Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.145
Filtrar
1.
Physiother Res Int ; 29(3): e2109, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961771

RESUMO

INTRODUCTION: Long COVID occurs when numerous symptoms begin 3 weeks after acute infection and last for 12 months or more. High-definition transcranial direct current stimulation (HD-tDCS) has been tested in patients with COVID-19; however, previous studies did not investigate the HD-tDCS use combined with inspiratory muscle training (IMT) for respiratory sequelae of long COVID. CASE PRESENTATION: Six individuals (four women and two men) aged between 29 and 71 years and presenting with respiratory sequelae of long COVID were included. They were submitted to an intervention that comprised HD-tDCS combined with IMT twice a week for 5 weeks. Lung function and respiratory muscle assessments were performed at baseline and after 5 weeks of intervention. IMPLICATIONS ON PHYSIOTHERAPY PRACTICE: HD-tDCS may enhance the IMT effects by increasing respiratory muscle strength, efficiency, and lung function of individuals with long COVID.


Assuntos
Exercícios Respiratórios , COVID-19 , Síndrome de COVID-19 Pós-Aguda , Músculos Respiratórios , Estimulação Transcraniana por Corrente Contínua , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Adulto , Músculos Respiratórios/fisiopatologia , SARS-CoV-2 , Resultado do Tratamento , Força Muscular/fisiologia , Testes de Função Respiratória
2.
Res Q Exerc Sport ; : 1-13, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986154

RESUMO

Purpose: This study evaluated the effects of exercise training (ET) and inspiratory muscle-loaded exercise training (IMLET) on ventilatory response and intercostal muscle deoxygenation levels during incremental cycling exercise. Methods: Twenty-one male participants were randomly divided into IMLET (n = 10) or ET (n = 11) groups. All participants underwent a 4-week cycling exercise training at 60% peak oxygen uptake. IMLET loaded 50% of maximal inspiratory pressure (PImax). Respiratory muscle strength test, respiratory muscle endurance test (RMET), resting hypoxic ventilatory responsiveness (HVR) test, and incremental cycling test were performed pre- and post-training. Results: The extent of improvement in the PImax was significantly greater in the IMLET group (24%) than in the ET group (8%) (p = .018), and an extended RMET time was observed in the IMLET group (p < .001). Minute ventilation (V˙E) during exercise was unchanged in both groups before and after training, but tidal volume during exercise increased in the IMLET group. The increase in the exercise intensity threshold for muscle deoxygenation was similar in both groups (p < .001). HVR remained unchanged in both groups post-training. The exercise duration for the incremental exercise until reaching fatigue increased by 7.9% after ET and 6.9% after IMLET (p < .001). Conclusion: The 4-week IMLET improved respiratory muscle strength and endurance but did not alter HVR. Respiratory muscle deoxygenation was alleviated by exercise training, with a limited impact of inspiratory load training.

3.
J Cardiothorac Surg ; 19(1): 425, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978064

RESUMO

BACKGROUND: Postoperative pulmonary complications (PPCs) after one-lung ventilation (OLV) significantly impact patient prognosis and quality of life. OBJECTIVE: To study the impact of an optimal inspiratory flow rate on PPCs in thoracic surgery patients. METHODS: One hundred eight elective thoracic surgery patients were randomly assigned to 2 groups in this consort study (control group: n = 53 with a fixed inspiratory expiratory ratio of 1:2; and experimental group [flow rate optimization group]: n = 55). Measurements of Ppeak, Pplat, PETCO2, lung dynamic compliance (Cdyn), respiratory rate, and oxygen concentration were obtained at the following specific time points: immediately after intubation (T0); immediately after starting OLV (T1); 30 min after OLV (T2); and 10 min after 2-lung ventilation (T4). The PaO2:FiO2 ratio was measured using blood gas analysis 30 min after initiating one-lung breathing (T2) and immediately when OLV ended (T3). The lung ultrasound score (LUS) was assessed following anesthesia and resuscitation (T5). The occurrence of atelectasis was documented immediately after the surgery. PPCs occurrences were noted 3 days after surgery. RESULTS: The treatment group had a significantly lower total prevalence of PPCs compared to the control group (3.64% vs. 16.98%; P = 0.022). There were no notable variations in peak airway pressure, airway plateau pressure, dynamic lung compliance, PETCO2, respiratory rate, and oxygen concentration between the two groups during intubation (T0). Dynamic lung compliance and the oxygenation index were significantly increased at T1, T2, and T4 (P < 0.05), whereas the CRP level and number of inflammatory cells decreased dramatically (P < 0.05). CONCLUSION: Optimizing inspiratory flow rate and utilizing pressure control ventilation -volume guaranteed (PCV-VG) mode can decrease PPCs and enhance lung dynamic compliance in OLV patients.


Assuntos
Ventilação Monopulmonar , Complicações Pós-Operatórias , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/prevenção & controle , Ventilação Monopulmonar/métodos , Idoso , Procedimentos Cirúrgicos Torácicos/efeitos adversos , Procedimentos Cirúrgicos Torácicos/métodos , Pneumopatias/prevenção & controle , Pneumopatias/etiologia , Pneumopatias/fisiopatologia , Pulmão/fisiopatologia , Estudos Prospectivos
4.
J Thorac Dis ; 16(6): 3574-3582, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38983141

RESUMO

Background: Excess tidal volume and driving pressure were associated with increased mortality in patients with acute respiratory distress syndrome (ARDS). Still, the appropriate mechanical ventilation strategy for patients who do not have ARDS needs to be understood. This study aimed to identify risk factors for mortality in acute respiratory failure patients without ARDS. Methods: We included all mechanically ventilated patients who did not meet the criteria for ARDS and were admitted to the medical intensive care unit (ICU) from October 2017 to September 2018. Patients who had tracheostomy before admission, were intubated for more than 24 hours before transfer to ICU, or underwent extracorporeal membrane oxygenation within 24 hours of ICU admission were excluded. Clinical and physiologic data were recorded and compared between survived and non-survived patients. Results: Of 289 patients with acute respiratory failure, 134 patients without ARDS were included; 69 (51%) died within 28 days. Demographics, principal diagnosis, and lung injury score on the first day of admission were not significantly different between survived and non-survived patients. In multivariate analysis, higher peak inspiratory pressure (PIP) during the first 3 days of admission [odds ratio (OR) 1.11, 95% confidence interval (CI): 1.01-1.22, P=0.04], higher sequential organ failure assessment score (OR 1.15, 95% CI: 1.04-1.28, P=0.008) and underlying cerebrovascular diseases (OR 7.09, 95% CI: 1.78-28.28, P=0.006) were independently associated with mortality in these patients, whereas dynamic lung compliance (Cdyn) and respiratory rate were not associated with mortality in the multivariate model. Conclusions: Mortality was high in mechanically ventilated patients without ARDS. Higher PIP is a potentially modifiable risk factor for mortality in these patients, independent of the baseline Cdyn. Underlying cerebrovascular diseases and increased disease severity are also independent factors associated with 28-day mortality.

5.
Respir Med ; 231: 107717, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908411

RESUMO

INTRODUCTION: Enhancing lung function can significantly improve daily life functionality for children with cerebral palsy, leading to increased interest in respiratory physiotherapy training devices in clinical practice. This study aims to evaluate the efficacy of devices (inspiratory muscle training and feedback devices) for improving pulmonary function through various respiratory parameters. METHODS: A systematic review with meta-analysis of randomized clinical trials was conducted in seven databases up until May 2023. The included studies focused on training inspiratory muscle function using specific devices (inspiratory muscle training and feedback devices) in children with cerebral palsy. The main outcomes were maximum expiratory pressure and maximum inspiratory pressure. Secondary outcomes included forced vital capacity, forced expiratory volume in 1 s, peak expiratory flow, and the Tiffenau index. The effects of respiratory treatment were calculated through the estimation of the effect size and its 95% confidence intervals. The risk of bias in the included studies was assessed using the Cochrane Collaboration's tool for assessing the risk of bias (RoB2). RESULTS: Nine studies were included in the systematic review with meta-analysis, involving a total of 321 children aged between 6 and 18 years after secondary analyses were conducted. Feedback devices were found to be more effective in improving maximum expiratory pressure (effect size -0.604; confidence interval -1.368 to 0.161), peak expiratory flow, forced expiratory volume in 1 s, and forced vital capacity. Inspiratory muscle training devices yielded better effectiveness in improving maximum inspiratory pressure (effect size -0.500; confidence interval -1.259 to 0.259), the Tiffeneau index, and quality of life. CONCLUSION: Both devices showed potential in improving pulmonary function in children with cerebral palsy. Further high-quality clinical trials are needed to determine the optimal dosage and the most beneficial device type for each pulmonary function parameter.

6.
Medicina (Kaunas) ; 60(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38929486

RESUMO

Background and objectives: Mechanical ventilation is often used in intensive care units to assist patients' breathing. This often leads to respiratory muscle weakness and diaphragmatic dysfunction, causing weaning difficulties. Inspiratory muscle training (IMT) has been found to be beneficial in increasing inspiratory muscle strength and facilitating weaning. Over the years, different protocols and devices have been used. Materials and Methods: The aim of this systematic review and meta-analysis was to investigate the effectiveness of low-medium (LM-IMT) and high-intensity (H-IMT) threshold inspiratory muscle training in critically ill patients. A systematic literature search was performed for randomized controlled trials (RCTs) in the electronic databases Google Scholar, PubMed, Scopus, and Science Direct. The search involved screening for studies examining the effectiveness of two different intensities of threshold IMT in critically ill patients published the last 10 years. The Physiotherapy Evidence Database (PEDro) scale was chosen as the tool to assess the quality of studies. A meta-analysis was performed where possible. Results: Fourteen studies were included in the systematic review, with five of them having high methodological quality. Conclusions: When examining LM-IMT and H-IMT though, neither was able to reach statistically significant improvement in their maximal inspiratory pressure (MIP), while LM-IMT reached it in terms of weaning duration. Additionally, no statistical difference was noticed in the duration of mechanical ventilation. The application of IMT is recommended to ICU patients in order to prevent diaphragmatic dysfunction and facilitate weaning from mechanical ventilation. Therefore, further research as well as additional RCTs regarding different protocols are needed to enhance its effectiveness.


Assuntos
Exercícios Respiratórios , Estado Terminal , Respiração Artificial , Músculos Respiratórios , Humanos , Estado Terminal/terapia , Exercícios Respiratórios/métodos , Músculos Respiratórios/fisiologia , Músculos Respiratórios/fisiopatologia , Respiração Artificial/métodos , Unidades de Terapia Intensiva
7.
Kobe J Med Sci ; 70(2): E61-E65, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38936879

RESUMO

BACKGROUND: The fitting of oxygen mask affects the performance of it such as oxygenation or CO2 elimination. The intersurgical EcoLite™ adult high-concentration oxygen mask (EcoLite with a reservoir, Intersurgical, UK) was developed to give well-fitting. The purpose of this study is to evaluate the performance of EcoLite with a reservoir compared to the conventional mask. METHODS: Ten healthy volunteers were included in this study. EcoLite with a reservoir and conventional mask were given to patients at different oxygen flow rates (5, 8, 10, 12, and 15 L/min). Fraction of inspiratory O2 (FIO2) and partial pressure of inspiratory CO2 (PICO2) were measured by a sampling tube at the middle pharynx inserted via nose. RESULTS: The EcoLite with a reservoir had a significantly higher FIO2 than the control reservoir mask. However, the PICO2 was significantly higher in the EcoLite with a reservoir than in the control reservoir mask, especially when the oxygen flow rate was low. CONCLUSION: The EcoLite with a reservoir provided improved oxygenation and a better fit than the conventional reservoir masks in healthy volunteers. However, the EcoLite with a reservoir might cause higher CO2 rebreathing at low oxygen flow rates.


Assuntos
Dióxido de Carbono , Voluntários Saudáveis , Máscaras , Oxigênio , Humanos , Dióxido de Carbono/análise , Masculino , Adulto , Estudos Prospectivos , Feminino , Adulto Jovem
8.
Artigo em Inglês | MEDLINE | ID: mdl-38901836

RESUMO

Background: The suboptimal use of inhalers in the treatment of patients with chronic obstructive pulmonary disease (COPD) is probably a major but poorly documented problem in hospitalized patients. We aimed to describe the prevalence of misused inhalers among patients hospitalized with COPD in a department of general internal medicine. Methods: We conducted a monocentric cross-sectional study in consecutive patients with a diagnosis of COPD and hospitalized between August 2022 and April 2023 in the internal medicine division of Fribourg Hospital, Switzerland. Patients underwent an assessment of their inhaler technique and peak inspiratory flow (PIF) using the In-Check Dial G16®. The primary outcome was the prevalence of misused inhalers, defined as an inhaler used with a critical error and/or insufficient PIF. Secondary outcomes included the prevalence of inhaler unsuitable to patient characteristics and of patients using at least one misused inhaler. Results: The study included 96 patients and 160 inhalers were assessed at admission. Among these inhalers, 111 (69.4%; 95% confidence interval [CI] 61.6-76.4) were misused; 105 (65.6%; 95% CI 57.7-72.9) due to the presence of a critical error in the inhalation technique and 22 (13.8%; 95% CI 8.8-20.1) due to insufficient PIF. Concerning the secondary outcome, 27 inhalers (16.9%) were unsuitable and 79 patients (82.3%) used at least one misused inhaler. Conclusion: Among patients hospitalized with a diagnosis of COPD, two-thirds of inhalers were misused. Suboptimal use was mainly due to the presence of critical errors, but also to the presence of an insufficient PIF and unsuitable inhalers.

10.
Curr Res Physiol ; 7: 100127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38831755

RESUMO

Background: Cervical spinal cord injury (CSI) often leads to impaired respiratory function, affecting the overall well-being of patients. This study aimed to investigate the influence of rib cage motion on inspiratory capacity in CSI patients. Methods: We conducted a study with 11 CSI patients, utilising respiratory inductance plethysmography (RIP). We measured ventilatory volume by spirometry concurrently with RIP. Participants were instructed to perform maximal inspiratory efforts. Inspiratory capacity (IC) was calculated from spirometry waveforms. We converted the respiratory waveforms of the chest and abdomen into inspiratory volume measured by a spirometer. The inspiratory volume measured by the chest sensor was defined as VRIP-rib cage (VRIP-rc), and the inspiratory volume measured by the abdominal sensor was defined as VRIP-abdomen (VRIP-ab). Subsequently, the relationships of IC with VRIP-rc and VRIPab were assessed. Results: The mean IC was 1.828 ± 0.459 L, with the mean VRIP-rc at 1.343 ± 0.568 L and the mean VRIP-ab at 0.485 ± 0.427 L. A significant correlation was observed between IC and VRIP-rc (r = 0.67, p = 0.02), indicating that rib cage motion significantly influences IC in CSI patients. Conclusion: This study highlights the importance of rib cage motion in assessing inspiratory capacity in patients with CSI.

11.
Sci Rep ; 14(1): 13158, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849437

RESUMO

Patients with acute exacerbation of lung fibrosis with usual interstitial pneumonia (EUIP) pattern are at increased risk for ventilator-induced lung injury (VILI) and mortality when exposed to mechanical ventilation (MV). Yet, lack of a mechanical model describing UIP-lung deformation during MV represents a research gap. Aim of this study was to develop a constitutive mathematical model for UIP-lung deformation during lung protective MV based on the stress-strain behavior and the specific elastance of patients with EUIP as compared to that of acute respiratory distress syndrome (ARDS) and healthy lung. Partitioned lung and chest wall mechanics were assessed for patients with EUIP and primary ARDS (1:1 matched based on body mass index and PaO2/FiO2 ratio) during a PEEP trial performed within 24 h from intubation. Patient's stress-strain curve and the lung specific elastance were computed and compared with those of healthy lungs, derived from literature. Respiratory mechanics were used to fit a novel mathematical model of the lung describing mechanical-inflation-induced lung parenchyma deformation, differentiating the contributions of elastin and collagen, the main components of lung extracellular matrix. Five patients with EUIP and 5 matched with primary ARDS were included and analyzed. Global strain was not different at low PEEP between the groups. Overall specific elastance was significantly higher in EUIP as compared to ARDS (28.9 [22.8-33.2] cmH2O versus 11.4 [10.3-14.6] cmH2O, respectively). Compared to ARDS and healthy lung, the stress/strain curve of EUIP showed a steeper increase, crossing the VILI threshold stress risk for strain values greater than 0.55. The contribution of elastin was prevalent at lower strains, while the contribution of collagen was prevalent at large strains. The stress/strain curve for collagen showed an upward shift passing from ARDS and healthy lungs to EUIP lungs. During MV, patients with EUIP showed different respiratory mechanics, stress-strain curve and specific elastance as compared to ARDS patients and healthy subjects and may experience VILI even when protective MV is applied. According to our mathematical model of lung deformation during mechanical inflation, the elastic response of UIP-lung is peculiar and different from ARDS. Our data suggest that patients with EUIP experience VILI with ventilatory setting that are lung-protective for patients with ARDS.


Assuntos
Pulmão , Respiração Artificial , Síndrome do Desconforto Respiratório , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Respiração Artificial/efeitos adversos , Síndrome do Desconforto Respiratório/fisiopatologia , Idoso , Pulmão/fisiopatologia , Pulmão/patologia , Elasticidade , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia , Fibrose Pulmonar/fisiopatologia , Fibrose Pulmonar/metabolismo , Mecânica Respiratória/fisiologia , Estresse Mecânico , Doenças Pulmonares Intersticiais/fisiopatologia , Modelos Teóricos
12.
Artigo em Inglês | MEDLINE | ID: mdl-38866223

RESUMO

OBJECTIVE: To investigate the effect of inspiratory muscle training (IMT) on cough strength in older people with frailty. DESIGN: Single-blind randomized controlled trial. SETTING: Day health care centers at 2 sites. PARTICIPANTS: Older people with frailty (N=60). INTERVENTIONS: Eligible people were randomly assigned to receive IMT program in addition to general exercise training (IMT group), or general exercise training alone (control group). The IMT group performed training using a threshold IMT device with the load set at 30% of maximum inspiratory mouth pressure in addition to the general exercise training program throughout the 8 weeks. The IMT took place twice a day and each session consisted of 30 breaths. MAIN OUTCOME MEASURES: Primary outcome was cough strength, measured as the cough peak flow (CPF), at the beginning and the end of the program. RESULTS: Data from 52 participants (26 in each group) were available for the analysis. The mean age was 82.6 years; 33% were men. The change in CPF at the end of the program was 28.7±44.4 L/min in the IMT group and -7.4±26.6 L/min in the control group. A linear regression model showed that the presence or absence of IMT was associated with changes in CPF (mean difference between groups, 36.3; 95% confidence interval, 16.7-55.9; effect size, 0.99). CONCLUSIONS: IMT may be a useful intervention to improve cough strength in frail older people.

13.
Exp Physiol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867461

RESUMO

Duchenne muscular dystrophy (DMD) is characterised by respiratory muscle injury, inflammation, fibrosis and weakness, ultimately culminating in respiratory failure. The dystrophin-deficient mouse model of DMD (mdx) shows evidence of respiratory muscle remodelling and dysfunction contributing to impaired respiratory system performance. The antioxidant N-acetylcysteine (NAC) has been shown to exert anti-inflammatory and anti-fibrotic effects leading to improved respiratory muscle performance in a range of animal models of muscle dysfunction, including mdx mice, following short-term administration (2 weeks). We sought to build on previous work by exploring the effects of chronic NAC administration (3 months) on respiratory system performance in mdx mice. One-month-old male mdx mice were randomised to receive normal drinking water (n = 30) or 1% NAC in the drinking water (n = 30) for 3 months. At 4 months of age, we assessed breathing in conscious mice by plethysmography followed by ex vivo assessment of diaphragm force-generating capacity. Additionally, diaphragm histology was performed. In separate studies, in anaesthetised mice, respiratory electromyogram (EMG) activity and inspiratory pressure across a range of behaviours were determined, including assessment of peak inspiratory pressure-generating capacity. NAC treatment did not affect force-generating capacity of the mdx diaphragm. Collagen content and immune cell infiltration were unchanged in mdx + NAC compared with mdx diaphragms. Additionally, there was no significant effect of NAC on breathing, ventilatory responsiveness, inspiratory EMG activity or inspiratory pressure across the range of behaviours from basal conditions to peak system performance. We conclude that chronic NAC treatment has no apparent beneficial effects on respiratory system performance in the mdx mouse model of DMD suggesting limited potential of NAC treatment alone for human DMD.

14.
Indian J Crit Care Med ; 28(5): 520-521, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38738205

RESUMO

How to cite this article: Arasu M, Singh AK, LaguduvaH A. A Simple Adaptation for the Convenient Application of Incentive Spirometry in Tracheostomized Critically Ill Patients. Indian J Crit Care Med 2024;28(5):520-521.

15.
Cureus ; 16(4): e58670, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38774171

RESUMO

INTRODUCTION: Chronic obstructive pulmonary disease (COPD) and bronchial asthma pose significant threats and challenges to global health care, emphasizing the need for precise inhaler therapies to overcome this burden. The optimal peak inspiratory flow rate (PIFR) is a crucial determinant for the right selection and effective use of an inhaler device. It also helps to improve the treatment effectiveness of obstructive airway diseases worldwide as it allows effective drug delivery to distal airways and lung parenchyma. It is used as a selection criterion by physicians around the world for selecting personalized inhaler devices. OBJECTIVE: To find out the optimal and non-optimal PIFR prevalence and its influencing factors in stable and exacerbation phases of COPD and bronchial asthma in Tamil Nadu, India. METHODOLOGY: It is a single-center, observational, cross-sectional study conducted from February 2022 to August 2023. The patients who meet the diagnostic criteria specified by the Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines for COPD and the Global Initiative for Asthma (GINA) guidelines for bronchial asthma are enrolled in our study. The PIFR was measured using a hand-held digital spirometry device, along with demographic data collection. Statistical analyses, including t-tests and chi-square tests, were performed using SPSS version 21 (IBM Corp., Armonk, NY). RESULTS: Gender, height, and disease severity significantly impacted the PIFR. Females, normal BMI individuals, and those with moderate disease severity exhibited higher optimal PIFR rates. Stable or exacerbation phases, disease, and smoking status do not influence either optimal or non-optimal PIFR. Notably, substantial differences in lung function parameters were observed between optimal (60-90 L/min) and non-optimal PIFR (insufficient: <30 L/min, suboptimal: 30-60 L/min, excessive: >90 L/min) groups, highlighting their impact on respiratory health. CONCLUSION: This study emphasizes the importance of personalized inhaler strategies, considering gender, height, and disease severity. Proper inhaler device selection, continuous monitoring of inhaler technique, and tailored inhaler education at every OPD visit are vital for optimizing effective COPD and bronchial asthma management and improving adherence to treatment.

16.
World J Oncol ; 15(3): 337-347, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38751708

RESUMO

Dyspnea is a disabling symptom presented in approximately half of all cancer survivors. From a clinical perspective, despite the availability of pharmacotherapies, evidence-based effective treatments are limited for relieving dyspnea in cancer survivors. Preliminary evidence supports the potential of respiratory muscle training to reduce dyspnea in cancer survivors, although large randomized controlled studies are warranted. The aims of this article were to review the relevant scientific literature on the potential therapeutic role of respiratory muscle training in dyspnea management of cancer survivor, and to identify possible mechanisms, strengths and limitations of the evidence as well as important gaps for future research directions.

17.
Front Med (Lausanne) ; 11: 1390878, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737762

RESUMO

Background: The successful implementation of assisted ventilation depends on matching the patient's effort with the ventilator support. Pressure muscle index (PMI), an airway pressure based measurement, has been used as noninvasive monitoring to assess the patient's inspiratory effort. The authors aimed to evaluate the feasibility of pressure support adjustment according to the PMI target and the diagnostic performance of PMI to predict the contribution of the patient's effort during ventilator support. Methods: In this prospective physiological study, 22 adult patients undergoing pressure support ventilation were enrolled. After an end-inspiratory airway occlusion, airway pressure reached a plateau, and the magnitude of change in plateau from peak airway pressure was defined as PMI. Pressure support was adjusted to obtain the PMI which was closest to -1, 0, +1, +2, and + 3 cm H2O. Each pressure support level was maintained for 20 min. Esophageal pressure was monitored. Pressure-time products of respiratory muscle and ventilator insufflation were measured, and the fraction of pressure generated by the patient was calculated to represent the contribution of the patient's inspiratory effort. Results: A total of 105 datasets were collected at different PMI-targeted pressure support levels. The differences in PMI between the target and the obtained value were all within ±1 cm H2O. As targeted PMI increased, pressure support settings decreased significantly from a median (interquartile range) of 11 (10-12) to 5 (4-6) cm H2O (p < 0.001), which resulted in a significant increase in pressure-time products of respiratory muscle [from 2.9 (2.1-5.0) to 6.8 (5.3-8.1) cm H2O•s] and the fraction of pressure generated by the patient [from 25% (19-31%) to 72% (62-87%)] (p < 0.001). The area under receiver operating characteristic curves for PMI to predict 30 and 70% contribution of patient's effort were 0.93 and 0.95, respectively. High sensitivity (all 1.00), specificity (0.86 and 0.78), and negative predictive value (all 1.00), but low positive predictive value (0.61 and 0.43) were obtained to predict either high or low contribution of patient's effort. Conclusion: Our results preliminarily suggested the feasibility of pressure support adjustment according to the PMI target from the ventilator screen. PMI could reliably predict the high and low contribution of a patient's effort during assisted ventilation.Clinical trial registration: ClinicalTrials.gov, identifier NCT05970393.

18.
J Oral Rehabil ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816919

RESUMO

BACKGROUND: Low-intensity continuous inspiratory muscle training improves its strength. The abdominal muscles are the main expiratory muscles, and their training may improve expiratory muscle strength. Respiratory muscle strength regulates coughing effectiveness, which is critical for pneumonia management. In older people, risk factors for the development of pneumonia were respiratory muscle weakness and swallowing impairment. Currently, the impact of high-intensity intermittent inspiratory and abdominal muscle combined training on the respiratory, swallowing, and systemic muscles is unclear. OBJECTIVE: We aimed to explore the effects of high-intensity inspiratory muscle training combined with or without abdominal muscle training on respiratory muscle strength as well as the strength, mass, and performance of swallowing and systemic muscles. METHODS: Twenty-eight healthy adults were divided into two groups. Participants performed high-intensity intermittent inspiratory muscle single or its combination with abdominal muscle training for 4 weeks. Respiratory muscle strength, swallowing muscle strength and mass, systemic muscle strength, mass and performance were measured at baseline, Week 2 and Week 4. RESULTS: Both groups showed greater maximal respiratory pressures at Week 2 and Week 4 than baseline. Both groups showed improved tongue pressure and geniohyoid muscle thickness at Week 4. In addition, the combined training group improved body trunk muscle mass, handgrip strength and five-time chair stand test, whereas the single training group did not. CONCLUSION: This study revealed that high-intensity inspiratory muscle training improved inspiratory muscle strength and swallowing muscle strength and mass. Moreover, inspiratory and abdominal muscle combined training showed an additional benefit of improving systemic muscle strength, mass and performance. CLINICAL TRIAL REGISTRATION NUMBER: UMIN000046724; https://upload.umin.ac.jp/cgi-open-bin/ctr/index.cgi?ctrno=UMIN000046724.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38763165

RESUMO

RATIONALE: Diaphragm muscle weakness might underly persistent exertional dyspnea despite normal lung/cardiac function in individuals previously hospitalized for acute COVID-19 illness. OBJECTIVES: Firstly, to determine the persistence and pathophysiological nature of diaphragm muscle weakness and its association with exertional dyspnea two years after hospitalization for COVID-19, and secondly to investigate the impact of inspiratory muscle training (IMT) on diaphragm and inspiratory muscle weakness and exertional dyspnea in individuals with long COVID. METHODS: ~2 years after hospitalization for COVID-19, 30 individuals (11 female, median age 58 [interquartile range (IQR) 51-63] years) underwent comprehensive (invasive) respiratory muscle assessment and evaluation of dyspnea. Eighteen with persistent diaphragm muscle weakness and exertional dyspnea were randomized to 6 weeks of IMT or sham training; assessments were repeated immediately after and 6 weeks after IMT completion. The primary endpoint was change in inspiratory muscle fatiguability immediately after IMT. RESULTS: At median 31 [IQR 23-32] months after hospitalization, 21/30 individuals reported relevant persistent exertional dyspnea. Diaphragm muscle weakness on exertion and reduced diaphragm cortical activation were potentially related to exertional dyspnea. Compared with sham control, IMT improved diaphragm and inspiratory muscle function (sniff transdiaphragmatic pressure 83 [IQR 75-91] vs. 100 [IQR 81-113] cmH2O; p=0.02), inspiratory muscle fatiguability (time to task failure 365 [IQR 284-701] vs. 983 [IQR 551-1494] sec; p=0.05), diaphragm voluntary activation index (79 [IQR 63-92] vs 89 [IQR 75-94]%; p=0.03), and dyspnea (Borg score 7 [IQR 5.5-8] vs. 6 [IQR 4-7]; p=0.03); improvements persisted for 6 weeks after IMT completion. CONCLUSIONS: This study is the first to identify a potential treatment for persisting exertional dyspnea in long COVID, and provide a possible pathophysiological explanation for the treatment benefit. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

20.
Artigo em Inglês | MEDLINE | ID: mdl-38814000

RESUMO

Introduction: Identifying factors influencing peak inspiratory flow (PIF) is essential for aerosol drug delivery in stable patients with chronic obstructive pulmonary disease. While a minimum PIF for dry powder inhalers (DPIs) is established, acute bronchodilator (BD) effects on PIF remain unknown. Materials and Methods: An inspiratory flow meter (In-Check™ DIAL) was used to measure PIF in stable patients during a 24-week observational cross-sectional study. Additionally, bronchodilator responsiveness (BDR) was determined using the In-Check DIAL device and spirometry. Patients received four puffs of albuterol, and pre- and post-BD PIF, forced expiratory volume in one second (FEV1), and forced vital capacity were measured. Sixty-three patients completed acute BDR data collection from July 31, 2019, to November 9, 2021. Primary endpoints were pre- and post-BD spirometry and PIF. Statistical analyses included PIF correlations with FEV1. BD change was assessed according to inhaler resistance and sex (subgroup analysis). Results: Median patient age was 64.8 years, 85.7% were non-Hispanic White, and 57.1% were female. The median increase in absolute PIF (In-Check DIAL) was 5.0 L/min, and the % PIF change was 8.9%. With albuterol, 57.1% experienced a PIF BD change >5.0%, whereas 49.2% experienced a change >10.0%. Similarly, 55.6% experienced an FEV1 BD change >5.0% and 28.6% had a >10.0% FEV1 BD change with albuterol. PIF was weakly correlated with FEV1 BD change (absolute; % PIF; r = 0.28 [p = 0.02]; r = 0.21 [p = 0.11]). Pre- and post-BD median PIF were 75.5 and 83.5 L/min for low-to-medium-resistance DPI and 45.0 and 52.0 L/min for high-resistance, respectively. The median increases in pre- and post-BD PIF were 9.0 L/min in males and 4.5 L/min in females. In contrast to when using the In-Check DIAL device, we observed no consistent bronchodilatory effects on PIF measured by spirometry. Conclusions: Using the In-Check DIAL device, ∼50% of patients experienced >10% PIF increase after acute BD, potentially enhancing medication lung deposition. Further research is required to understand PIF's impact on medication delivery. ClinicalTrials.gov Identifier: NCT04168775.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...