Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IMA Fungus ; 14(1): 8, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029439

RESUMO

The genus Cyathus was established in 1768, but more in-depth taxonomic studies with the group only occurred after 1844. In the following years, changes in the infrageneric classification of Cyathus were proposed based mainly on morphology. With advances in phylogenetic studies, the morphological classifications were tested and a new subdivision into three groups was proposed in 2007. Based on the last two classifications, this work aims to expand and understand the internal phylogenetic relationships among the fungi of the genus Cyathus and examine how these relationships are reflected in the taxonomic classification, through molecular analyses covering most of the species in the group, based on materials obtained from type specimens deposited in major fungal collections worldwide, besides expanding sampling with tropical species. Molecular analyses followed the protocols available in the literature, including the design of specific primers for Cyathus. In the phylogenetic analysis, using Maximum Parsimony and Bayesian methods, sequences of ITS and LSU regions from 41 samples of 39 species of Cyathus, 26 were placed with some nomenclatural types. The monophyly of Cyathus was confirmed with maximum support in both tests, and the infrageneric groups of the most recent classification were unchanged, but the clade striatum showed segregation into four groups and three subgroups. The phylogenetic organization is supported morphological characters, and diagnoses are presented for each group, as well as a dichotomous key for the infrageneric separation.

2.
PhytoKeys ; 188: 115-165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35106054

RESUMO

The genus Coryphantha includes plants with globose to cylindrical stems bearing furrowed tubercles, flowers arising at the apex, and seeds with flattened testa cells. Coryphantha is the second richest genus in the tribe Cacteae. Nevertheless, the genus lacks a phylogenetic framework. The limits of Coryphantha with its sister genus Escobaria and the infrageneric classification of Coryphantha have not been evaluated in a phylogenetic study. In this study we analyzed five chloroplast regions (matK, rbcL, psbA-trnH, rpl16, and trnL-F) using Bayesian phylogenetic analysis. We included 44 species of Coryphantha and 43 additional species of the tribe Cacteae. Our results support the monophyly of Coryphantha by excluding C.macromeris. Escobaria + Pelecyphora + C.macromeris are corroborated as the sister group of Coryphantha. Within Coryphantha our phylogenetic analyses recovered two main clades containing seven subclades, and we propose to recognize those as two subgenera and seven sections, respectively. Also, a new delimitation of Pelecyphora including C.macromeris and all species previously included in Escobaria is proposed. To accommodate this new delimitation 25 new combinations are proposed. The seven subclades recovered within Coryphantha are morphologically and geographically congruent, and partially agree with the traditional classification of this genus.

3.
Mycologia ; 109(2): 261-276, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28509612

RESUMO

Amanita is a worldwide-distributed fungal genus, with approximately 600 known species. Most species within the genus are ectomycorrhizal (ECM), with some saprotrophic representatives. In this study, we constructed the first comprehensive phylogeny including ECM species from Colombia collected in native Quercus humboldtii forests and in introduced Pinus patula plantations. We included 8 species (A. brunneolocularis, A. colombiana, A. flavoconia, A. fuligineodisca, A. muscaria, A. rubescens, A. sororcula, and A. xylinivolva) out of 16 species reported for the country, two new reports: A. citrina and A. virosa, and a new variety A. brunneolocularis var. pallida. Morphological taxonomic keys together with a phylogenetic approach using three nuclear gene regions: partial nuc rDNA 28S nuc rDNA internal transcribed spacers ITS1 and ITS2 and partial translation elongation factor 1-α gene (TEF1), were used to classify the specimens. Several highly supported clades were obtained from the phylogenetic hypotheses obtained by Bayesian inference and maximum likelihood approaches, allowing us to position the Colombian collections in a coherent infrageneric level and to contribute to the knowledge of local Amanita diversity.


