Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Insects ; 15(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38921092

RESUMO

Artificial insemination in queen honey bees is the only tool that provides complete control over mating for research and breeding purposes, making it essential in genetic improvement and conservation programs in this species. The aims of this study were to characterize drone semen bacterial loads by culture-dependent and independent methods and to describe their variation depending on the method of semen collection, the colony and the apiary. In the first experiment, the bacterial loads of semen collected from the seminal vesicles or from ejaculates was studied using culture-dependent methods. The collection method had a significant influence on the overall bacterial count in semen. Out of the 42 semen samples analyzed, 26 (61.9%) tested positive for bacterial isolation. This encompassed the entirety of samples obtained from the seminal vesicles (21 of 21), whereas only 23.8% of those derived from ejaculates (5 out of 21) showed bacterial isolation. In the second experiment, next-generation sequencing techniques were used to describe the microbiome of ejaculated drone semen for the first time. The most abundant phyla were Proteobacteria, Firmicutes, Bacteroidota and Actinobacteriota, while the most abundant genera were Lactobacillus, Staphylococcus, Prevotella, Alloprevotella and Streptococcus. The results showed that the apiary had a significant effect on the community structure composition and abundance of the seminal microbiota, and significative differences in abundance were observed for the genera Sphingomonas, Methylobacterium-Methylorubrum, Bifidobacterium and Alloprevotella. Significant differences were also observed in the richness of the microbiota between apiaries and colonies.

2.
R Soc Open Sci ; 11(1): 231556, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38298391

RESUMO

Instrumental insemination of honeybees allows for two opposing breeding strategies. In single colony insemination (SCI), all drones to inseminate a queen are taken from one colony. In pooled semen insemination (PSI), sperm of many genetically diverse drones is mixed and queens are fertilized from the resulting drone pool. While SCI allows for maximum pedigree control, proponents of PSI claim to reduce inbreeding and maintain genetic variance. Using stochastic simulation studies, we compared genetic progress and inbreeding rates in small honeybee populations under SCI and PSI. Four different selection criteria were covered: estimated breeding values (EBV), phenotypes, true breeding values (TBV) and random selection. Under EBV-based truncation selection, SCI yielded 9.0% to 44.4% higher genetic gain than PSI, but had vastly increased inbreeding rates. Under phenotypical or TBV selection, the gap between SCI and PSI in terms of genetic progress narrowed. Throughout, PSI yielded lower inbreeding rates than SCI, but the differences were only substantial under EBV truncation selection. As a result, PSI did not appear as a viable breeding strategy owing to its incompatibility with modern methods of genetic evaluation. Instead, SCI is to be preferred but instead of strict truncation selection, strategies to avoid inbreeding need to be installed.

3.
Genes (Basel) ; 14(9)2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37761939

RESUMO

Mating control is crucial in honeybee breeding and commonly guaranteed by bringing virgin queens to isolated mating stations (IMS) for their nuptial flights. However, most breeding programs struggle to provide sufficiently many IMS. Research institutions routinely perform instrumental insemination of honeybees, but its potential to substitute IMS in breeding programs has not been sufficiently studied. We performed stochastic simulations to compare instrumental insemination strategies and mating on IMS in terms of genetic progress and inbreeding development. We focused on the role of paternal generation intervals, which can be shortened to two years with instrumental insemination in comparison to three years when using IMS. After 70 years, instrumental insemination yielded up to 42% higher genetic gain than IMS strategies-particularly with few available mating sites. Inbreeding rates with instrumental insemination and IMS were comparable. When the paternal generation interval in instrumental insemination was stretched to three years, the number of drone producers required for sustainable breeding was reduced substantially. In contrast, when shortening the interval to two years, it yielded the highest generational inbreeding rates (up to 2.28%). Overall, instrumental insemination with drones from a single colony appears as a viable strategy for honeybee breeding and a promising alternative to IMS.


Assuntos
Endogamia , Reprodução , Abelhas/genética , Animais , Reprodução/genética , Comunicação Celular , Inseminação
4.
Insects ; 14(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36975986

RESUMO

Controlling mating in the honeybee (Apis mellifera) is part of one of the greatest challenges for the beekeeping industry's genetic selection programs due to specific characteristics of their reproduction. Several techniques for supervising honeybee mating with relative effective control have been developed over the years to allow honeybee selection. As part of this project, we compared the genetic gains for several colony performance traits, obtained using the BLUP-animal method, according to the selection pressure applied in controlled reproduction (directed fertilization versus instrumental insemination). Our results show similar genetic gains for hygienic behavior and honey production between colonies whether queens were fertilized naturally or via instrumental insemination, as well as similar or lower genetic gains for colonies with queens inseminated for spring development. In addition, we noticed greater fragility in queens following insemination. These findings show that instrumental insemination is an effective tool for reproductive control in genetic selection and for estimating breeding values more precisely. However, this technique does not result in queens of superior genetic quality for commercial purposes.

5.
Viruses ; 11(4)2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934858

RESUMO

Instrumental insemination of Apis mellifera L. queens is a widely employed technique used in honeybee breeding that enables the effective control of mating. However, drone semen represents a potential source of honeybee viruses. In this study, 43 semen doses collected from apparently healthy drones, and consequently used in instrumental insemination, were analysed using PCR or RT-PCR to detect the presence of viral genome of 11 honeybee viruses. In 91% of samples, viral infection was detected. The survey revealed genomes of five viruses, namely Deformed wing virus (DWV), Acute bee paralysis virus (ABPV), Black queen cell virus (BQCV), Sacbrood virus (SBV), and A. mellifera filamentous virus (AmFV) in 84%, 19%, 14%, 2%, and 67% of samples, respectively. Single infection (30% of samples) as well as multiple infection (61% of samples) of two, three or four pathogens were also evaluated. To the best of our knowledge, this is the first study describing the presence of the BQCV and SBV genome sequence in drone ejaculate. Phylogenetic analysis of BQCV partial helicase gene sequence revealed the high similarity of nucleotide sequence of described Czech strains, which varied from 91.4% to 99.6%. The findings of our study indicate the possibility of venereal transmission of BQCV and SBV.


Assuntos
Abelhas/virologia , Biodiversidade , Sêmen/virologia , Vírus/classificação , Vírus/isolamento & purificação , Animais , Cruzamento/métodos , Masculino , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vírus/genética
6.
Theriogenology ; 101: 109-113, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28708507

RESUMO

Cryopreservation is an advanced method used to protect germplasm in liquid nitrogen. Honey bees are of special interest to protect because of their pollination activity and critical role in agriculture. There has been important progress in the cryopreservation of honey bee germplasm in recent years, leading to practical recovery of genetic material for breeding purposes following freezing. However, there remains room for improvement and the goal of the present study was to evaluate the effect of different "extenders" added post-thaw on the fertilization rate of cryopreserved honey bee semen. The purpose of adding extender post-thaw was to dilute the cryoprotectant to remove chemicals after centrifugation because of potential adverse effects. The control consisted of frozen-thawed semen without the addition of an extender; treatment groups included the addition of one of the following extenders: glucose solution, fresh ram semen plasma, fresh honey bee semen plasma, extender solution. All of the above treatments and frozen-thawed control were compared to fresh semen. For each group, 15 virgin queens were instrumentally inseminated with the semen-diluent solution and introduced into nucleus colonies to determine the brood patterns of the queens. Percentages of worker brood produced in the fresh semen, frozen-thawed semen control, glucose, fresh ram semen plasma, fresh honey bee semen plasma, and extender solution supplemented groups were 98.±1.1%, 47.0 ± 0.9%, 3.0 ± 0.8%, 0.3 ± 0.1%, 48.1 ± 4.1% and 40.3 ± 2.4%, respectively. Similiarly, spermatozoa numbers in the spermathecae of the same treatment groups were 3.6 × 106, 1.6 × 106, 7.3 × 105, 4.7 × 105, 8.1 × 105, and 4.6 × 105 spermatozoa for the same treatment, respectively. The differences in both worker brood percentage and sperm count in the spermatheca were statistically significant (P < 0.01) among all treatment groups, except the frozen-thawed control group and fresh drone semen plasma group. We found a positive correlation between sperm count in the spermatheca and the percentage of worker brood (r = 0.91). With the exception of fresh honey bee semen plasma, the fertility rate was reduced following the addition of various plasmas and diluents post-freezing.


Assuntos
Abelhas , Criopreservação/veterinária , Crioprotetores/farmacologia , Fertilização/fisiologia , Preservação do Sêmen/veterinária , Sêmen/fisiologia , Animais , Cruzamento/métodos , Criopreservação/métodos , Feminino , Fertilização/efeitos dos fármacos , Glucose/administração & dosagem , Inseminação Artificial/métodos , Inseminação Artificial/veterinária , Masculino , Sêmen/citologia , Sêmen/efeitos dos fármacos , Preservação do Sêmen/métodos , Ovinos , Soluções , Contagem de Espermatozoides
7.
J Econ Entomol ; 110(4): 1412-1418, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28535305

RESUMO

Preservation of honey bee (Apis mellifera L., Hymenoptera: Apidae) sperm, coupled with instrumental insemination, is an effective strategy to protect the species and their genetic diversity. Our overall objective is to develop a method of drone semen preservation; therefore, two experiments were conducted. Hypothesis 1 was that cryopreservation (-196 °C) of drone semen is more effective for long-term storage than at 16 °C. Our results show that after 1 yr of storage, frozen sperm viability was higher than at 16 °C, showing that cryopreservation is necessary to conserve semen. However, the cryoprotectant used for drone sperm freezing, dimethyl sulfoxide (DMSO), can harm the queen and reduce fertility after instrumental insemination. Hypothesis 2 was that centrifugation of cryopreserved semen to reduce DMSO prior to insemination optimize sperm quality. Our results indicate that centrifuging cryopreserved sperm to remove cryoprotectant does not affect queen survival, spermathecal sperm count, or sperm viability. Although these data do not indicate that centrifugation of frozen-thawed sperm improves queen health and fertility after instrumental insemination, we demonstrate that cryopreservation is achievable, and it is better for long-term sperm storage than above-freezing temperatures for duration of close to a year.


Assuntos
Criação de Abelhas/métodos , Abelhas/fisiologia , Preservação do Sêmen/métodos , Sêmen/fisiologia , Espermatozoides/fisiologia , Animais , Animais Domésticos , Centrifugação/métodos , Criopreservação/métodos , Crioprotetores/análise , Dimetil Sulfóxido/análise , Feminino , Longevidade , Masculino , Contagem de Espermatozoides
8.
Arq. bras. med. vet. zootec ; 68(5): 1369-1373, set.-out. 2016. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-827906

RESUMO

The use of bee-pollen as a nutritional supplement or as a production-enhancing agent in livestock has increased the demand for this product worldwide. Despite the current importance of this niche within the apiculture industry, few studies have addressed the pollen production. We tested the performance of free-mated (FM) and instrumentally inseminated queens (IQ) in order to establish the effect of different breeding systems on pollen production. The F1 generation of IQ queens produced 153.95±42.83g/day, showing a significant improvement on the pollen production (2.74 times) when compared to the parental generation (51.83±7.84g/day). The F1 generation of free-mated queens produced 100.07±8.23 g/day, which increased by 1.78 times when compared to the parental generation. Furthermore, we observed a statistically significant difference between the pollen production between colonies from the IQ and FM treatments. This study suggests that inseminated queens should be considered by beekeepers that aim to increase pollen production.(AU)


O uso do pólen apícola como suplemento nutricional humano e animal tem aumentado significativamente a demanda por este produto em todo o mundo. Apesar da importância atual desse nicho dentro da apicultura, poucos estudos têm abordado melhorias no sistema produtivo de pólen. Testamos o desempenho de rainhas fecundadas através de acasalamento livre (FM) e inseminação instrumental (QI), a fim de analisar o efeito de diferentes técnicas de melhoramento genético no ganho produtivo de pólen apícola. A geração F1 de rainhas QI produziu 153,95±42,83g de pólen por dia, mostrando uma melhora significativa na produção (2,74 vezes) quando comparado à geração parental (51,83±7,84g/dia). A geração F1 de rainhas de livre acasalamento produziu 100,07±8,23g/dia, o que significou um aumento de 1,78 vezes. Além disso, observou-se uma diferença estatisticamente significativa entre a produção de pólen entre as colônias dos tratamentos QI e FM. Este estudo sugere que a técnica de inseminação instrumental deve ser incorporada nos sistemas produtivos de pólen apícola brasileiro.(AU)


Assuntos
Animais , Abelhas/crescimento & desenvolvimento , Inseminação Artificial , Pólen , Criação de Abelhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...