantly suppressed photosynthesis in the early stages; however, the photosynthetic efficiency recovered over time. These findings highlight the high sensitivity of grazing-induced colony formation in T. obliquus to Phe and Nap at non-lethal concentrations, which could affect the interactions between phytoplankton and zooplankton in aquatic ecosystems. Our study underscores the influence of Phe and Nap on the defense mechanisms of phytoplankton and the consequential effects on ecological interactions within freshwater ecosystems, providing insight into the complex impacts of pollutants on phytoplankton-zooplankton relationships. Therefore, it is necessary to consider interspecific interactions when assessing the potential negative effects of environmental pollutants on aquatic ecosystems.


Assuntos
Poluentes Ambientais , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Animais , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Ecossistema , Naftalenos , Zooplâncton
4.
Neotrop Entomol ; 53(2): 424-438, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38356097

RESUMO

Arbuscular mycorrhizal fungi (AMF) are one of the environment-friendly organisms that enhance plant performance. AMF affect the herbivorous insect community by indirectly modifying host plant nutrient uptake, growth, and defense, also known as priming. In the current study, under greenhouse conditions, the effects of inoculating tomato seedlings with four species of AMF, i.e., Funneliformis mosseae, Rhizophagus intraradices, Rhizophagus irregularis, and Glomus iranicus, were studied in relation to tomato plant growth parameters, plant defense enzymes, and total phenol content, and additionally, the life table of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) feeding on these plants was determined. The results demonstrated that the growth parameters of tomato plants, including plant height, stem diameter, number of leaves, root volume, leaf surface area, weight of the root, and aerial organs (containing the leaves and stem), were greater and larger in the AMF-inoculated plants compared to the non-inoculated plants. Furthermore, there were higher defense enzyme activities, including peroxidase, phenylalanine ammonia lyase and polyphenol oxidase, and also higher total phenol contents in the AMF-inoculated plants. The whitefly life table characteristics were decreased in the group feeding on the AMF-inoculated plants. All together, the AMF colonization made the tomato plants more resistant against B. tabaci by improving plant growth and increasing defense enzymes. The degree of priming observed here suggests the potential of AMF to have expansive applications, including their implementation in sustainable agriculture.


Assuntos
Glomeromycota , Hemípteros , Micorrizas , Solanum lycopersicum , Animais , Fenóis
5.
Sci Total Environ ; 914: 169812, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181942

RESUMO

The present study examined the defense responses of toxigenic Pseudo-nitzschia species (P. multiseries) to a mixotrophic dinoflagellate, Lepidodinium sp., and its associated cues. We evaluated their responses to different predation risks, including direct physical contact and indirect interactions facilitated by cues from Lepidodinium sp. during active feeding on heterospecific prey (Rhodonomas salina), limited feeding on conspecific prey (P. multiseries) and non-feeding (autotrophic growth in f/2 medium) states. This study is the first investigation of these trophic interactions. Our results demonstrated a significant increase in cellular domoic acid (cDA) in P. multiseries when exposed to Lepidodinium sp. and its associated cues, which was 1.38 to 2.42 times higher than the non-induced group. Notably, this increase was observed regardless of Lepidodinium sp. feeding on this toxic diatom and nutritional modes. However, the most significant increase occurred when they directly interacted. These findings suggest that P. multiseries evaluates predation risk and increases cDA production as a defensive strategy against potential grazing threats. No morphological changes were observed in P. multiseries in response to Lepidodinium sp. or its cues. P. multiseries cultured in flasks of Group L+P-P showed a decrease in growth, but Group L-P and Group L+R-P did not exhibit any decrease. These results suggest a lack of consistent trade-offs between the defense response and growth, thus an increase in cDA production may be a sustainable and efficient defense strategy for P. multiseries. Furthermore, our findings indicate that P. multiseries had no significant impact on the fitness (cell size, growth and/or grazing) of Lepidodinium sp. and R. salina, which suggests no evident toxic or allelopathic impacts on these two phytoplankton species. This study enhances our understanding of the trophic interactions between toxic diatoms and mixotrophic dinoflagellates and helps elucidate the dynamics of Harmful Algal Blooms, toxin transmission, and their impact on ecosystem health.


Assuntos
Artrópodes , Diatomáceas , Dinoflagellida , Animais , Diatomáceas/fisiologia , Ecossistema , Sinais (Psicologia) , Toxinas Marinhas
6.
Plants (Basel) ; 13(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256826

RESUMO

Plant nutrition is connected to defense against insect herbivores, but the exact mechanism underlying the effect of the nitrogen (N) supply on the anti-herbivore capacity of eggplants (Solanum melongena) has not been studied in detail. Therefore, we examined the impact of low (LN, 0.5 mM) and high (HN, 5 mM) nitrate levels on eggplant resistance against the western flower thrips Frankliniella occidentalis (WFT), a major destructive eggplant pest. Our results showed that LN plants displayed enhanced defense responses to WFT compared to HN plants. This included increased transcript levels of key genes in the jasmonic acid (JA) pathway, the accumulation of JA-amido conjugates (jasmonoyl-isoleucine, jasmonoyl-phenylalanine, and jasmonoyl-valine), JA precursor (12-oxophytodienoic acid), and methyl jasmonate, higher transcript levels of defense marker genes (MPK3, MPK7, and WRKY53), and increased activities of polyphenol oxidase and peroxidase upon a WFT attack. Our findings suggest that N deficiency can prime JA-mediated defense responses in eggplants, resulting in increased anti-herbivore resistance.

7.
Environ Sci Pollut Res Int ; 30(54): 115805-115819, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37889416

RESUMO

Freshwater salinization, due to road salt and other increased anthropogenic activities, has become a significant threat to freshwater organisms. However, whether freshwater salinization affects the response of aquatic organisms to their predators, especially prey that have been acclimated to salinity environments for a long time, remains unclear. In the present study, we investigated the changes in anti-predator defense of Daphnia magna with and without salinity acclimation at five different salinities (0, 0.6, 0.8, 0.10, and 0.12 M). Results showed that freshwater salinization weakened the induced defense response of D. magna, regardless of whether it had undergone long-term salinity acclimation. Specifically, induced defense traits such as smaller body size, higher relative spine length, more relative reproductive output, and smaller body size neonates disappeared at ≥ 0.08 M salinities. In addition, there were no significant differences in most traits of induced defense strength between D. magna with and without salinity acclimation at the same salinity. Importantly, the integrated induced defense response index decreased with increasing salinity. Our study showed that salinity-tolerant organisms do not recover their induced defense at high salinities, underlining the importance of incorporating interspecific interactions when estimating the effects of freshwater salinization on organisms.


Assuntos
Daphnia , Salinidade , Animais , Aclimatação , Cloreto de Sódio/farmacologia , Água Doce , Organismos Aquáticos
8.
Foods ; 12(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37761167

RESUMO

Gray mold infected with Botrytis cinerea frequently appears on fruits and vegetables throughout the supply chain after harvest, leading to economic losses. Biological control of postharvest disease with phytochemicals is a promising approach. CA (cinnamaldehyde) is a natural phytochemical with medicinal and antimicrobial activity. This study evaluated the effect of CA in controlling B. cinerea on fresh pepper fruit. CA inhibited B. cinerea growth in vitro significantly in a dose- (0.1-0.8 mM) and time-dependent (6-48 h) manner, with an EC50 (median effective concentration) of 0.5 mM. CA induced the collapse and breakdown of the mycelia. CA induced lipid peroxidation resulting from ROS (reactive oxygen species) accumulation in mycelia, further leading to cell leakage, evidenced by increased conductivity in mycelia. CA induced mycelial glycerol accumulation, resulting in osmotic stress possibly. CA inhibited sporulation and spore germination resulting from ROS accumulation and cell death observed in spores. Spraying CA at 0.5 mM induced a defense response in fresh pepper fruits, such as the accumulation of defense metabolites (flavonoid and total phenols) and an increase in the activity of defense enzymes (PAL, phenylalanine ammonia lyase; PPO, polyphenol oxidase; POD, peroxidase). As CA is a type of environmentally friendly compound, this study provides significant data on the activity of CA in the biocontrol of postharvest gray mold in peppers.

9.
Oecologia ; 202(4): 655-667, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37615742

RESUMO

Predator-prey interactions are a key feature of ecosystems and often chemically mediated, whereby individuals detect molecules in their environment that inform whether they should attack or defend. These molecules are largely unidentified, and their discovery is important for determining their ecological role in complex trophic systems. Homarine and trigonelline are two previously identified blue crab (Callinectes sapidus) urinary metabolites that cause mud crabs (Panopeus herbstii) to seek refuge, but it was unknown whether these molecules influence other species within this oyster reef system. In the current study, homarine, trigonelline, and blue crab urine were tested on juvenile oysters (Crassostrea virginica) to ascertain if the same molecules known to alter mud crab behavior also affect juvenile oyster morphology, thus mediating interactions between a generalist predator, a mesopredator, and a basal prey species. Oyster juveniles strengthened their shells in response to blue crab urine and when exposed to homarine and trigonelline in combination, especially at higher concentrations. This study builds upon previous work to pinpoint specific molecules from a generalist predator's urine that induce defensive responses in two marine prey from different taxa and trophic levels, supporting the hypothesis that common fear molecules exist in ecological systems.


Assuntos
Ecossistema , Medo , Humanos , Estado Nutricional
10.
Microb Ecol ; 86(3): 2173-2182, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37154919

RESUMO

Insect-associated bacteria can mediate the intersection of insect and plant immunity. In this study, we aimed to evaluate the effects of single isolates or communities of gut-associated bacteria of Helicoverpa zea larvae on herbivore-induced defenses in tomato. We first identified bacterial isolates from the regurgitant of field-collected H. zea larvae by using a culture-dependent method and 16S rRNA gene sequencing. We identified 11 isolates belonging to the families Enterobacteriaceae, Streptococcaceae, Yersiniaceae, Erwiniaceae, and unclassified Enterobacterales. Seven different bacterial isolates, namely Enterobacteriaceae-1, Lactococcus sp., Klebsiella sp. 1, Klebsiella sp. 3, Enterobacterales, Enterobacteriaceae-2, and Pantoea sp., were selected based on their phylogenetic relationships to test their impacts on insect-induced plant defenses. We found that the laboratory population of H. zea larvae inoculated with individual isolates did not induce plant anti-herbivore defenses, whereas larvae inoculated with a bacterial community (combination of the 7 bacterial isolates) triggered increased polyphenol oxidase (PPO) activity in tomato, leading to retarded larval development. Additionally, field-collected H. zea larvae with an unaltered bacterial community in their gut stimulated higher plant defenses than the larvae with a reduced gut microbial community. In summary, our findings highlight the importance of the gut microbial community in mediating interactions between herbivores and their host plants.


Assuntos
Mariposas , Solanum lycopersicum , Humanos , Animais , Zea mays , Defesa das Plantas contra Herbivoria , Filogenia , RNA Ribossômico 16S/genética , Larva/microbiologia , Bactérias/genética , Enterobacteriaceae , Herbivoria
11.
Ecology ; 104(5): e4029, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36912135

RESUMO

Plants have evolved inducible defenses that allow them to minimize costs associated with the production of constitutive defenses when herbivores are not present. However, as a consequence, some plants might experience a period of vulnerability between damage and the onset of defense and/or between the cessation of damage and relaxation of defense. Few studies have examined the time course in the inducible protective mutualism between ants and extrafloral nectary (EFN)-bearing plants. None has compared the inducibility of EFNs on vegetative versus reproductive parts or in response to different levels of herbivore damage. Here, we disentangle the inducibility process by evaluating extrafloral nectar production and ant attendance over time, the time course of inducibility on different plant parts, and the time course of inducibility in response to different levels of foliar damage in a Brazilian tree, Qualea multiflora (Vochysiaceae). Using simulated herbivory on leaves and flowers, we found that (a) the production of extrafloral nectar from foliar and floral EFNs, as well as ant attendance, exhibited a lag between the moment of damage and the peak of response, followed by a response peak (usually 24 h after damage) at which the defense remains at its maximum level, then declines to prestimulus levels; (b) the time course of inducibility and the peak activity did not differ between EFNs located in vegetative versus reproductive parts, except for sugar concentration, which was higher in EFNs on vegetative parts; and (c) the time course of inducibility of foliar EFNs depended on damage level. Although considered a cost-saving strategy, inducible defenses can be disadvantageous since they can leave plants vulnerable to attack for extended periods. Our results illuminate the dynamics of the induced response and the underlying mechanisms that might mediate it, ultimately providing new insights into defense strategies employed by plants.


Assuntos
Formigas , Animais , Formigas/fisiologia , Néctar de Plantas , Plantas , Flores , Herbivoria/fisiologia , Simbiose
12.
Plants (Basel) ; 12(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36904060

RESUMO

Clonal plants are interconnected to form clonal plant networks with physiological integration, enabling the reassignment as well as sharing of resources among the members. The systemic induction of antiherbivore resistance via clonal integration may frequently operate in the networks. Here, we used an important food crop rice (Oryza sativa), and its destructive pest rice leaffolder (LF; Cnaphalocrocis medinalis) as a model to examine defense communication between the main stem and clonal tillers. LF infestation and MeJA pretreatment on the main stem for two days reduced the weight gain of LF larvae fed on the corresponding primary tillers by 44.5% and 29.0%, respectively. LF infestation and MeJA pretreatment on the main stem also enhanced antiherbivore defense responses in primary tillers: increased levels of a trypsin protease inhibitor, putative defensive enzymes, and jasmonic acid (JA), a key signaling compound involved in antiherbivore induced defenses; strong induction of genes encoding JA biosynthesis and perception; and rapid activation of JA pathway. However, in a JA perception OsCOI RNAi line, LF infestation on main stem showed no or minor effects on antiherbivore defense responses in primary tillers. Our work demonstrates that systemic antiherbivore defense operate in the clonal network of rice plants and JA signaling plays a crucial role in mediating defense communication between main stem and tillers in rice plants. Our findings provide a theoretical basis for the ecological control of pests by using the systemic resistance of cloned plants themselves.

13.
Sci Total Environ ; 877: 162909, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934936

RESUMO

The continuous decline in calcium concentration in freshwater as a widespread environmental stress can have complex effects on the interspecific relationships of organisms, such as interference with the anti-predation defenses of Daphnia with high calcium demand. The natural population of Daphnia includes individuals with different developmental stages and sexes. Here, we measured the effects of decreased calcium concentration on morphological defense of Daphnia after different numbers of molts or under various sexes and the expression of genes related to signal recognition, carapace formation, reproductive allocation, and stress defense. Results showed that decreased Ca concentration resulted in the altered effects of fish kairomone on the change rates of body size, change rates of spine length, and change rates of relative spine length disappear. Furthermore, male Daphnia also developed morphological defense under fish predation risk, which was also inhibited by decreased Ca concentration, but no significant difference was observed in the intensity of induced defense between male and female Daphnia at low Ca concentrations. Importantly, decreased Ca concentrations did not alter the increase in expressions of genes related to neural signaling by fish kairomone. Fish kairomone promoted the expression of reproduction-related genes, whereas decreased Ca concentration inhibited their expression. Fish kairomone altered the expression of carapace-related genes, but most were disturbed by decreased Ca concentration. Decreased Ca concentration inhibited the increased expression of stress defense-related genes by fish kairomone. This study contributes to a more comprehensive understanding of the effects of environmental changes on interspecific relationships among aquatic organisms of different developmental stages and different sexes.


Assuntos
Cálcio , Daphnia , Feminino , Masculino , Animais , Reprodução , Peixes/metabolismo , Feromônios/metabolismo
14.
Pathogens ; 12(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36839536

RESUMO

Trichoderma atroviride, a soil fungus, has important applications in the biocontrol of plant diseases. Glycosyltransferases enhance the root colonization ability of Trichoderma spp. This study aimed to functionally characterize glycosyltransferase Taugt17b1 in T. atroviride. We investigated the effect of Taugt17b1 overexpression in T. atroviride H18-1-1 on its biocontrol properties, especially its ability to colonize roots. Our results demonstrated that the overexpression of the Taugt17b1 increases the T. atroviride colony growth rate, improves its root colonization ability, promotes the growth and activity of the defensive enzymatic system of plants, and prevents plant diseases. This study put forth a new role of T. atroviride glycosyltransferase and furthered the understanding of the mechanisms by which fungal biocontrol agents exert their effect.

15.
Rice (N Y) ; 16(1): 1, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622503

RESUMO

Plant defenses in response to chewing insects are generally regulated by jasmonic acid (JA) signaling pathway, whereas salicylic acid (SA) signaling is mainly involved in plant defense against biotrophic pathogens and piercing-sucking insects. Previous studies showed that both JA- and SA-related defenses in rice plants were triggered by the infestation of the rice striped stem borer (SSB, Chilo suppressalis), a destructive pest causing severe damage to rice production. Herbivore-associated microbes play an important role in modulating plant-insect interaction, and thus we speculate that the SSB symbiotic microbes acting as a hidden player may cause this anomalous result. The antibiotics (AB) treatment significantly depressed the performance of field-collected SSB larvae on rice plants, and reduced the quantities of bacteria around the wounds of rice stems compared to non-AB treatment. In response to mechanical wounding and oral secretions (OS) collected from non-AB treated larvae, rice plants exhibited lower levels of JA-regulated defenses, but higher levels of SA-regulated defenses compared to the treatment of OS from AB-treated larvae determined by using a combination of biochemical and molecular methods. Among seven culturable bacteria isolated from the OS of SSB larvae, Enterobacter and Acinetobacter contributed to the suppression of JA signaling-related defenses in rice plants, and axenic larvae reinoculated with these two strains displayed better performance on rice plants. Our findings demonstrate that SSB larvae exploit oral secreted bacteria to interfere with plant anti-herbivore defense and avoid fully activating the JA-regulated antiherbivore defenses of rice plants.

16.
Front Microbiol ; 14: 1295160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38163083

RESUMO

Aureococcus anophagefferens is a small marine pelagophyte that forms recurrent harmful brown tides blooms with adverse ecological and economic impacts. During blooms, A. anophagefferens experiences lower zooplankton grazing mortality than other phytoplankton potentially due to the synthesis of anti-predator compounds including extracellular polysaccharides. This study characterized the transcriptomic response of A. anophagefferens when exposed to the protozooplankton, Oxyrrhis marina, and assessed whether this response involved chemical cues. Transcriptomes were generated from A. anophagefferens populations grown at high (1×106 cells mL-1) and low (5×105 cells mL-1) cell densities incubated directly with O. marina or receiving only filtrate from co-cultures of A. anophagefferens and O. marina to evaluate the role of chemical cues. There were a greater number of genes differentially expressed in response to grazing in the lower concentration of A. anophagefferens compared to the high concentration treatment and in response to direct grazing compared to filtrate. KEGG pathway analysis revealed that direct grazer exposure led to a significant increase in transcripts of genes encoding secondary metabolite production (p < 0.001). There was broad transcriptional evidence indicating the induction of biosynthetic pathways for polyketides and sterols in response to zooplankton grazers, compounds associated with damage to marine organisms. In addition, exposure to O. marina elicited changes in the abundance of transcripts associated with carbohydrate metabolism that could support the formation of an extracellular polysaccharide matrix including genes related to glycoprotein synthesis and carbohydrate transport. Collectively, these findings support the hypothesis that A. anophagefferens can induce biochemical pathways that reduce grazing mortality and support blooms.

17.
Insects ; 13(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36555037

RESUMO

Frankliniella occidentalis is a destructive pest of horticultural plants, while Orius similis is a natural enemy of thrips. It has been demonstrated that exogenous calcium could induce plant defenses against herbivore attack. We examined whether CaCl2 supplementation altered the volatile emissions of kidney bean plants, which influence the oviposition preference of F. occidentalis. We also assessed the influence of volatile cues on O. similis. Using Y-tube olfactometer tests, we found that exogenous CaCl2 treatment inhibited the selectivity of F. occidentalis but attracted O. similis. In addition, CaCl2 treatment reduced the oviposition preference of F. occidentalis. Gas chromatography-mass spectrometry analyses revealed that CaCl2 treatment altered the number and relative abundance of the volatile compounds in kidney bean plants and that (E)-2-hexen-1-ol, 1-octen-3-ol, ß-lonone, and (E,E)-2,4-hexadienal might be potential olfactory cues. Furthermore, the results of the six-arm olfactometer test indicated that 1-octen-3-ol (10-2 µL/µL), ß-lonone (10-2 µL/µL), and (E,E)-2,4-hexadienal (10-3 µL/µL) repelled F. occidentalis but attracted O. similis. Overall, our results suggested that exogenous CaCl2 treatment induced defense responses in kidney bean plants, suggesting that CaCl2 supplementation may be a promising strategy to enhance the biological control of F. occidentalis.

18.
BMC Res Notes ; 15(1): 375, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36544195

RESUMO

OBJECTIVE: Ring nematodes can decrease vineyard productivity when plated in conditions favorable for their survival. Resistant rootstocks are available to combat harm due to ring nematodes, and compounds called phenolics were hypothesized as imparting this resistance. Therefore, this study measured phenolic compound levels in four different rootstocks and attempted to find associations with ring nematode populations. Furthermore, select phenolics called stilbenoids were tested in a bioassay to observe if these compounds affect ring nematode survival. This was part of a larger effort to assess the role of phenolics in protecting grapevines from nematodes and other pathogens or pests. DATA DESCRIPTION: This study was conducted over 2 years, 2018 and 2019, and phenolic levels were much greater in 2019 than 2018 likely due to uncontrolled differences in climatic controls. Ring nematode infected grapevines also did not have different phenolic compound levels than healthy controls. Bioassays of different stilbenoid polymers revealed no significant effects on ring nematode survival. These results suggest that analyzed root phenolic compounds were not involved in resistance or susceptibility to ring nematodes. These data should steer future researchers into analyzing other potential sources of nematode resistance.


Assuntos
Nematoides , Vitis , Animais , Doenças das Plantas , Fenóis/farmacologia
19.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142369

RESUMO

How nitrogen (N) supply affects the induced defense of plants remains poorly understood. Here, we investigated the impacts of N supply on the defense induced in maize (Zea mays) against the fall armyworm (Spodoptera frugiperda). In the absence of herbivore attack or exogenous jasmonic acid (JA) application, N supply increased plant biomass and enhanced maize nutrient (soluble sugar and amino acid) contents and leaf area fed by S. frugiperda (the feeding leaf area of S. frugiperda larvae in maize supplemented with 52.2 and 156.6 mg/kg of N was 4.08 and 3.83 times that of the control, respectively). When coupled with herbivore attack or JA application, maize supplemented with 52.2 mg/kg of N showed an increased susceptibility to pests, while the maize supplemented with 156.6 mg/kg of N showed an improved defense against pests. The changes in the levels of nutrients, and the emissions of volatile organic compounds (VOCs) caused by N supply could explain the above opposite induced defense in maize. Compared with herbivore attack treatment, JA application enhanced the insect resistance in maize supplemented with 156.6 mg/kg of N more intensely, mainly reflecting a smaller feeding leaf area, which was due to indole emission and two upregulated defensive genes, MPI (maize proteinase inhibitor) and PAL (phenylalanine ammonia-lyase). Hence, the optimal N level and appropriate JA application can enhance plant-induced defense against pests.


Assuntos
Compostos Orgânicos Voláteis , Zea mays , Aminoácidos/metabolismo , Animais , Ciclopentanos , Herbivoria , Indóis/metabolismo , Larva , Nitrogênio/metabolismo , Oxilipinas , Peptídeo Hidrolases/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Spodoptera , Açúcares/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Zea mays/genética
20.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142802

RESUMO

The western flower thrips, Frankliniella occidentalis Pergande, is an invasive pest that damages agricultural and horticultural crops. The induction of plant defenses and RNA interference (RNAi) technology are potent pest control strategies. This study investigated whether the anti-adaptive ability of F. occidentalis to jasmonic acid (JA)- and methyl jasmonate (MeJA)-induced defenses in kidney bean plants was attenuated after glutathione S-transferase (GST) gene knockdown. The expression of four GSTs in thrips fed JA- and MeJA-induced leaves was analyzed, and FoGSTd1 and FoGSTs1 were upregulated. Exogenous JA- and MeJA-induced defenses led to increases in defensive secondary metabolites (tannins, alkaloids, total phenols, flavonoids, and lignin) in leaves. Metabolome analysis indicated that the JA-induced treatment of leaves led to significant upregulation of defensive metabolites. The activity of GSTs increased in second-instar thrips larvae fed JA- and MeJA-induced leaves. Co-silencing with RNAi simultaneously knocked down FoGSTd1 and FoGSTs1 transcripts and GST activity, and the area damaged by second-instar larvae feeding on JA- and MeJA-induced leaves decreased by 62.22% and 55.24%, respectively. The pupation rate of second-instar larvae also decreased by 39.68% and 39.89%, respectively. Thus, RNAi downregulation of FoGSTd1 and FoGSTs1 reduced the anti-adaptive ability of F. occidentalis to JA- or MeJA-induced defenses in kidney bean plants.


Assuntos
Phaseolus , Tisanópteros , Acetatos , Animais , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Flavonoides/metabolismo , Flores/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Lignina/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Phaseolus/metabolismo , Fenóis/metabolismo , Interferência de RNA , Taninos/metabolismo , Tisanópteros/genética , Tisanópteros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...