Assuntos
Amanita/classificação , Filogenia , Amanita/isolamento & purificação , Biodiversidade , Colômbia , DNA Fúngico/genética , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Técnicas de Tipagem Micológica , Micorrizas/classificação , Micorrizas/isolamento & purificação , Fator 1 de Elongação de Peptídeos/genética , Pinus/microbiologia , Quercus/microbiologia
4.
Am J Bot ; 102(9): 1506-20, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26373974

RESUMO

PREMISE OF THE STUDY: Species of the endemic Chilean cactus genus Copiapoa have cylindrical or (sub)globose stems that are solitary or form (large) clusters and typically yellow flowers. Many species are threatened with extinction. Despite being icons of the Atacama Desert and well loved by cactus enthusiasts, the evolution and diversity of Copiapoa has not yet been studied using a molecular approach. METHODS: Sequence data of three plastid DNA markers (rpl32-trnL, trnH-psbA, ycf1) of 39 Copiapoa taxa were analyzed using maximum likelihood and Bayesian inference approaches. Species distributions were modeled based on geo-referenced localities and climatic data. Evolution of character states of four characters (root morphology, stem branching, stem shape, and stem diameter) as well as ancestral areas were reconstructed using a Bayesian and maximum likelihood framework, respectively. KEY RESULTS: Clades of species are revealed. Though 32 morphologically defined species can be recognized, genetic diversity between some species and infraspecific taxa is too low to delimit their boundaries using plastid DNA markers. Recovered relationships are often supported by morphological and biogeographical patterns. The origin of Copiapoa likely lies between southern Peru and the extreme north of Chile. The Copiapó Valley limited colonization between two biogeographical areas. CONCLUSIONS: Copiapoa is here defined to include 32 species and five heterotypic subspecies. Thirty species are classified into four sections and two subsections, while two species remain unplaced. A better understanding of evolution and diversity of Copiapoa will allow allocating conservation resources to the most threatened lineages and focusing conservation action on real biodiversity.


Assuntos
Evolução Biológica , Cactaceae/fisiologia , Cactaceae/classificação , Cactaceae/genética , Chile , DNA de Plantas/genética , DNA de Plantas/metabolismo , Dados de Sequência Molecular , Filogenia , Dispersão Vegetal , Plastídeos/genética , Análise de Sequência de DNA
5.
Mol Phylogenet Evol ; 87: 91-104, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25776523

RESUMO

The genus Deutzia (Hydrangeaceae), containing ca. 60 species circumscribed in three sections, is disjunctly distributed in eastern Asia and Central America (Mexico). Although the genus is well delimited, its subdivisions into sections and series have not been the subject of an explicit test of monophyly based on molecular data. A comprehensive examination of the evolutionary relationships within the genus is thus still lacking. We present a fossil-calibrated, molecular phylogeny of Deutzia based on two nuclear ribosomal DNA (ITS and 26S) and three chloroplast DNA regions (matK, rbcL, and trnL-F intergenic spacer). Within this framework, we examine character evolution in petal arrangement, filament shape, and the number of stamens, and infer the ancestral area and biogeographic history of the genus. Our molecular phylogeny suggests that Deutzia is monophyletic. Two major clades are recovered: one composed of the species of sect. Neodeutzia from Mexico, and the other containing all remaining Deutzia species of sections Mesodeutzia and Deutzia from SW China and Northeast Asia. The latter two Asian sections were each revealed to be polyphyletic. The induplicate petals, 2-dentate filaments, and polystemonous androecia are inferred to be ancestral character states. Biogeographic reconstructions suggest a Northeast Asian origin for the genus and subsequent spread to Mexico during the Oligocene and to SW China during the Miocene. Based on our results, a new infrageneric classification of Deutzia inferred from molecular phylogeny is required. We propose to merge sections Mesodeutzia and Deutzia to ensure the monophyly at the sectional level. Cooling trends during the Oligocene resulted in isolation, separating eastern Asian and Mexican taxa, while the warm period during the middle Miocene stimulated the diversification from Northeast Asia to SW China. The uplift in the Qinghai-Tibetan Plateau and monsoon regimes are important in promoting high species diversification of Deutzia in SW China.


Assuntos
Evolução Biológica , Hydrangeaceae/classificação , Filogenia , Teorema de Bayes , Núcleo Celular/genética , América Central , China , DNA de Cloroplastos/genética , DNA de Plantas/genética , DNA Ribossômico/genética , Ásia Oriental , Fósseis , Hydrangeaceae/genética , México , Modelos Genéticos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA