Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39271561

RESUMO

Multidrug-resistant Escherichia coli (MDR-E. coli) is a global health concern. Lactic acid bacteria (LAB) are important probiotics that have beneficial effects on health, and in recent years, their influences in preventing foodborne pathogens-induced colitis have attracted much attention. Therefore, this study aimed to investigate the oral administration of Lactiplantibacillus plantarum NWAFU-BIO-BS29 as an emerging approach to alleviate MDR-E. coli-induced colitis in BALB/c mice model. To illustrate the mode of action of NWAFU-BIO-BS29 interventions with the gut microbiota and immune responses, the changes on the colonic mucosal barrier, regulatory of the gene expressions of inflammatory cytokines, re-modulating the intestinal microflora, and changes in physiological parameters were studied. The results indicated that daily supplementation of 200 µL fresh bacteria for 7 days had ameliorated the associated colitis and partially prevented the infection. The modes of action by ameliorating the inflammatory response, which destructed villous and then affected the intestinal barrier integrity, reducing the secretion of interleukins (6 and ß) and tumor necrosis factor (TNF-α) in serum by 87.88-89.93%, 30.73-35.98%, and 19.14-22.32%, respectively, enhancing the expressions of some epithelial integrity-related proteins in the mouse mucous layer of mucins 2 and 3, Claudin-1, and Occludin by 130.00-661.85%, 27.64-57.35%, 75.52-162.51%, and 139.36-177.73%, respectively, and 56.09-73.58% for toll-like receptor (TLR4) in colon tissues. Notably, the mouse gut microbiota analysis showed an increase in the relative abundance of beneficial bacteria, including Lactobacillus, Bacteriodales bacterium, Candidatus Saccharimonas, Enterorhabdus, and Bacilli. Furthermore, the probiotic promoted the proliferation of epithelia and goblet cells by increasing short-chain fatty acids (SCFAs) levels by 19.23-31.39%. In conclusion, L. plantarum NWAFU-BIO-BS29 has potential applications and can be considered a safe dietary supplement to ameliorate the colitis inflammation symptoms of MDR-E. coli infection.

2.
Toxicol Res (Camb) ; 11(1): 169-178, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35237421

RESUMO

One of the main antineoplastic chemotherapy medications is cisplatin, of which nephropathy is a major side effect. In this current study, we aim to investigate the molecular protective effect of Spirulina platensis (SP) on cisplatin-induced nephrotoxicity. In total, 48 healthy male albino rats were allocated into 4 groups. Group 1 received saline intraperitoneally (IP) twice per week (normal rats). Group 2 received SP (100 mg/kg BW orally). Group 3 were injected with cisplatin (1.5 mg/kg IP) twice per week. Group 4 received SP and on the 4th day received cisplatin (1.5 mg/kg IP) for 21 days. After 3 weeks of experiment, blood and renal tissues were taken for serum analysis, gene expression using qRT-polymerase chain reaction, and renal histopathology. As per our findings, it was found that SP significantly ameliorated the alterations in body weight, relative kidney weight, and the disturbance in examined renal markers. Furthermore, SP recovered and restored cisplatin-induced oxidative stress biomarkers (MDA and NO) and antioxidant activity (SOD and GSH) and cisplatin-induced upregulation in the gene expression of TNF-α, inducible nitric oxide synthase, TGF1-ß, IL-1ß, and IL-6. Interestingly, these gene expressions were ameliorated by the SP pre-administration. Furthermore, cisplatin upregulated pro-apoptotic gene Bax, whereas it downregulated anti-apoptotic gene Bcl2. Interestingly, SP mitigated this alteration in apoptosis and anti-apoptotic associated genes. Renal histopathology revealed the protective impacts of SP against cisplatin-induced severe glomerular congestion, hemorrhage, inflammatory cell infiltration, degeneration, and severe necrosis in renal glomeruli and tubules. In conclusion, SP has a protective effect against cisplatin-induced renal damage through modulating oxidative stress and anti-inflammatory, anti-necrotic, and anti-apoptotic-associated genes.

3.
Fish Shellfish Immunol ; 99: 59-72, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32006686

RESUMO

Innate immunity is characterized by nonspecific, prompt reactions toward armada of antigens. Animals funnel down a repertoire of immune stimulants to activate non-selective defense mechanisms rapidly. This study was conducted to characterize the rockfish (Sebastes schlegelii) adaptor protein MyD88 (SsMyD88), which interacts with both toll-like receptors and interleukin receptors. The tissue expression of unchallenged SsMyD88 was evaluated by quantitative real time PCR (qPCR). Fish were intraperitoneally injected with immune stimulants including poly I:C, lipopolysaccharides, and Streptococcus iniae. Then, the temporal expression of SsMyD88 was analyzed. Finally, the inflammatory gene expression and downstream promoter activation were analyzed. Strongest expressions were reported in the liver, gills and spleen in unchallenged conditions. All diverse immune stimulants were found to be capable of significantly altering SsMyD88 transcription during the challenge experiment. Evaluation of downstream promoter biases by SsMyD88 found a predominant activation of NF-ĸB transcription factors when compared with the AP-1, revealing significant and substantial upregulation of major inflammatory mediators such as IL-1-ß, IL-6, iNOS, COX-2 and TNF-α. Fluorescent detection confirmed an intense production of NO and the predominant differentiation of macrophages into M1 lineage with the overexpression of SsMyD88 in vitro. These results further corroborate the role of SsMyD88 as a mediatory molecule that bridges distinct immune stimulants to induce drastic immune responses in fish.


Assuntos
Citocinas/genética , Proteínas de Peixes/genética , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , NF-kappa B/genética , Perciformes/genética , Animais , Citocinas/imunologia , Proteínas de Peixes/imunologia , Expressão Gênica , Células HEK293 , Humanos , Imunidade Inata , Inflamação , Lipopolissacarídeos , Macrófagos/imunologia , Camundongos , NF-kappa B/imunologia , Perciformes/imunologia , Poli I-C , Células RAW 264.7 , Streptococcus iniae
4.
J Zhejiang Univ Sci B ; 19(10): 796-806, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30269447

RESUMO

Recent studies have shown that diet can affect the body's immunity. Roughage of dairy cows consists of a variety of plant materials which make different contributions to health. This study investigated the effect of different roughages on the immunity of dairy cows. Serum, peripheral blood mononuclear cells (PBMCs), and milk samples were collected from 20 multiparous mid-lactation cows fed mixed forage (MF)- or corn straw (CS)-based diets. Expression profile analysis was used to detect the differentially expressed genes (DEGs) from PBMCs. The results showed that milk protein in the MF group increased to 3.22 g/100 ml, while that of the CS group milk was 2.96 g/100 ml; by RNA sequencing, it was found that 1615 genes were differentially expressed between the CS group and the MF group among the 24 027 analyzed probes. Gene ontology (GO) and pathway analysis of DEGs suggested that these genes (especially genes coding cytokines, chemokine and its receptors) are involved in the immune response. Results were confirmed at the protein level via detecting the levels of interleukin-2 (IL-2), IL-6, IL-10, IL-12, leptin (LEP), interferon-γ (IFN-γ), transforming growth factor-ß1 (TGF-ß1), and tumor necrosis factor-α (TNF-α) in peripheral blood by enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay analysis. Our data supported the conclusions that the protein content in milk of the MF group was higher than that of the CS group, the CS-based diets induced more release of cytokines than the MF-based diets in dairy cows' PBMCs, and milk protein content may be affected by cytokines.


Assuntos
Bovinos/imunologia , Citocinas/fisiologia , Leucócitos Mononucleares/imunologia , Zea mays , Animais , Dieta , Feminino , Ontologia Genética , Leite/química , Fator de Crescimento Transformador beta/fisiologia
5.
Fish Shellfish Immunol ; 38(1): 111-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24594008

RESUMO

Lipopolysaccharide-binding protein (LBP) belongs to the lipid transfer/LBP (LT-LBP) family, and plays a crucial role in the recognition of bacterial components that modulate cellular signals in phagocytic cells. Although several LBPs have been identified in teleosts, the effects of LBP homologs on teleost phagocytic cells are still obscure. Here, we report the cloning a novel full-length cDNA sequence of LBP-like protein (paLBP) gene from sweetfish, Plecoglossus altivelis. The paLBP cDNA encoded a 464 aa polypeptide, which was closest to that of rainbow smelt (Osmerus mordax). paLBP mRNA was detected mainly in the spleen, liver, and head kidney and levels dramatically increased in various tissues after Listonella anguillarum infection. In contrast to mammalian studies, paLBP mRNA could also be detected in sweetfish monocytes/macrophages. Recombinant paLBP showed LPS-binding activity and Western blot results revealed a significant increase of paLBP in the supernatant of sweetfish monocytes/macrophages challenged with L. anguillarum. Moreover, paLBP neutralization led to up-regulation of IL-1ß and TNF-α mRNA as well as respiratory burst activity in sweetfish monocytes/macrophages in response to L. anguillarum or LPS challenge. Therefore, these results suggest that paLBP is an inducible acute-phase protein mediating the immune response of sweetfish monocytes/macrophages upon bacterial challenge.


Assuntos
Proteínas de Fase Aguda/metabolismo , Proteínas de Transporte/metabolismo , Imunidade Celular/fisiologia , Macrófagos/fisiologia , Glicoproteínas de Membrana/metabolismo , Monócitos/fisiologia , Osmeriformes/metabolismo , Proteínas de Fase Aguda/genética , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Regulação da Expressão Gênica/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Listonella , Glicoproteínas de Membrana/genética , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Int J Mol Sci ; 10(3): 1300-1313, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19399250

RESUMO

One of the ultimate goals of wound healing research is to find effective healing techniques that utilize the regeneration of similar tissues. This involves the modification of various wound dressing biomaterials for proper wound management. The biopolymer chitosan (beta-1,4-D-glucosamine) has natural biocompatibility and biodegradability that render it suitable for wound management. By definition, a biocompatible biomaterial does not have toxic or injurious effects on biological systems. Chemical and physical modifications of chitosan influence its biocompatibility and biodegradability to an uncertain degree. Hence, the modified biomedical-grade of chitosan derivatives should be pre-examined in vitro in order to produce high-quality, biocompatible dressings. In vitro toxicity examinations are more favorable than those performed in vivo, as the results are more reproducible and predictive. In this paper, basic in vitro tools were used to evaluate cellular and molecular responses with regard to the biocompatibility of biomedical-grade chitosan. Three paramount experimental parameters of biocompatibility in vitro namely cytocompatibility, genotoxicity and skin pro-inflammatory cytokine expression, were generally reviewed for biomedical-grade chitosan as wound dressing.


Assuntos
Materiais Biocompatíveis/farmacologia , Quitosana/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Quitosana/análogos & derivados , Quitosana/toxicidade , Citocinas/metabolismo , Dano ao DNA/efeitos dos fármacos , Humanos , Modelos Biológicos , Pele/citologia , Pele/efeitos dos fármacos , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA