Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Signal Behav ; 19(1): 2371693, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38923879

RESUMO

One of the main signal transduction pathways that modulate plant growth and stress responses, including drought, is the action of phytohormones. Recent advances in omics approaches have facilitated the exploration of plant genomes. However, the molecular mechanisms underlying the response in the crown of barley, which plays an essential role in plant performance under stress conditions and regeneration after stress treatment, remain largely unclear. The objective of the present study was the elucidation of drought-induced molecular reactions in the crowns of different barley phytohormone mutants. We verified the hypothesis that defects of gibberellins, brassinosteroids, and strigolactones action affect the transcriptomic, proteomic, and hormonal response of barley crown to the transitory drought influencing plant development under stress. Moreover, we assumed that due to the strong connection between strigolactones and branching the hvdwarf14.d mutant, with dysfunctional receptor of strigolactones, manifests the most abundant alternations in crowns and phenotype under drought. Finally, we expected to identify components underlying the core response to drought which are independent of the genetic background. Large-scale analyses were conducted using gibberellins-biosynthesis, brassinosteroids-signaling, and strigolactones-signaling mutants, as well as reference genotypes. Detailed phenotypic evaluation was also conducted. The obtained results clearly demonstrated that hormonal disorders caused by mutations in the HvGA20ox2, HvBRI1, and HvD14 genes affected the multifaceted reaction of crowns to drought, although the expression of these genes was not induced by stress. The study further detected not only genes and proteins that were involved in the drought response and reacted specifically in mutants compared to the reaction of reference genotypes and vice versa, but also the candidates that may underlie the genotype-universal stress response. Furthermore, candidate genes involved in phytohormonal interactions during the drought response were identified. We also found that the interplay between hormones, especially gibberellins and auxins, as well as strigolactones and cytokinins may be associated with the regulation of branching in crowns exposed to drought. Overall, the present study provides novel insights into the molecular drought-induced responses that occur in barley crowns.


Assuntos
Secas , Hordeum , Mutação , Reguladores de Crescimento de Plantas , Hordeum/genética , Hordeum/metabolismo , Hordeum/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Mutação/genética , Giberelinas/metabolismo , Regulação da Expressão Gênica de Plantas , Brassinosteroides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Lactonas/metabolismo
2.
Cells ; 12(13)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37443719

RESUMO

Plants, as sessile organisms, have developed sophisticated mechanisms to survive in changing environments. Recent advances in omics approaches have facilitated the exploration of plant genomes; however, the molecular mechanisms underlying the responses of barley and other cereals to multiple abiotic stresses remain largely unclear. Exposure to stress stimuli affects many proteins with regulatory and protective functions. In the present study, we employed liquid chromatography coupled with high-resolution mass spectrometry to identify stress-responsive proteins on the genome-wide scale of barley flag leaves exposed to drought, heat, or both. Profound alterations in the proteome of genotypes with different flag leaf sizes were found. The role of stress-inducible proteins was discussed and candidates underlying the universal stress response were proposed, including dehydrins. Moreover, the putative functions of several unknown proteins that can mediate responses to stress stimuli were explored using Pfam annotation, including calmodulin-like proteins. Finally, the confrontation of protein and mRNA abundances was performed. A correlation network between transcripts and proteins performance revealed several components of the stress-adaptive pathways in barley flag leaf. Taking the findings together, promising candidates for improving the tolerance of barley and other cereals to multivariate stresses were uncovered. The presented proteomic landscape and its relationship to transcriptomic remodeling provide novel insights for understanding the molecular responses of plants to environmental cues.


Assuntos
Hordeum , Proteoma , Proteoma/metabolismo , Hordeum/fisiologia , Secas , Proteômica/métodos , Temperatura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Choque Térmico/metabolismo , Grão Comestível/metabolismo , Folhas de Planta/metabolismo
3.
Biomedicines ; 11(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36979874

RESUMO

(1) Background: Cancer stem cells (CSCs) are a small cell population associated with chemoresistance, metastasis and increased mortality rate in oral cancer. Interferon-induced proteins with tetratricopeptide repeats 2 (IFIT2) depletion results in epithelial to mesenchymal transition, invasion, metastasis, and chemoresistance in oral cancer. To date, no study has demonstrated the effect of IFIT2 depletion on the CSC-like phenotype in oral cancer cells. (2) Methods: Q-PCR, sphere formation, Hoechst 33,342 dye exclusion, immunofluorescence staining, and flow cytometry assays were performed to evaluate the expression of the CSC markers in IFIT2-depleted cells. A tumorigenicity assay was adopted to assess the tumor formation ability. Immunohistochemical staining was used to examine the protein levels of IFIT2 and CD24 in oral cancer patients. (3) Results: The cultured IFIT2 knockdown cells exhibited an overexpression of ABCG2 and CD44 and a downregulation of CD24 and gave rise to CSC-like phenotypes. Clinically, there was a positive correlation between IFIT2 and CD24 in the patients. IFIT2high/CD24high/CD44low expression profiles predicted a better prognosis in HNC, including oral cancer. The TNF-α blockade abolished the IFIT2 depletion-induced sphere formation, indicating that TNF-α may be involved in the CSC-like phenotypes in oral cancer. (4) Conclusions: The present study demonstrates that IFIT2 depletion promotes CSC-like phenotypes in oral cancer.

4.
Plant Direct ; 6(12): e472, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36582220

RESUMO

The model pennate diatom Phaeodactylum tricornutum is able to assimilate a range of iron sources. It therefore provides a platform to study different mechanisms of iron processing concomitantly in the same cell. In this study, we follow the localization of three iron starvation induced proteins (ISIPs) in vivo, driven by their native promoters and tagged by fluorophores in an engineered line of P. tricornutum. We find that the localization patterns of ISIPs are dynamic and variable depending on the overall iron status of the cell and the source of iron it is exposed to. Notwithstanding, a shared destination of the three ISIPs both under ferric iron and siderophore-bound iron supplementation is a globular compartment in the vicinity of the chloroplast. In a proteomic analysis, we identify that the cell engages endocytosis machinery involved in the vesicular trafficking as a response to siderophore molecules, even when these are not bound to iron. Our results suggest that there may be a direct vesicle traffic connection between the diatom cell membrane and the periplastidial compartment (PPC) that co-opts clathrin-mediated endocytosis and the "cytoplasm to vacuole" (Cvt) pathway, for proteins involved in iron assimilation. Proteomics data are available via ProteomeXchange with identifier PXD021172. Highlight: The marine diatom P. tricornutum engages a vesicular network to traffic siderophores and phytotransferrin from the cell membrane directly to a putative iron processing site in the vicinity of the chloroplast.

5.
Rice (N Y) ; 14(1): 57, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34176023

RESUMO

BACKGROUND: Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight, a devastating rice disease. The Xoo-rice interaction, wherein wide ranging host- and pathogen-derived proteins and genes wage molecular arms race, is a research hotspot. Hence, the identification of novel rice-induced Xoo virulence factors and characterization of their roles affecting rice global gene expression profiles will provide an integrated and better understanding of Xoo-rice interactions from the molecular perspective. RESULTS: Using comparative proteomics and an in vitro interaction system, we revealed that 5 protein spots from Xoo exhibited significantly different expression patterns (|fold change| > 1.5) at 3, 6, 12 h after susceptible rice leaf extract (RLX) treatment. MALDI-TOF MS analysis and pathogenicity tests showed that 4 host-induced proteins, including phosphohexose mutase, inositol monophosphatase, arginase and septum site-determining protein, affected Xoo virulence. Among them, mutants of two host-induced carbohydrate metabolism enzyme-encoding genes, ΔxanA and Δimp, elicited enhanced defense responses and nearly abolished Xoo virulence in rice. To decipher rice differentially expressed genes (DEGs) associated with xanA and imp, transcriptomic responses of ΔxanA-treated and Δimp-treated susceptible rice were compared to those in rice treated with PXO99A at 1 and 3 dpi. A total of 1521 and 227 DEGs were identified for PXO99A vs Δimp at 1 and 3 dpi, while for PXO99A vs ΔxanA, there were 131 and 106 DEGs, respectively. GO, KEGG and MapMan analyses revealed that the DEGs for PXO99A vs Δimp were mainly involved in photosynthesis, signal transduction, transcription, oxidation-reduction, hydrogen peroxide catabolism, ion transport, phenylpropanoid biosynthesis and metabolism of carbohydrates, lipids, amino acids, secondary metabolites, hormones, and nucleotides, while the DEGs from PXO99A vs ΔxanA were predominantly associated with photosynthesis, signal transduction, oxidation-reduction, phenylpropanoid biosynthesis, cytochrome P450 and metabolism of carbohydrates, lipids, amino acids, secondary metabolites and hormones. Although most pathways were associated with both the Δimp and ΔxanA treatments, the underlying genes were not the same. CONCLUSION: Our study identified two novel host-induced virulence factors XanA and Imp in Xoo, and revealed their roles in global gene expression in susceptible rice. These results provide valuable insights into the molecular mechanisms of pathogen infection strategies and plant immunity.

6.
Int J Mol Med ; 47(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33907823

RESUMO

Radiation is one of the main methods for the treatment of colorectal cancer (CRC) before or after surgery. However, radiotherapy tolerance of patients with CRC is often a major concern. Interferon regulatory factor 1 (IRF1) is a member of the IRF family and is involved in the development of multiple diseases, including tumors. The present study investigated the role of IRF1 in the development and radiation sensitivity of CRC. Immunohistochemistry was performed to examine the expression levels of IRF1 in tissue samples from patients with CRC, as well as in nude mice. MTT, 5­ethynyl­20­deoxyuridine, colony formation, cell cycle alteration and apoptosis assays were performed in CRC cell lines. Western blotting and immunofluorescence were used to detect the expression levels of a series of proteins. RNA sequencing was applied to identify genes whose expression was upregulated by IRF1 overexpression. Xenograft nude mouse models and hematoxylin and eosin staining were used to validate the present findings in vivo. It was revealed that the expression levels of IRF1 were significantly lower in CRC tissues than in adjacent tissues. IRF1 upregulation inhibited cell proliferation and colony formation, caused G1 cell arrest, promoted cell apoptosis, and enhanced the sensitivity of CRC cells to X­ray irradiation. The role of IRF1 in promoting the radiosensitivity of CRC was further demonstrated in nude mice with CRC xenografts. In addition, RNA sequencing revealed that overexpression of IRF1 in CRC cells significantly increased the expression levels of interferon­induced protein family members interferon α inducible protein 6, interferon induced transmembrane protein 1 and interferon induced protein 35 (fold change >2.0). In summary, the present study demonstrated that the upregulation of IRF1 inhibited the progression and promoted the radiosensitivity of CRC, likely by regulating interferon­induced proteins.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Progressão da Doença , Fator Regulador 1 de Interferon/metabolismo , Interferons/metabolismo , Proteínas de Neoplasias/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Neoplasias Colorretais/genética , Regulação para Baixo/genética , Regulação para Baixo/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tolerância a Radiação/genética , Tolerância a Radiação/efeitos da radiação , Taxa de Sobrevida , Regulação para Cima/genética , Regulação para Cima/efeitos da radiação , Raios X
7.
J Exp Bot ; 72(6): 2165-2180, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33693565

RESUMO

Diatoms are one of the most successful group of photosynthetic eukaryotes in the contemporary ocean. They are ubiquitously distributed and are the most abundant primary producers in polar waters. Equally remarkable is their ability to tolerate iron deprivation and respond to periodic iron fertilization. Despite their relatively large cell sizes, diatoms tolerate iron limitation and frequently dominate iron-stimulated phytoplankton blooms, both natural and artificial. Here, we review the main iron use strategies of diatoms, including their ability to assimilate and store a range of iron sources, and the adaptations of their photosynthetic machinery and architecture to iron deprivation. Our synthesis relies on published literature and is complemented by a search of 82 diatom transcriptomes, including information collected from seven representatives of the most abundant diatom genera in the world's oceans.


Assuntos
Diatomáceas , Eucariotos , Ferro , Fotossíntese , Fitoplâncton
8.
Onco Targets Ther ; 13: 3303-3318, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368089

RESUMO

Tumor necrosis factor (TNF) is the first cytokine used in tumor biotherapy, but TNF-related drugs are limited by the lack of specific targets. Tumor necrosis factor alpha-induced proteins (TNFAIPs), derived from TNF, is a protein family and participates in proliferation, invasion and metastasis of tumor cells. In order to better understand biological functions and potential roles of TNFAIPs in malignant tumors, this paper in the form of "Gene-Protein-Tumor correlation" summarizes the biological characteristics, physiological functions and mechanisms of TNFAIPs by searching National Center of Biotechnology Information, GeneCards, UniProt and STRING databases. The relationship between TNFAIPs and malignant tumors is analyzed, and protein-protein interaction diagram in members of TNFAIPs is drawn based on TNF for the first time. We find that TNF as a key factor is related to TNFAIP1, TNFAIP3, TNFAIP5, TNFAIP6, TNFAIP8 and TNFAIP9, which can be directly involved in activating TNFAIP1, TNFAIP5, TNFAIP8 and TNFAIP9. We confirm that the mechanism of TNFAIP1, TNFAIP2 and TNFAIP3 inducing tumors may be related to NF-κB signaling pathway, but the mechanism of tumor induction by other members of TNFAIPs is not clear. In the future, translational studies are needed to explore the mechanisms of TNF-TNFAIPs-tumors.

9.
J Am Soc Mass Spectrom ; 31(6): 1302-1312, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32379441

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease characterized by severe reproductive failure in sows, acute respiratory disorders in growing pigs, and high mortality in piglets. The causative agent of this syndrome is the PRRS virus (PRRSV), an RNA virus belonging to the Arteriviridae family. To date, several quantitative approaches of proteomics have been applied to analyze the gene expression profiles during PRRSV infection in PAMs and MARC-145 cells, and few proteins have been consistent among independent studies, probably due to the differences in the levels of virulence of different PRRSV strains used and/or due to analytical conditions. In this study, total proteins isolated from noninfected and infected MARC-145 cells with a Mexican PRRSV strain were relatively quantified using label-free based DIA approach in combination with ion-mobility separation. As a result, 1456 quantified proteins were found to be shared between the control and infected samples. Afterward, these proteins were filtered, and 699 of them were considered without change. Also, 17 proteins were up-regulated and 19 proteins were down-regulated during the PRSSV infection. Bioinformatic analysis revealed that many of the differentially expressed proteins are involved in processes like antigen processing, presentation of antigens, response to viruses, response to IFNs, and innate immune response, among others. The present work is the first one which provides a detailed proteomic analysis through label-free based DIA approach in MARC-145 cells during the infection with a Mexican PRRSV strain.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Proteoma , Proteômica/métodos , Animais , Linhagem Celular , Chlorocebus aethiops , Interações Hospedeiro-Patógeno , Espectrometria de Massas/métodos , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína , Mapas de Interação de Proteínas , Proteoma/análise , Proteoma/química , Proteoma/metabolismo , Suínos
10.
J Biol Chem ; 295(51): 17781-17801, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33454014

RESUMO

Knockout mouse models have been extensively used to study the antiviral activity of IFIT (interferon-induced protein with tetratricopeptide repeats). Human IFIT1 binds to cap0 (m7GpppN) RNA, which lacks methylation on the first and second cap-proximal nucleotides (cap1, m7GpppNm, and cap2, m7GpppNmNm, respectively). These modifications are signatures of "self" in higher eukaryotes, whereas unmodified cap0-RNA is recognized as foreign and, therefore, potentially harmful to the host cell. IFIT1 inhibits translation at the initiation stage by competing with the cap-binding initiation factor complex, eIF4F, restricting infection by certain viruses that possess "nonself" cap0-mRNAs. However, in mice and other rodents, the IFIT1 orthologue has been lost, and the closely related Ifit1b has been duplicated twice, yielding three paralogues: Ifit1, Ifit1b, and Ifit1c. Although murine Ifit1 is similar to human IFIT1 in its cap0-RNA-binding selectivity, the roles of Ifit1b and Ifit1c are unknown. Here, we found that Ifit1b preferentially binds to cap1-RNA, whereas binding is much weaker to cap0- and cap2-RNA. In murine cells, we show that Ifit1b can modulate host translation and restrict WT mouse coronavirus infection. We found that Ifit1c acts as a stimulatory cofactor for both Ifit1 and Ifit1b, promoting their translation inhibition. In this way, Ifit1c acts in an analogous fashion to human IFIT3, which is a cofactor to human IFIT1. This work clarifies similarities and differences between the human and murine IFIT families to facilitate better design and interpretation of mouse models of human infection and sheds light on the evolutionary plasticity of the IFIT family.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Coronavirus/crescimento & desenvolvimento , Coronavirus/genética , Biossíntese de Proteínas , Proteínas de Ligação ao Cap de RNA/metabolismo , Capuzes de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Coronavirus/metabolismo , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Modelos Moleculares , Mutação , Ligação Proteica , Células RAW 264.7 , Proteínas de Ligação a RNA/genética
11.
Acta biol. colomb ; 22(2): 165-174, mayo-ago. 2017. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-886054

RESUMO

RESUMEN Los cultivos de células vegetales son sistemas experimentales homogéneos altamente controlables que permiten el estudio de adaptaciones bajo condiciones de estrés hídrico, sin la interferencia de los diferentes tejidos y estados del desarrollo vegetal. Una aproximación para comprender esas adaptaciones, es la aparición de proteínas inducidas, resultado de la alteración en la expresión génica. El presente trabajo analizó la respuesta de cultivos de células de Fouquieria splendens ssp. breviflora, expuestos a ácido abscísico (ABA), mediante la caracterización electroforética en cantidad y calidad de las proteínas inducibles de estrés. Se registraron polipéptidos de bajo peso molecular (< 35kDa), comunes bajo la exposición a 10 mM, seguida la asociación con 20 y 30 mM de ABA, quedando aislada la respuesta de la condición de células en cultivo sin la presencia de éste.


ABSTRACT Plant cell cultures are homogenous experimental systems, highly controllable that allow the study of short and large water stress adaptations without the interference of the different tissues and development ofplants. An approach to understand these adaptations is through the presence of induced proteins; as a result of changes in genetic expression. This work analyze the response of Fouquieria splendens ssp. breviflora cell cultures exposed to abscisic acid (ABA), through the electrophoretic characterization of quantity and quality of stress induced proteins. There were recorded low molecular weight polypeptides (< 35kDa), common in experiments under ABA 10mM, followed by the association with 20 and 30mM ABA conditions, with a particularly response of cell cultures without the stress agent.

12.
J Genet Eng Biotechnol ; 15(1): 231-237, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30647659

RESUMO

In this study the proteome response of the two diazotrophic organism's viz. Nostoc muscorum and Bradyrhizobium japonicum exposed to salt (NaCl) and osmotic (sucrose) stresses was compared. Out of the total over expressed proteins; we have selected only three over expressed proteins viz. GroEL chaperonin, nitrogenase Mo-Fe protein and argininosuccinate synthase for further analysis, and then we analyzed the amino acid frequencies of all the three over expressed proteins. That led to the conclusion that amino acids e.g. alanine, glycine and valine that were energetically cheaper to produce were showing higher frequencies. This study would help in tracing the phylogenetic relationship between protein families.

