Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 778
Filtrar
1.
Dig Dis Sci ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963463

RESUMO

In inflammatory bowel diseases (IBD), the most promising therapies targeting cytokines or immune cell trafficking demonstrate around 40% efficacy. As IBD is a multifactorial inflammation of the intestinal tract, a single-target approach is unlikely to solve this problem, necessitating an alternative strategy that addresses its variability. One approach often overlooked by the pharmaceutically driven therapeutic options is to address the impact of environmental factors. This is somewhat surprising considering that IBD is increasingly viewed as a condition heavily influenced by such factors, including diet, stress, and environmental pollution-often referred to as the "Western lifestyle". In IBD, intestinal responses result from a complex interplay among the genetic background of the patient, molecules, cells, and the local inflammatory microenvironment where danger- and microbe-associated molecular patterns (D/MAMPs) provide an adjuvant-rich environment. Through activating DAMP receptors, this array of pro-inflammatory factors can stimulate, for example, the NLRP3 inflammasome-a major amplifier of the inflammatory response in IBD, and various immune cells via non-specific bystander activation of myeloid cells (e.g., macrophages) and lymphocytes (e.g., tissue-resident memory T cells). Current single-target biological treatment approaches can dampen the immune response, but without reducing exposure to environmental factors of IBD, e.g., by changing diet (reducing ultra-processed foods), the adjuvant-rich landscape is never resolved and continues to drive intestinal mucosal dysregulation. Thus, such treatment approaches are not enough to put out the inflammatory fire. The resultant smoldering, low-grade inflammation diminishes physiological resilience of the intestinal (micro)environment, perpetuating the state of chronic disease. Therefore, our hypothesis posits that successful interventions for IBD must address the complexity of the disease by simultaneously targeting all modifiable aspects: innate immunity cytokines and microbiota, adaptive immunity cells and cytokines, and factors that relate to the (micro)environment. Thus the disease can be comprehensively treated across the nano-, meso-, and microscales, rather than with a focus on single targets. A broader perspective on IBD treatment that also includes options to adapt the DAMPing (micro)environment is warranted.

2.
Heliyon ; 10(12): e32688, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975145

RESUMO

The persistence of neuronal degeneration and damage is a major obstacle in ageing medicine. Nucleotide-binding oligomerization domain (NOD)-like receptors detect environmental stressors and trigger the maturation and secretion of pro-inflammatory cytokines that can cause neuronal damage and accelerate cell death. NLR (NOD-like receptors) inflammasomes are protein complexes that contain NOD-like receptors. Studying the role of NLR inflammasomes in ageing-related neurological disorders can provide valuable insights into the mechanisms of neurodegeneration. This includes investigating their activation of inflammasomes, transcription, and capacity to promote or inhibit inflammatory signaling, as well as exploring strategies to regulate NLR inflammasomes levels. This review summarizes the use of NLR inflammasomes in guiding neuronal degeneration and injury during the ageing process, covering several neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, stroke, and peripheral neuropathies. To improve the quality of life and slow the progression of neurological damage, NLR-based treatment strategies, including inhibitor-related therapies and physical therapy, are presented. Additionally, important connections between age-related neurological disorders and NLR inflammasomes are highlighted to guide future research and facilitate the development of new treatment options.

3.
EMBO Mol Med ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977927

RESUMO

In humans, blood Classical CD14+ monocytes contribute to host defense by secreting large amounts of pro-inflammatory cytokines. Their aberrant activity causes hyper-inflammation and life-threatening cytokine storms, while dysfunctional monocytes are associated with 'immunoparalysis', a state of immune hypo responsiveness and reduced pro-inflammatory gene expression, predisposing individuals to opportunistic infections. Understanding how monocyte functions are regulated is critical to prevent these harmful outcomes. We reveal platelets' vital role in the pro-inflammatory cytokine responses of human monocytes. Naturally low platelet counts in patients with immune thrombocytopenia or removal of platelets from healthy monocytes result in monocyte immunoparalysis, marked by impaired cytokine response to immune challenge and weakened host defense transcriptional programs. Remarkably, supplementing monocytes with fresh platelets reverses these conditions. We discovered that platelets serve as reservoirs of key cytokine transcription regulators, such as NF-κB and MAPK p38, and pinpointed the enrichment of platelet NF-κB2 in human monocytes by proteomics. Platelets proportionally restore impaired cytokine production in human monocytes lacking MAPK p38α, NF-κB p65, and NF-κB2. We uncovered a vesicle-mediated platelet-monocyte-propagation of inflammatory transcription regulators, positioning platelets as central checkpoints in monocyte inflammation.

4.
Eur J Pharm Biopharm ; : 114384, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950718

RESUMO

Peripheral vascular condition, known as deep vein thrombosis (DVT), is a common ailment that may lead to deadly pulmonary embolism. Inflammation is closely connected to venous thrombosis, which results in blood stasis, leading to ischemia and hypoxia, as indicated by research. The objective of this research was to investigate the mechanism by which exosomes derived from adipose stem cells (ADSCs) prevent deep vein thrombosis. Our data showed that Exo-483 effectively reduced the thrombus weight in DVT rats by intravenous injection. Exo-483 decreased the expression of tissue factor (TF) protein, the influx of inflammatory cells into the thrombosed vein wall, and the levels of cytokines in the serum. Furthermore, Exo-483 suppressed the expression of Mitogen-activated protein kinase 1 (MAPK1) and decreased the expression of NLRP3 inflammasomes. In an oxygen-glucose deprivation (OGD) cell model, the tube-forming and migratory abilities of primary human umbilical vein endothelial cells (HUVEC) and EA.hy926 cells were suppressed by Exo-483 pretreatment.Exo-483 is also linked to regulating Dynamin-related protein 1 (DRP1) production downstream of MAPK1.By decreasing the mitochondrial localization and phosphorylation at the S616 site of DRP1, it diminishes the expression of NLRP3 inflammasomes. Moreover, according to Bioinformatics analysis, miR-483-5p was anticipated to target MAPK1. The research conducted by our team revealed that the miR-483-5p exosome derived from ADSCs exhibited anti-inflammatory properties through the modulation of downstream DRP1-NLRP3 expression by targeting MAPK1.The findings of this research propose that miR-483-5p may be regarded as an innovative treatment target for DVT.

5.
MedComm (2020) ; 5(8): e668, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39081514

RESUMO

Retinopathy of prematurity (ROP) is a retinal neovascularization (RNV) disease that is characterized by abnormal blood vessel development in the retina. Importantly, the etiology of ROP remains understudied. We re-analyzed previously published single-cell data and discovered a strong correlation between microglia and RNV diseases, particularly ROP. Subsequently, we found that reactive oxygen species reduced autophagy-dependent protein degradation of absent in melanoma 2 (AIM2) in hypoxic BV2 cells, leading to increased AIM2 protein accumulation. Furthermore, we engineered AIM2 knockout mice and observed that the RNV was significantly reduced compared to wild-type mice. In vitro vascular function assays also demonstrated diminished angiogenic capabilities following AIM2 knockdown in hypoxic BV2 cells. Mechanistically, AIM2 enhanced the M1-type polarization of microglia via the ASC/CASP1/IL-1ß pathway, resulting in RNV. Notably, the administration of recombinant protein IL-1ß exacerbated angiogenesis, while its inhibition ameliorated the condition. Taken together, our study provides a novel therapeutic target for ROP and offers insight into the interaction between pyroptosis and autophagy.

6.
Acta Trop ; 257: 107313, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964632

RESUMO

Post Kala-azar dermal leishmaniasis (PKDL) arises as a significant dermal sequel following Visceral leishmaniasis (VL) caused by protozoan parasite Leishmania donovani (LD). PKDL acts as a significant constrain for VL elimination serving as a crucial reservoir for LD. PKDL patients exhibit depigmented macular and papular lesions on their skin, which results in social discrimination due to loss of natural skin color. Inflammatory reactions, prevalent in both VL and PKDL, potentially lead to tissue damage in areas harboring the parasite. Disruption of the immune-inflammasomal network not only facilitates LD persistence but also leads to the skin hypopigmentation seen in PKDL, impacting social well-being. Activation of inflammasomal markers like STAT1, NLRP1, NLRP3, AIM2, CASP11, and NLRP12 have been identified as a common host-defense mechanism across various Leishmania infections. Conversely, Leishmania modulates inflammasome activation to sustain its presence within the host. Nevertheless, in specific instances of Leishmania infection, inflammasome activation can worsen disease pathology by promoting parasite proliferation and persistence. This study encompasses recent transcriptomic analyses conducted between 2016 and 2023 on human and murine subjects afflicted with VL/PKDL, elucidating significant alterations in inflammasomal markers in both conditions. It offers a comprehensive understanding how these markers contribute in disease progression, drawing upon available literature for logical analysis. Furthermore, our analysis identifies validated miRNA network that could potentially disrupt this crucial immune-inflammasomal network, thereby offering a plausible explanation on how secreted LD-factors could enable membrane-bound LD, isolated from the host cytoplasm, to modulate cytoplasmic inflammasomal markers. Insights from this study could guide the development of host-directed therapeutics to impede transmission and address hypopigmentation, thereby mitigating the social stigma associated with PKDL.


Assuntos
Inflamassomos , Leishmania donovani , Leishmaniose Cutânea , Leishmaniose Visceral , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Humanos , Inflamassomos/metabolismo , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Leishmania donovani/imunologia , Animais
7.
Ann Hepatol ; : 101532, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39048057

RESUMO

INTRODUCTION AND OBJECTIVES: The absence of melanoma 2 (AIM2) protein triggers the activation of the inflammasome cascade. It is unclear whether AIM2 plays a role in hepatocellular carcinoma (HCC) and radiofrequency ablation (RFA), which uses radiofrequency waves to treat tumors. In this study, we investigated if RFA could induce pyroptosis, also called cell inflammatory necrosis, in HCC through AIM2-inflammasome signaling in vivo and in vitro. MATERIALS AND METHODS: BALB/c nude mice were used to generate HepG2 or SMMC-7721 cell-derived tumor xenografts. HCC cells with knockdown or overexpression of AIM2 were created using short hairpin RNA (shRNA) and expression vector transfection, respectively, for functional and mechanistic studies. Downstream effects were examined using flow cytometry, qRT-PCR, ELISAs, and other molecular assays. RESULTS: RFA significantly suppressed tumor growth in HCC cell xenografts. Flow cytometry analysis revealed that RFA could induce pyroptosis. Furthermore, AIM2, NLRP3, caspase-1, γ-H2AX, and DNA-PKc had significantly greater expression levels in liver tissues from mice treated with RFA compared with those of the controls. Additionally, interleukin (IL)-1ß and IL-18 expression levels were significantly higher in the HCC cell-derived xenograft mice treated with RFA compared with those without RFA. Notably, a significantly greater effect was achieved in the RFA complete ablation group versus the partial ablation group. Knockdown or overexpression of AIM2 in HCC cells demonstrated that AIM2 exerted a role in RFA-induced pyroptosis. CONCLUSIONS: RFA can suppress HCC tumor growth by inducing pyroptosis via AIM2. Therefore, therapeutically intervening with AIM2-mediated inflammasome signaling may help improve RFA treatment outcomes for HCC patients.

9.
Genome Biol Evol ; 16(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38965649

RESUMO

Inflammasomes are multiprotein complexes that form in response to ligands originating from pathogens as well as alterations of normal cell physiology caused by infection or tissue damage. These structures engage a robust inflammatory immune response that eradicates environmental microbes before they cause disease, and slow the growth of bona fide pathogens. Despite their undeniable utility in immunity, inflammasomes are radically reduced in birds. Perhaps most surprising is that, within all birds, NLRP3 is retained, while its signaling adapter ASC is lost, suggesting that NLRP3 signals via a novel unknown adapter. Crocodilian reptiles and turtles, which share a more recent common ancestor with birds, retain many of the lost inflammasome components, indicating that the deletion of inflammasomes occurred after birds diverged from crocodiles. Some bird lineages have even more extensive inflammasome loss, with songbirds continuing to pare down their inflammasomes until only NLRP3 and CARD8 remain. Remarkably, songbirds have lost caspase-1 but retain the downstream targets of caspase-1: IL-1ß, IL-18, and the YVAD-linker encoding gasdermin A. This suggests that inflammasomes can signal through alternative proteases to activate cytokine maturation and pyroptosis in songbirds. These observations may reveal new contexts of activation that may be relevant to mammalian inflammasomes and may suggest new avenues of research to uncover the enigmatic nature of the poorly understood NLRP3 inflammasome.


Assuntos
Aves , Inflamassomos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Evolução Molecular
10.
Chin Herb Med ; 16(3): 422-434, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39072201

RESUMO

Objective: Acute lung injury (ALI) is characterized by inflammation and currently lacks an efficacious pharmacological intervention. The medicine combination of Lonicerae Japonicae Flos (LJF) and Forsythiae Fructus (FF) demonstrates combined properties in its anti-infective, anti-inflammatory, and therapeutic effects, particularly in alleviating respiratory symptoms. In previous studies, Chinese medicine has shown promising efficacy in lipopolysaccharides (LPS)-induced ALI. However, there have been no reports of LJF and FF pairing for lung injury. The aim of this study is to compare the efficacy of herb pair Lonicerae Japonicae Flos-Forsythiae Fructus (LF) with LJF or FF alone in the treatment of ALI, and to explore whether LJF and FF have a combined effect in the treatment of lung injury, along with the underlying mechanism involved. Methods: A total of 36 mice were divided into six groups (control, model, LJF, FF, LF, dexamethasone) based on the treatments they received after undergoing sham-operation/LPS tracheal instillation. H&E staining and pulmonary edema indexes were used to evaluate lung injury severity. Alveolar exudate cells (AECs) were counted based on cell count in bronchoalveolar lavage fluid (BALF), and neutrophil percentage in BALF was measured using flow cytometry. Myeloperoxidase (MPO) activity in BALF was measured using enzyme-linked immunosorbent assay (ELISA), while the production of IL-1ß, TNF-α, and IL-6 in the lung and secretion level of them in BALF were detected by quantitative polymerase chain reaction (qPCR) and ELISA. The effect of LJF, FF, and LF on the expression of Caspase-1 and IL-1ß proteins in bone marrow derived macrophages (BMDMs) supernatant was assessed using Western blot method under various inflammasome activation conditions. In addition, the concentration of IL-1ß and changes in lactatedehydrogenase (LDH) release levels in BMDMs supernatant after LJF, FF, and LF administration, respectively, were measured using ELISA. Furthermore, the effects of LJF, FF and LF on STING and IRF3 phosphorylation in BMDMs were detected by Western blot, and the mRNA changes of IFN-ß, TNF-α, IL-6 and CXCL10 in BMDMs were detected by qPCR. Results: LF significantly attenuated the damage to alveolar structures, pulmonary hemorrhage, and infiltration of inflammatory cells induced by LPS. This was evidenced by a decrease in lung index score and wet/dry weight ratio. Treatment with LF significantly reduced the total number of neutrophil infiltration by 75% as well as MPO activity by 88%. The efficacy of LF in reducing inflammatory factors IL-1ß, TNF-α, and IL-6 in the lungs surpasses that of LJF or FF, approaching the effectiveness of dexamethasone. In BMDMs, the co-administration of 0.2 mg/mL of LJF and FF demonstrated superior inhibitory effects on the expression of nigericin-stimulated Caspase-1 and IL-1ß, as well as the release levels of LDH, compared to individual treatments. Similarly, the combination of 0.5 mg/mL LJF and FF could better inhibit the phosphorylation levels of STING and IRF3 and the production of IFN-ß, TNF-α, IL-6, and CXCL10 in response to ISD stimulation. Conclusion: The combination of LJF and FF increases the therapeutic effect on LPS-induced ALI, which may be mechanistically related to the combined effect inhibition of cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and NOD-like receptor family protein 3 (NLRP3) inflammasomes pathways by LJF and FF. Our study provides new medicine candidates for the clinical treatment of ALI.

11.
Inflammation ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052181

RESUMO

Nucleus pulposus (NP) cell pyroptosis is crucial for intervertebral disc degeneration (IDD). However, the precise mechanisms underlying pyroptosis in IDD remain elusive. Therefore, this study aimed to investigate how dickkopf-1 (DKK1) influences NP cell pyroptosis and delineate the regulatory mechanisms of IDD. Behavioral tests and histological examinations were conducted in rat IDD models to assess the effect of DKK1 on the structure and function of intervertebral discs. Detected pyroptosis levels using Hoechst 33,342/propidium iodide (PI) double staining, and determined pyroptosis-related protein expression via western blotting. The cellular mechanisms of DKK1 in pyroptosis were explored in interleukin (IL)-1ß-induced NP cells transfected with or without DKK1 overexpression plasmids (oe-DKK1). In addition, IL-1ß-treated NP cells transfected with sh-EZH2 and/or sh-DKK1 were utilized to clarify the interplay between the enhancer of zeste homologue 2 (EZH2) and DKK1 in pyroptosis. Additionally, the epigenetic regulation of DKK1 by EZH2 was explored in NP cells treated with the EZH2 inhibitors GSK126/DZNep. DKK1 expression decreased in IDD rats. Transfection with oe-DKK1 reduced pro-inflammatory factors and extracellular matrix markers in IDD rats. In IL-1ß-induced NP cells, DKK1 overexpression suppressed pyroptosis and inhibited the NLRP3 and NAIP/NLRC4 inflammasome activation. EZH2 knockdown increased DKK1 expression and reduced pyroptosis-related proteins. Conversely, DKK1 downregulation reversed the inhibitory effects of EZH2 knockdown on pyroptosis. Furthermore, EZH2 suppressed DKK1 expression via H3K27 methylation at the DKK1 promoter. EZH2 negatively regulates DKK1 expression via H3K27me3 methylation, promoting NP cell pyroptosis in IDD patients. This regulatory effect involves the activation of NLRP3 and NAIP/NLRC4 inflammasomes.

12.
J Pharm Pharmacol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985664

RESUMO

BACKGROUND: Acute liver injury (ALI) is a serious syndrome with a high mortality rate due to viral infection, toxic exposure, and autoimmunity, and its severity can range from mildly elevated liver enzymes to severe liver failure. Activation of the nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is closely associated with the development of ALI, and the search for an inhibitor targeting this pathway may be a novel therapeutic option. Anoectochilus roxburghii polysaccharide (ARP) is a biologically active ingredient extracted from Anoectochilus roxburghii with immunomodulatory, antioxidant, and anti-inflammatory bioactivities and pharmacological effects. In this study, we focused on D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced acute liver injury by ARP through inhibition of NLRP3 inflammasome. METHODS: An inflammasome activation model was established in bone marrow-derived macrophages (BMDMs) to investigate the effects of ARP on caspase-1 cleavage, IL-1ß secretion, and ASC oligomerization in inflammasomes under different agonists. We used the D-GalN/LPS-induced acute liver injury model in mice, intraperitoneally injected ARP or MCC950, and collected liver tissues, serum, and intraperitoneal lavage fluid for pathological and biochemical indexes. RESULTS: ARP effectively inhibited the activation of the NLRP3 inflammasome and had an inhibitory effect on non-classical NLRP3, AIM2, and NLRC4 inflammasomes. It also effectively inhibited the oligomerization of apoptosis-associated speck-like protein (ASC) from a variety of inflammatory vesicles. Meanwhile, ARP has good therapeutic effects on acute liver injury induced by D-GaIN/LPS. CONCLUSION: The inhibitory effect of ARP on a wide range of inflammasomes, as well as its excellent protection against acute liver injury, suggests that ARP may be a candidate for acute liver injury.

13.
Front Immunol ; 15: 1393851, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919626

RESUMO

Tendinitis, characterized by the inflammation of tendons, poses significant challenges in both diagnosis and treatment due to its multifaceted etiology and complex pathophysiology. This study aimed to dissect the molecular mechanisms underlying tendinitis, with a particular focus on inflammasome-related genes and their interactions with the immune system. Through comprehensive gene expression analysis and bioinformatics approaches, we identified distinct expression profiles of inflammasome genes, such as NLRP6, NLRP1, and MEFV, which showed significant correlations with immune checkpoint molecules, indicating a pivotal role in the inflammatory cascade of tendinitis. Additionally, MYD88 and CD36 were found to be closely associated with HLA family molecules, underscoring their involvement in immune response modulation. Contrary to expectations, chemokines exhibited minimal correlation with inflammasome genes, suggesting an unconventional inflammatory pathway in tendinitis. Transcription factors like SP110 and CREB5 emerged as key regulators of inflammasome genes, providing insight into the transcriptional control mechanisms in tendinitis. Furthermore, potential therapeutic targets were identified through the DGidb database, highlighting drugs that could modulate the activity of inflammasome genes, offering new avenues for targeted tendinitis therapy. Our findings elucidate the complex molecular landscape of tendinitis, emphasizing the significant role of inflammasomes and immune interactions, and pave the way for the development of novel diagnostic and therapeutic strategies.


Assuntos
Inflamassomos , Tendinopatia , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamassomos/imunologia , Humanos , Tendinopatia/genética , Tendinopatia/imunologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Pirina/genética , Proteínas NLR/genética , Regulação da Expressão Gênica , Transcriptoma , Redes Reguladoras de Genes
14.
FASEB J ; 38(13): e23748, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38940767

RESUMO

12,13-dihydroxy-9z-octadecenoic acid (12,13-DiHOME) is a linoleic acid diol derived from cytochrome P-450 (CYP) epoxygenase and epoxide hydrolase (EH) metabolism. 12,13-DiHOME is associated with inflammation and mitochondrial damage in the innate immune response, but how 12,13-DiHOME contributes to these effects is unclear. We hypothesized that 12,13-DiHOME enhances macrophage inflammation through effects on NOD-like receptor protein 3 (NLRP3) inflammasome activation. To test this hypothesis, we utilized human monocytic THP1 cells differentiated into macrophage-like cells with phorbol myristate acetate (PMA). 12,13-DiHOME present during lipopolysaccharide (LPS)-priming of THP1 macrophages exacerbated nigericin-induced NLRP3 inflammasome activation. Using high-resolution respirometry, we observed that priming with LPS+12,13-DiHOME altered mitochondrial respiratory function. Mitophagy, measured using mito-Keima, was also modulated by 12,13-DiHOME present during priming. These mitochondrial effects were associated with increased sensitivity to nigericin-induced mitochondrial depolarization and reactive oxygen species production in LPS+12,13-DiHOME-primed macrophages. Nigericin-induced mitochondrial damage and NLRP3 inflammasome activation in LPS+12,13-DiHOME-primed macrophages were ablated by the mitochondrial calcium uniporter (MCU) inhibitor, Ru265. 12,13-DiHOME present during LPS-priming also enhanced nigericin-induced NLRP3 inflammasome activation in primary murine bone marrow-derived macrophages. In summary, these data demonstrate a pro-inflammatory role for 12,13-DiHOME by enhancing NLRP3 inflammasome activation in macrophages.


Assuntos
Inflamassomos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Inflamassomos/metabolismo , Animais , Humanos , Camundongos , Células THP-1 , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Ácido Linoleico/farmacologia , Espécies Reativas de Oxigênio/metabolismo
15.
Hum Reprod ; 39(8): 1599-1607, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38906835

RESUMO

Ovarian aging, a natural process in women and various other female mammals as they age, is characterized by a decline in ovarian function and fertility due to a reduction in oocyte reserve and quality. This phenomenon is believed to result from a combination of genetic, hormonal, and environmental factors. While these factors collectively contribute to the shaping of ovarian aging, the substantial impact and intricate interplay of chronic inflammation in this process have been somewhat overlooked in discussions. Chronic inflammation, a prolonged and sustained inflammatory response persisting over an extended period, can exert detrimental effects on tissues and organs. This review delves into the novel hallmark of aging-chronic inflammation-to further emphasize the primary characteristics of ovarian aging. It endeavors to explore not only the clinical symptoms but also the underlying mechanisms associated with this complex process. By shining a spotlight on chronic inflammation, the aim is to broaden our understanding of the multifaceted aspects of ovarian aging and its potential clinical implications.


Assuntos
Envelhecimento , Inflamação , Ovário , Humanos , Feminino , Envelhecimento/fisiologia , Ovário/fisiopatologia , Doença Crônica , Animais , Reserva Ovariana/fisiologia
16.
mBio ; 15(7): e0297523, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38837391

RESUMO

Caspases are a family of cysteine proteases that act as molecular scissors to cleave substrates and regulate biological processes such as programmed cell death and inflammation. Extensive efforts have been made to identify caspase substrates and to determine factors that dictate substrate specificity. Thousands of putative substrates have been identified for caspases that regulate an immunologically silent type of cell death known as apoptosis, but less is known about substrates of the inflammatory caspases that regulate an immunostimulatory type of cell death called pyroptosis. Furthermore, much of our understanding of caspase substrate specificities is derived from work done with peptide substrates, which do not often translate to native protein substrates. Our knowledge of inflammatory caspase biology and substrates has recently expanded and here, we discuss the recent advances in our understanding of caspase substrate specificities, with a focus on inflammatory caspases. We highlight new substrates that have been discovered and discuss the factors that engender specificity. Recent evidence suggests that inflammatory caspases likely utilize two binding interfaces to recognize and process substrates, the active site and a conserved exosite.


Assuntos
Caspases , Inflamação , Especificidade por Substrato , Caspases/metabolismo , Caspases/genética , Humanos , Inflamação/metabolismo , Animais , Domínio Catalítico , Piroptose
17.
Vet Microbiol ; 294: 110127, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797057

RESUMO

Glaesserella parasuis (G. parasuis) is a common Gram-negative commensal bacterium in the upper respiratory tract of swine that can cause Glässer's disease under stress conditions. Pyroptosis is an important immune defence mechanism of the body that plays a crucial role in clearing pathogen infections and endogenous danger signals. This study aimed to investigate the mechanism of G. parasuis serotype 5 SQ (GPS5-SQ)-induced pyroptosis in swine tracheal epithelial cells (STECs). The results of the present study demonstrated that GPS5-SQ infection induces pyroptosis in STECs by enhancing the protein level of the N-terminal domain of gasdermin D (GSDMD-N) and activating the NOD-like receptor protein 3 (NLRP3) inflammasome. Furthermore, the levels of pyroptosis-related proteins, including GSDMD-N and cleaved caspase-1 were considerably decreased in STECs after the knockdown of retinoic acid inducible gene-I (RIG-I) and mitochondrial antiviral signaling protein (MAVS). These results indicated that GPS5-SQ might trigger pyroptosis through the activation of the RIG-I/MAVS/NLRP3 signaling pathway. More importantly, the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) repressed the activation of the RIG-I/MAVS/NLRP3 signaling and rescued the decrease in Occludin and zonula occludens-1 (ZO-1) after GPS5-SQ infection. Overall, our findings show that GPS5-SQ can activate RIG-I/MAVS/NLRP3 signaling and destroy the integrity of the epithelial barrier by inducing ROS generation in STECs, shedding new light on G. parasuis pathogenesis.


Assuntos
Células Epiteliais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Transdução de Sinais , Animais , Células Epiteliais/microbiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Suínos , Haemophilus parasuis/patogenicidade , Haemophilus parasuis/genética , Traqueia/microbiologia , Traqueia/citologia , Doenças dos Suínos/microbiologia , Sorogrupo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Inflamassomos/metabolismo , Inflamassomos/genética , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Infecções por Haemophilus/veterinária , Infecções por Haemophilus/microbiologia
18.
Heliyon ; 10(10): e31156, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38784563

RESUMO

Pyroptosis is a programmed and inflammation-inducing cell death that occurs predominantly in macrophages. It is characterized by the inflammasome-mediated activation of caspase-1, leading to cell lysis. During pyroptosis, pro-inflammatory mediators such as IL-1ß are released extracellularly to further recruit and activate other immune cells. Thus, pyroptosis plays a crucial role in the prevention of the spread of pathogens. The clinically applied synthetic glucocorticoid, hydrocortisone (HC), has strong immunoregulatory properties. It may act as an immunosuppressive agent by negatively regulating pro-inflammatory gene transcription but has also shown immune-sensitizing properties. The conditions that determine the immunosuppressive or immune-sensitizing actions of HC during an infection are not fully clear. We hypothesized that the outcome may differ depending on the onset and duration of its administration. Therefore, we investigated the impact of acute (treatment upon infection) and chronic (24 h pre-treatment before infection) HC treatment on pyroptosis induction and execution in THP-1 macrophage-like cells. The focus was on pyroptosis-associated signaling pathways, inflammasome assembly and activation, IL-1ß, and cell death. Physiological HC concentration and HC deprivation were used as controls. Compared to the physiological concentration, cells displayed augmented inflammasome activation and IL-1ß release following acute HC treatment. Conversely, the whole pyroptosis machinery was suppressed by chronic HC administration. These in vitro investigations demonstrate pro-inflammatory actions of acute HC exposure and the immunosuppressive effects of chronic treatment. These differential effects on pyroptosis emphasize the importance of individualized HC medication in patients upon infection, and suggest the inclusion of IL-1ß as a marker for current immune capacities.

19.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791409

RESUMO

Heart failure (HF) poses a significant world health challenge due to the increase in the aging population and advancements in cardiac care. In the pathophysiology of HF, the inflammasome has been correlated with the development, progression, and complications of HF disease. Discovering biomarkers linked to inflammasomes enhances understanding of HF diagnosis and prognosis. Directing inflammasome signaling emerges as an innovative therapeutic strategy for managing HF. The present review aims to delve into this inflammatory cascade, understanding its role in the development of HF, its potential role as biomarker, as well as the prospects of modulating inflammasomes as a therapeutic approach for HF.


Assuntos
Biomarcadores , Insuficiência Cardíaca , Inflamassomos , Humanos , Inflamassomos/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/imunologia , Animais , Transdução de Sinais , Inflamação/metabolismo , Inflamação/imunologia
20.
Toxicol Res (Camb) ; 13(3): tfae068, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38737340

RESUMO

Introduction: Currently, the role and mechanism of dopamine in non-alcoholic steatohepatitis (NASH) remains unclear. Methods: In vitro experiments utilized FFA and LPS to establish NASH cell models, while a fibrotic cell model was created using TGFß1 to investigate the impact of dopamine on cellular lipid metabolism, inflammation, and fibrosis. In vivo experiments involved the use of MCD and HFD diets to induce NASH in mouse models for observing the effects of dopamine on NASH disease progression. Results: Our study showed that dopamine significantly downregulated the expression levels of Caspase 1, IL-1ß and IL18 in the HepG2 NASH cell model. In addition, dopamine could inhibit the TGF-ß1-induced accumulation of collagen I and α-SMA in LX2 cells. In vivo experiments have shown that dopamine attenuation in mice is associated with MCD diet-induced and HFD-induced steatohepatitis. Mechanically, dopamine inhibits the p65 signaling pathway in NASH. Conclusion: In conclusion, the present study demonstrates the role of dopamine in ameliorating the symptoms of NASH and provides a direction for future research on the application of the dopaminergic system to liver disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...