Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.458
Filtrar
1.
Front Immunol ; 15: 1360698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979428

RESUMO

Regulatory T cells (Tregs) play a crucial and complex role in balancing the immune response to viral infection. Primarily, they serve to regulate the immune response by limiting the expression of proinflammatory cytokines, reducing inflammation in infected tissue, and limiting virus-specific T cell responses. But excessive activity of Tregs can also be detrimental and hinder the ability to effectively clear viral infection, leading to prolonged disease and potential worsening of disease severity. Not much is known about the impact of Tregs during severe influenza. In the present study, we show that CD4+/CD25+FoxP3+ Tregs are strongly involved in disease progression during influenza A virus (IAV) infection in mice. By comparing sublethal with lethal dose infection in vivo, we found that not the viral load but an increased number of CD4+/CD25+FoxP3+ Tregs may impair the immune response by suppressing virus specific CD8+ T cells and favors disease progression. Moreover, the transfer of induced Tregs into mice with mild disease symptoms had a negative and prolonged effect on disease outcome, emphasizing their importance for pathogenesis. Furthermore, treatment with MEK-inhibitors resulted in a significant reduction of induced Tregs in vitro and in vivo and positively influenced the progression of the disease. Our results demonstrate that CD4+/CD25+FoxP3+ Tregs are involved in the pathogenesis of severe influenza and indicate the potential of the MEK-inhibitor zapnometinib to modulate CD4+/CD25+FoxP3+ Tregs. Thus, making MEK-inhibitors even more promising for the treatment of severe influenza virus infections.


Assuntos
Vírus da Influenza A , Infecções por Orthomyxoviridae , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Camundongos , Vírus da Influenza A/imunologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Feminino , Camundongos Endogâmicos C57BL , Fatores de Transcrição Forkhead/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Carga Viral/efeitos dos fármacos , Modelos Animais de Doenças
2.
Front Cell Infect Microbiol ; 14: 1433661, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979510

RESUMO

In recent years, the avian influenza virus has emerged as a significant threat to both human and public health. This study focuses on a patient infected with the H10N3 subtype of avian influenza virus, admitted to the Third People's Hospital of Kunming City on March 6, 2024. Metagenomic RNA sequencing and polymerase chain reaction (PCR) analysis were conducted on the patient's sputum, confirming the H10N3 infection. The patient presented severe pneumonia symptoms such as fever, expectoration, chest tightness, shortness of breath, and cough. Phylogenetic analysis of the Haemagglutinin (HA) and neuraminidase (NA) genes of the virus showed that the virus was most closely related to a case of human infection with the H10N3 subtype of avian influenza virus found in Zhejiang Province, China. Analysis of amino acid mutation sites identified four mutations potentially hazardous to human health. Consequently, this underscores the importance of continuous and vigilant monitoring of the dynamics surrounding the H10N3 subtype of avian influenza virus, utilizing advanced genomic surveillance techniques.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A , Influenza Humana , Neuraminidase , Filogenia , Humanos , China/epidemiologia , Influenza Humana/virologia , Neuraminidase/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Mutação , Análise Mutacional de DNA , Animais , Influenza Aviária/virologia , Proteínas Virais/genética , Escarro/virologia , Aves/virologia , Masculino , RNA Viral/genética
3.
ACS Infect Dis ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970488