13.
Clin Exp Immunol ; 180(3): 458-66, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25683200

RESUMO

The tumour necrosis factor (TNF)-α-induced proteins (TNFAIP)9 and TNFAIP3 play an important pathogenic role in murine arthritis. To clarify their pathophysiological roles in patients with rheumatoid arthritis (RA), we examined their expression and localization in peripheral blood mononuclear cells (PBMC). TNFAIP9 and TNFAIP3 mRNA expression was determined in PBMC of RA patients and healthy subjects (control). Flow cytometry was used to analyse the main TNFAIP9- and TNFAIP3-expressing cell populations. TNFAIP9 and TNFAIP3 mRNA expression levels were examined in vitro on CD14(+) cells stimulated with TNF-α and lipopolysaccharide (LPS). The expression levels of TNFAIP9 and TNFAIP3 mRNA were also measured before and 12 weeks after treatment with tocilizumab and abatacept. TNFAIP9 expression was significantly higher, while TNFAIP3 expression was lower in PBMC of RA (n=36) than the control (n=24) (each P < 0.05). TNFAIP9 was expressed on CD14(+) cells, especially in human leucocyte antigen D-related (HLA-DR)(+) CD14(bright) CD16(-) cells, while TNFAIP3 was expressed mainly on CD3(+) T cells. TNF-α and LPS induced TNFAIP9 and TNFAIP3 in human CD14(+) monocytes in vitro. Treatment with tocilizumab (n=13), but not abatacept (n=11), significantly reduced TNFAIP9 mRNA expression in PBMC, which was associated with reduction in the number of circulating CD14(bright) monocytes. The expression of TNFAIP9 in CD14(+) cells was specifically elevated in patients with RA, regulated by TNF-α and LPS, and suppressed by tocilizumab, while TNFAIP3 in PBMC showed different localization and induction patterns.


Assuntos
Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Expressão Gênica , Proteínas de Membrana/genética , Monócitos/imunologia , Monócitos/metabolismo , Oxirredutases/genética , Adulto , Idoso , Anticorpos Monoclonais Humanizados/farmacologia , Antirreumáticos/uso terapêutico , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/tratamento farmacológico , Estudos de Casos e Controles , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Imunofenotipagem , Peptídeos e Proteínas de Sinalização Intracelular/genética , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Proteínas Nucleares/genética , RNA Mensageiro/genética , Receptores de IgG/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/farmacologia
14.
Physiol Mol Biol Plants ; 19(1): 53-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24381437

RESUMO

Plant growth and development are greatly affected due to changes in environmental conditions and become a serious challenge to scientific people. Therefore, present study was conducted to determine the role of secondary metabolites on the growth and development of maize under abiotic stress conditions. Cinnamic acid (CA) is one of the basic phenylpropanoid with antioxidant activity, produced by plants in response to stressful conditions. Response of maize seeds to the presoaking treatment with 0.5 mM CA was studied under different concentrations of NaCl stress. Exogenous CA increased growth characteristics in saline and non-saline conditions, while effects of CA were more significant under saline conditions in comparison to non-saline conditions in maize plants. CA also reduced oxidative damage through the induction of ROS scavenging enzymes such as supperoxide dismutase (SOD) (EC 1.15.1.1), peroxidase (POD) (EC 1.11.1.7), while the activity of enzyme catalase (CAT) (EC 1.11.1.6) was decreased. The content of malondialdehyde (MDA) was reduced significantly in maize leaf under CA treatment. Changes in protein banding patterns in the maize leaves showed a wide variation in response to NaCl-stress, while in the presence of CA salt-induced expression of polypeptides was reduced significantly. Present study clearly reports the alleviative effects of CA in response to salinity stress on growth, metabolic activity and changes in protein profile of 21 days old maize plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...