RESUMO

Low-pathogenic avian influenza virus (LPAIV) remains the most common subtype of type-A influenza virus that causes moderate to severe infection in poultry with significant zoonotic and pandemic potential. Due to high mutability, increasing drug resistance, and limited vaccine availability, the conventional means to prevent intra- or interspecies transmission of AIV is highly challenging. As an alternative to control AIV infections, cytokine-based approaches to augment antiviral host defense have gained significant attention. However, the selective application of cytokines is critical since unregulated expression of cytokines, particularly proinflammatory ones, can cause substantial tissue damage during acute phases of immune responses. Moreover, depending on the type of cytokine and its impact on intestinal microbiota, outcomes of cytokine-gut microflora interaction can have a critical effect on overall host defense against AIV infections. Our recent study demonstrated some prominent roles of chicken IL-17A (ChIL-17A) in regulating antiviral host responses against AIV infection, however, in an in vitro model. For more detailed insights into ChIL-17A function, in the present study, we investigated whether ChIL-17A-meditated elevated antiviral host responses can translate into effective immune protection against AIV infection in an in vivo system. Moreover, considering the role of gut health in fostering innate or local host responses, we further studied the contributory relationships between gut microbiota and host immunity against AIV infection in chickens. For this, we employed a recombinant lactic acid-producing bacterial (LAB) vector, Lactococcus lactis, expressing ChIL-17A and analyzed the in vivo functionality in chickens against an LPAIV (A/H9N2) infection. Our study delineates that mucosal delivery of rL. lactis expressing ChIL-17A triggers proinflammatory signaling cascades and can drive a positive shift in phylum Firmicutes, along with a marked decline in phylum Actinobacteriota and Proteobacteria, favoring effective antiviral host responses against AIV infection in chickens. We propose that ChIL-17A-mediated selective expansion of beneficial gut microbiota might form a healthy microbial community that augments the effective immune protection against AIV infections in chickens.

4.
Infect Med (Beijing) ; 3(2): 100108, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38966059

RESUMO

Background: An epizootic of highly pathogenic avian influenza A (H5N1) has spread worldwide since 2022. Even though this virus has been extensively studied for many decades, little is known about its evolution in South America. Methods: Here, we describe the sequencing and characterization of 13 H5N1 genomes collected from wild birds, poultry, and wild mammals in Peru during the genomic surveillance of this outbreak. Results: The samples belonged to the highly pathogenic avian influenza (H5N1) 2.3.4.4b clade. Chilean and Peruvian samples clustered in the same group and therefore share a common ancestor. An analysis of the hemagglutinin and neuraminidase genes detected new mutations, some dependent upon the host type. Conclusions: The genomic surveillance of highly pathogenic avian influenza is necessary to promote the One Health policy and to overcome the new problems entailed by climate change, which may alter the habitats of resident and migratory birds.

5.
Antiviral Res ; : 105956, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969237

RESUMO

Baloxavir marboxil (baloxavir), approved as an anti-influenza drug in Japan in March 2018, can induce reduced therapeutic effectiveness due to PA protein substitutions. We assessed PA substitutions in clinical samples from influenza-infected children and adults pre- and post-baloxavir treatment, examining their impact on fever and symptom duration. During the 2022-2023 influenza season, the predominant circulating influenza subtype detected by cycling-probe RT-PCR was A(H3N2) (n=234), with a minor circulation of A(H1N1)pdm09 (n=10). Of the 234 influenza A(H3N2) viruses collected prior to baloxavir treatment, 2 (0.8%) viruses carry PA/I38T substitution. One virus was collected from a toddler and one from an adult, indicating the presence of viruses with reduced susceptibility to baloxavir, without prior exposure to the drug. Of the 54 paired influenza A(H3N2) viruses collected following baloxavir treatment, 8 (14.8%) viruses carried E23K/G, or I38M/T substitutions in PA. Variant calling through next-generation sequencing (NGS) showed varying proportions (6 to 100 %), a polymorphism and a mixture of PA/E23K/G, and I38M/T substitutions in the clinical samples. These eight viruses were obtained from children aged 7-14 years, with a median fever duration of 16.7 hours and a median symptom duration of 93.7 hours, which were similar to those of the wild type. However, the delayed viral clearance associated with the emergence of PA substitutions was observed. No substitutions conferring resistance to neuraminidase inhibitors were detected in 37 paired samples collected before and following oseltamivir treatment. These findings underscore the need for ongoing antiviral surveillance, informing public health strategies and clinical antiviral recommendations for seasonal influenza.

6.
One Health ; 19: 100766, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39021558

RESUMO

Introduction: During the outbreak of avian influenza, A (H5N1) (IA) in wild and domestic birds recorded in January 2023, the epidemiological alert has been extended due to its potential contagion to humans, particularly in those exposed occupational groups. Objective: to identify the primary occupational risk groups, as well as the preventive, safety, and control measures against IA intended or implemented in these positions. Material and methods: A systematic search was conducted in Pubmed, Scopus, Web of science, Scielo and literature databases. Scientific articles, normative documents, and technical reports identifying vulnerable occupational groups and preventive measures against IA were included. Two authors conducted a full-text review, extracting information independently, and findings were summarized narratively. Results: A total of 5518 documents were identified, and 30 reports were included. 20% of the reports were published in 2023, 13/30 were affiliated to a university institution. Occupationally exposed groups were identified both directly and indirectly. 63.3% of reports identified breeders, poultry farmers and sellers as the most concerning occupational group, while 60% identified biosecurity practices (use of PPE, handwashing) as the primary measure against IA, followed by strategies such as education (training and capacity-building). Conclusion: Occupational groups of interest were identified, primarily those involved in sales, commerce, and the handling of bird waste with potential exposure to IA. Furthermore, the maintenance of biosecurity measures, cleaning-disinfection practices, and educational strategies in workplace settings are recommended.

7.
Heliyon ; 10(12): e33237, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39021925

RESUMO

Background: Death caused by respiratory tract infection is one of the leading causes of death in the world today. Shufeng Jiedu Capsule (SFJDC) is a traditional Chinese medicine that has been widely used clinically for coronavirus disease 2019 (COVID-19), H1N1 influenza virus pneumonia and other diseases. Its pharmacological effect is to inhibit inflammation and improve the body's ability to clear viruses. However, the mechanism of SFJDC in the treatment of viral pneumonia, especially its effect on the inflammatory-immune microenvironment of lung tissue remains unclear. Methods: Mice with H1N1 influenza virus pneumonia were used as a model to verify the efficacy of SFJDC through death protection, lung index, viral load, and HE staining of lung tissue. The levels of inflammatory cytokines and chemokines in lung tissue were investigated by multi-analyte immunoassay. The number and proportion of cells in peripheral blood were detected by blood routine. The percentage of infiltrating immune cells in lung tissue was detected by flow cytometry and immunofluorescence. Results: SFJDC (2.2 g/kg·d-1 and 1.1 g/kg·d-1) increased survival rate (P<0.01, P<0.05), prolonged the survival period of mice, and alleviated the histopathological damage in lung (P<0.01). SFJDC (2.2 g/kg·d-1, 1.1 g/kg·d-1 and 0.055 g/kg·d-1) increased body weight(P<0.01, P<0.05), improved activity status, reduced the lung index (P<0.01, P<0.05) and viral load (P<0.01). SFJDC (2.2 g/kg·d-1 and 1.1 g/kg·d-1) reduced interleukin-1ß (IL-1ß), interleukin-18(IL-18), tumour necrosis factor α (TNF-α), monocyte chemoattractant protein (MCP), chemokine (C-X-C motif) ligand 1 (CXCL1) (P<0.01, P<0.05), and SFJDC (2.2 g/kg·d-1) increased IL-10 levels (P<0.05) to regulate inflammation. SFJDC (2.2 g/kg·d-1) increased the percentages of CD4+ T cells (P<0.01), CD8+ T cells (P<0.05), and B cells(P<0.05), and decreased F4/80+ macrophages (P<0.05). Conclusion: Our findings indicated that SFJDC could inhibit inflammation and lung injury while maintaining the function of the adaptive immune response mediated by T and B cells, and promote the clearance of the virus, thereby treating influenza A (H1N1) virus-induced pneumonia.

8.
Viral Immunol ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001845

RESUMO

It is difficult to differentiate between coronavirus disease 2019 (COVID-19) and influenza based on the symptoms. In the present study, a newly developed antigen rapid diagnostic test (Ag-RDT) called Panbio™ COVID-19/Flu A&B that can simultaneously detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A/B virus was evaluated. Its accuracy was evaluated using 235 pairs of nasopharyngeal samples collected from patients with respiratory symptoms and fever (>37.5°C). Reverse transcription polymerase chain reaction was used as a reference method to evaluate the accuracy of the SARS-CoV-2 detection. We confirmed the accuracy of the developed Ag-RDT against the Omicron variant where the sensitivity and specificity were 94.8% and 100%, respectively. In addition, to identify the influenza A virus, a noninferiority test was conducted using a commercial Ag-RDT, which has a sensitivity and specificity in comparison with viral culture of 94.8% and 98.4%, respectively. The positive and negative predictive values for influenza A virus were 98.5% and 98.1%, respectively, for the Panbio COVID-19/Flu A&B test. The evaluation of this newly developed Ag-RDT using clinical samples suggests that it has a high efficacy in clinical settings.

9.
Acta Pharmacol Sin ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987389

RESUMO

Influenza A virus (IAV) is a widespread pathogen that poses a significant threat to human health, causing pandemics with high mortality and pathogenicity. Given the emergence of increasingly drug-resistant strains of IAV, currently available antiviral drugs have been reported to be inadequate to meet clinical demands. Therefore, continuous exploration of safe, effective and broad-spectrum antiviral medications is urgently required. Here, we found that the small molecule compound J1 exhibited low toxicity both in vitro and in vivo. Moreover, J1 exhibits broad-spectrum antiviral activity against enveloped viruses, including IAV, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human coronavirus OC43 (HCoV-OC43), herpes simplex virus type 1 (HSV-1) and HSV-2. In this study, we explored the inhibitory effects and mechanism of action of J1 on IAV in vivo and in vitro. The results showed that J1 inhibited infection by IAV strains, including H1N1, H7N9, H5N1 and H3N2, as well as by oseltamivir-resistant strains. Mechanistic studies have shown that J1 blocks IAV infection mainly through specific interactions with the influenza virus hemagglutinin HA2 subunit, thereby blocking membrane fusion. BALB/c mice were used to establish a model of acute lung injury (ALI) induced by IAV. Treatment with J1 increased survival rates and reduced viral titers, lung index and lung inflammatory damage in virus-infected mice. In conclusion, J1 possesses significant anti-IAV effects in vitro and in vivo, providing insights into the development of broad-spectrum antivirals against future pandemics.

10.
Front Microbiol ; 15: 1401997, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957616

RESUMO

Influenza A virus (IAV) is a negative-sense single-stranded RNA virus that causes acute lung injury and acute respiratory distress syndrome, posing a serious threat to both animal and human health. N6-methyladenosine (m6A), a prevalent and abundant post-transcriptional methylation of RNA in eukaryotes, plays a crucial regulatory role in IAV infection by altering viral RNA and cellular transcripts to affect viral infection and the host immune response. This review focuses on the molecular mechanisms underlying m6A modification and its regulatory function in the context of IAV infection and the host immune response. This will provide a better understanding of virus-host interactions and offer insights into potential anti-IAV strategies.

11.
J Virol ; : e0088124, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958444

RESUMO

In March 2024, clade 2.3.4.4b H5N1 highly pathogenic avian influenza virus (HPAIV) was detected in dairy cattle in the US, and it was discovered that the virus could be detected in raw milk. Although affected cow's milk is diverted from human consumption and current pasteurization requirements are expected to reduce or eliminate infectious HPAIV from the milk supply, a study was conducted to characterize whether the virus could be detected by quantitative real-time RT-PCR (qrRT-PCR) in pasteurized retail dairy products and, if detected, to determine whether the virus was viable. From 18 April to 22 April 2024, a total of 297 samples of Grade A pasteurized retail milk products (23 product types) were collected from 17 US states that represented products from 132 processors in 38 states. Viral RNA was detected in 60 samples (20.2%), with qrRT-PCR-based quantity estimates (non-infectious) of up to 5.4log1050% egg infectious doses per mL, with a mean and median of 3.0log10/mL and 2.9log10/mL, respectively. Samples that were positive for type A influenza by qrRT-PCR were confirmed to be clade 2.3.4.4 H5 HPAIV by qrRT-PCR. No infectious virus was detected in any of the qrRT-PCR-positive samples in embryonating chicken eggs. Further studies are needed to monitor the milk supply, but these results provide evidence that the infectious virus did not enter the US pasteurized milk supply before control measures for HPAIV were implemented in dairy cattle.IMPORTANCEHighly pathogenic avian influenza virus (HPAIV) infections in US dairy cattle were first confirmed in March 2024. Because the virus could be detected in raw milk, a study was conducted to determine whether it had entered the retail food supply. Pasteurized dairy products were collected from 17 states in April 2024. Viral RNA was detected in one in five samples, but infectious virus was not detected. This provides a snapshot of HPAIV in milk products early in the event and reinforces that with current safety measures, infectious viruses in milk are unlikely to enter the food supply.

12.
J Ethnopharmacol ; 334: 118521, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969152

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sangju Cold Granule (SJCG) is a classical traditional Chinese medicine (TCM) prescription described in "Item Differentiation of Warm Febrile Diseases". Historically, SJCG was employed to treat respiratory illnesses. Despite its popular usage, the alleviating effect of SJCG on influenza A virus infection and its mechanisms have not been fully elucidated. AIM OF THE STUDY: Influenza is a severe respiratory disease that threatens human health. This study aims to assess the therapeutic potential of SJCG and the possible molecular mechanism underlying its activity against influenza A virus in vitro and in vivo. MATERIALS AND METHODS: Ultrahigh-performance liquid chromatography (UPLC)-Q-Exactive was used to identify the components of SJCG. The 50% cytotoxic concentration of SJCG in MDCK and A549 cells were determined using the CCK-8 assay. The activity of SJCG against influenza A virus H1N1 was evaluated in vitro using plaque reduction and progeny virus titer reduction assays. RT-qPCR was performed to obtain the expression levels of inflammatory mediators and the transcriptional regulation of RIG-I and MDA5 in H1N1-infected A549 cells. Then, the mechanism of SJCG effect on viral replication and inflammation was further explored by measuring the expressions of proteins of the RIG-I/NF-kB/IFN(I/III) signaling pathway by Western blot. The impact of SJCG was explored in vivo in an intranasally H1N1-infected BALB/c mouse pneumonia model treated with varying doses of SJCG. The protective role of SJCG in this model was evaluated by survival, body weight monitoring, lung viral titers, lung index, lung histological changes, lung inflammatory mediators, and peripheral blood leukocyte count. RESULTS: The main SJCG chemical constituents were flavonoids, carbohydrates and glycosides, amino acids, peptides, and derivatives, organic acids and derivatives, alkaloids, fatty acyls, and terpenes. The CC50 of SJCG were 24.43 mg/mL on MDCK cells and 20.54 mg/mL on A549 cells, respectively. In vitro, SJCG significantly inhibited H1N1 replication and reduced the production of TNF-α, IFN-ß, IL-6, IL-8, IL-13, IP-10, RANTES, TRAIL, and SOCS1 in infected A549 cells. Intracellularly, SJCG reduced the expression of RIG-I, MDA5, P-NF-κB P65 (P-P65), P-IκBα, P-STAT1, P-STAT2, and IRF9. In vivo, SJCG enhanced the survival rate and decreased body weight loss in H1N1-infected mice. Mice with H1N1-induced pneumonia treated with SJCG showed a lower lung viral load and lung index than untreated mice. SJCG effectively alleviated lung damage and reduced the levels of TNF-α, IFN-ß, IL-6, IP-10, RANTES, and SOCS1 in lung tissue. Moreover, SJCG significantly ameliorated H1N1-induced leukocyte changes in peripheral blood. CONCLUSIONS: SJCG significantly reduced influenza A virus and virus-mediated inflammation through inhibiting the RIG-I/NF-kB/IFN(I/III) signaling pathway. Thus, SJCG could provide an effective TCM for influenza treatment.

13.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000138

RESUMO

The ongoing battle against viral pandemics continues, with the possibility of future outbreaks. The search for effective antiviral compounds that can combat a diverse range of viruses continues to be a focal point of research. This study investigated the efficacy of two natural antimicrobial peptides (AMPs) (lactoferricin and LL-37), two synthetic AMPs (melimine and Mel4), and nine AMP mimics (758, 1091, 1096, 1083, 610, NAPL, 3-BIPL, 4-BIPL, and Sau-22) against influenza A virus strains H1N1 and H3N2, human adenovirus 5 (HAdV-5), and murine norovirus 1 (MNV-1). These compounds were tested using virus pre-treatment, cell pre-treatment, or post-cell entry treatment assays, electron microscopy, and circular dichroism (CD), alongside evaluations of cytotoxicity against the host cells. After virus pre-treatment, the AMP mimics 610 and Sau-22 had relatively low IC50 values for influenza strains H1N1 (2.35 and 6.93 µM, respectively) and H3N2 (3.7 and 5.34 µM, respectively). Conversely, natural and synthetic AMPs were not active against these strains. For the non-enveloped viruses, the AMP Mel4 and mimic 1083 had moderate activity against HAdV-5 (Mel4 IC50 = 47.4 µM; 1083 IC50 = 47.2 µM), whereas all AMPs, but none of the mimics, were active against norovirus (LL-37 IC50 = 4.2 µM; lactoferricin IC50 = 23.18 µM; melimine IC50 = 4.8 µM; Mel4 IC50 = 8.6 µM). Transmission electron microscopy demonstrated that the mimics targeted the outer envelope of influenza viruses, while the AMPs targeted the capsid of non-enveloped viruses. CD showed that Mel4 adopted an α-helical structure in a membrane mimetic environment, but mimic 758 remained unstructured. The diverse activity against different virus groups is probably influenced by charge, hydrophobicity, size, and, in the case of natural and synthetic AMPs, their secondary structure. These findings underscore the potential of peptides and mimics as promising candidates for antiviral therapeutics against both enveloped and non-enveloped viruses.


Assuntos
Antivirais , Norovirus , Norovirus/efeitos dos fármacos , Animais , Humanos , Camundongos , Antivirais/farmacologia , Antivirais/química , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/fisiologia , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Cães , Adenoviridae/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Células Madin Darby de Rim Canino , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química
14.
Talanta ; 278: 126568, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39018763

RESUMO

Although molecular imprinting technology has been widely used in the construction of virus sensors, it is still a great challenge to identify subtypes viruses specifically because of their high similarity in morphology, size and structure. Here, a monoclonal molecular imprinted polymers (MIPs) sensor for recognition of H5N1 is constructed to permit the accurate distinguishing of H5N1 from other influenza A virus (IAV) subtypes. Firstly, H5N1 are immobilized on magnetic microspheres to produce H5N1-MagNPs, then the high affinity nanogel H5N1-MIPs is prepared by solid phase imprinting technique. When H5N1-MIPs is combined with MagNP-H5N1, different concentrations of H5N1 are added for competitive substitution. The quantitative detection of H5N1 is realized by the change of fluorescence intensity of supernatant. As expected, the constructed sensor shows satisfactory selectivity, and can identify the target virus from highly similar IAV subtypes, such as H1N1, H7N9 and H9N2. The sensor was highly sensitive, with a detection limit of 0.58 fM, and a selectivity factor that is comparable to that of other small MIPs sensors is achieved. In addition, the proposed sensor is cheap, with a cost of only RMB 0.08 yuan. The proposed monoclonal sensor provides a new method for the specific recognition of designated virus subtype, which is expected to be used for large-scale screening and accurate treatment of infected people.

15.
Emerg Microbes Infect ; 13(1): 2368202, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38970562

RESUMO

Influenza A viruses (IAV) impose significant respiratory disease burdens in both swine and humans worldwide, with frequent human-to-swine transmission driving viral evolution in pigs and highlighting the risk at the animal-human interface. Therefore, a comprehensive One Health approach (interconnection among human, animal, and environmental health) is needed for IAV prevention, control, and response. Animal influenza genomic surveillance remains limited in many Latin American countries, including Colombia. To address this gap, we genetically characterized 170 swine specimens from Colombia (2011-2017). Whole genome sequencing revealed a predominance of pandemic-like H1N1 lineage, with a minority belonging to H3N2 and H1N2 human seasonal-like lineage and H1N1 early classical swine lineages. Significantly, we have identified reassortant and recombinant viruses (H3N2, H1N1) not previously reported in Colombia. This suggests a broad genotypic viral diversity, likely resulting from reassortment between classical endemic viruses and new introductions established in Colombia's swine population (e.g. the 2009 H1N1 pandemic). Our study highlights the importance of a One Health approach in disease control, particularly in an ecosystem where humans are a main source of IAV to swine populations, and emphasizes the need for continued surveillance and enhanced biosecurity measures. The co-circulation of multiple subtypes in regions with high swine density facilitates viral exchange, underscoring the importance of monitoring viral evolution to inform vaccine selection and public health policies locally and globally.


Assuntos
Evolução Molecular , Variação Genética , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Infecções por Orthomyxoviridae , Filogenia , Doenças dos Suínos , Animais , Suínos , Colômbia/epidemiologia , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/epidemiologia , Doenças dos Suínos/virologia , Doenças dos Suínos/epidemiologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Saúde Única , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Sequenciamento Completo do Genoma , Genoma Viral , Monitoramento Epidemiológico , Vírus Reordenados/genética , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Vírus da Influenza A Subtipo H1N2/genética , Vírus da Influenza A Subtipo H1N2/isolamento & purificação , Vírus da Influenza A Subtipo H1N2/classificação , Influenza Humana/virologia , Influenza Humana/epidemiologia
16.
J Med Virol ; 96(7): e29768, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38978388

RESUMO

The vagus nerve circuit, operating through the alpha-7 nicotinic acetylcholine receptor (α7 nAChR), regulates the inflammatory response by influencing immune cells. However, the role of vagal-α7 nAChR signaling in influenza virus infection is unclear. In particular, does vagal-α7 nAChR signaling impact the infection of alveolar epithelial cells (AECs), the primary target cells of influenza virus? Here, we demonstrated a distinct role of α7 nAChR in type II AECs compared to its role in immune cells during influenza infection. We found that deletion of Chrna7 (encoding gene of α7 nAChR) in type II AECs or disruption of vagal circuits reduced lung influenza infection and protected mice from influenza-induced lung injury. We further unveiled that activation of α7 nAChR enhanced influenza infection through PTP1B-NEDD4L-ASK1-p38MAPK pathway. Mechanistically, activation of α7 nAChR signaling decreased p38MAPK phosphorylation during infection, facilitating the nuclear export of influenza viral ribonucleoproteins and thereby promoting infection. Taken together, our findings reveal a mechanism mediated by vagal-α7 nAChR signaling that promotes influenza viral infection and exacerbates disease severity. Targeting vagal-α7 nAChR signaling may offer novel strategies for combating influenza virus infections.


Assuntos
Pulmão , Infecções por Orthomyxoviridae , Transdução de Sinais , Nervo Vago , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética , Nervo Vago/metabolismo , Camundongos , Infecções por Orthomyxoviridae/virologia , Pulmão/virologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Células Epiteliais Alveolares/virologia , Células Epiteliais Alveolares/metabolismo , Humanos , Camundongos Knockout
17.
Front Immunol ; 15: 1376395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975350

RESUMO

Influenza A Virus (IAV) and Respiratory Syncytial Virus (RSV) are both responsible for millions of severe respiratory tract infections every year worldwide. Effective vaccines able to prevent transmission and severe disease, are important measures to reduce the burden for the global health system. Despite the strong systemic immune responses induced upon current parental immunizations, this vaccination strategy fails to promote a robust mucosal immune response. Here, we investigated the immunogenicity and efficacy of a mucosal adenoviral vector vaccine to tackle both pathogens simultaneously at their entry site. For this purpose, BALB/c mice were immunized intranasally with adenoviral vectors (Ad) encoding the influenza-derived proteins, hemagglutinin (HA) and nucleoprotein (NP), in combination with an Ad encoding for the RSV fusion (F) protein. The mucosal combinatory vaccine induced neutralizing antibodies as well as local IgA responses against both viruses. Moreover, the vaccine elicited pulmonary CD8+ and CD4+ tissue resident memory T cells (TRM) against the immunodominant epitopes of RSV-F and IAV-NP. Furthermore, the addition of Ad-TGFß or Ad-CCL17 as mucosal adjuvant enhanced the formation of functional CD8+ TRM responses against the conserved IAV-NP. Consequently, the combinatory vaccine not only provided protection against subsequent infections with RSV, but also against heterosubtypic challenges with pH1N1 or H3N2 strains. In conclusion, we present here a potent combinatory vaccine for mucosal applications, which provides protection against two of the most relevant respiratory viruses.


Assuntos
Anticorpos Antivirais , Imunidade nas Mucosas , Vírus da Influenza A , Vacinas contra Influenza , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Animais , Camundongos , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Anticorpos Antivirais/imunologia , Vírus da Influenza A/imunologia , Feminino , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vírus Sinciciais Respiratórios/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Vacinas Combinadas/imunologia , Vacinas Combinadas/administração & dosagem , Humanos , Adenoviridae/imunologia , Adenoviridae/genética , Vetores Genéticos
18.
Res Sq ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38947034

RESUMO

Objective and design: Here, we evaluated whether a synthetic lipoxin mimetic, designated AT-01-KG, would improve the course of influenza A infection in a murine model. Treatment: Mice were infected with influenza A/H1N1 and treated with AT-01-KG (1.7 mg/kg/day, i.p.) at day 3 post-infection. Methods: Mortality rate was assessed up to day 21 and inflammatory parameters were assessed at days 5 and 7. Results: AT-01-KG attenuated mortality, reducing leukocyte infiltration and lung damage at day 5 and day 7 post-infection. AT-01-KG is a Formyl Peptide Receptor 2 (designated FPR2/3 in mice) agonist, and the protective responses were not observed in FPR2/3 -/- animals. In mice treated with LXA4 (50mg/kg/day, i.p., days 3-6 post-infection), at day 7, macrophage reprogramming was observed, as seen by a decrease in classically activated macrophages and an increase in alternatively activated macrophages in the lungs. Furthermore, the number of apoptotic cells and cells undergoing efferocytosis was increased in the lavage of treated mice. Treatment also modulated the adaptive immune response, increasing the number of anti-inflammatory T cells (Th2) and regulatory T (Tregs) cells in the lungs of the treated mice. Conclusions: Therefore, treatment with a lipoxin A4 analog was beneficial in a model of influenza A infection in mice. The drug decreased inflammation and promoted resolution and beneficial immune responses, suggesting it may be useful in patients with severe influenza.

19.
Immune Netw ; 24(3): e19, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974213

RESUMO

The influenza virus poses a global health burden. Currently, an annual vaccine is used to reduce influenza virus-associated morbidity and mortality. Most influenza vaccines have been developed to elicit neutralizing Abs against influenza virus. These Abs primarily target immunodominant epitopes derived from hemagglutinin (HA) or neuraminidase (NA) of the influenza virus incorporated in vaccines. However, HA and NA are highly variable proteins that are prone to antigenic changes, which can reduce vaccine efficacy. Therefore, it is essential to develop universal vaccines that target immunodominant epitopes derived from conserved regions of the influenza virus, enabling cross-protection among different virus variants. The internal proteins of the influenza virus serve as ideal targets for universal vaccines. These internal proteins are presented by MHC class I molecules on Ag-presenting cells, such as dendritic cells, and recognized by CD8 T cells, which elicit CD8 T cell responses, reducing the likelihood of disease and influenza viral spread by inducing virus-infected cell apoptosis. In this review, we highlight the importance of CD8 T cell-mediated immunity against influenza viruses and that of viral epitopes for developing CD8 T cell-based influenza vaccines.

20.
Heliyon ; 10(12): e32645, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988579

RESUMO

In the present study, we investigated whether baicalin could reduce the damage caused to RAW264.7 cells following infection with H6N6 avian influenza virus. In addition, we studied the expression of autophagy-related genes. The morphological changes in cells were observed by hematoxylin and eosin (H&E) staining, and the inflammatory factors in the cell supernatant were detected by enzyme-linked immunosorbent assay (ELISA). Transmission electron microscopy (TEM) was used to detect the levels of RAW264.7 autophagosomes, and western blotting and immunofluorescence were used to detect the protein expression of autophagy marker LC3. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was used to detect the mRNA transcription levels of autophagy key factors. The results showed that different doses of baicalin significantly reduced the H6N6 virus-induced damage of RAW264.7 cells. The contents of interleukin (IL)-1ß, IL-2, IL-6, and tumor necrosis factor (TNF)-α in the cell supernatant significantly decreased. In addition, the protein expression of LC3 and Beclin-1, ATG12, ATG5 the mRNA levels were significantly decreased. This study showed that baicalin can reduce cell damage and affect the H6N6-induced autophagy level of RAW264.7 cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...