Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.084
Filtrar
1.
Pest Manag Sci ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105291

RESUMO

BACKGROUND: The brown marmorated stink bug, Halyomorpha halys (Stål, 1855) (Hemiptera: Pentatomidae) is an invasive pest that causes economic damage on crops, decreasing fruit yield and quality. Conventional insecticides are frequently used to reduce infestations, but these are often with a limited residual effect, besides being costly and detrimental to nontarget organisms and the environment. In integrated pest management, novel strategies against H. halys are proposed, such as the use of alternative substances with an effect on insect behaviour and mobility. As one of the oldest multi-site fungicides applied against fungal pathogens and as an insecticide and acaricide to control scales and mites, sulfur is proposed here to reduce H. halys infestation in fruit orchards. RESULTS: Field experiments were performed to evaluate the effect of repeated wettable sulfur applications on H. halys in apple and pear orchards. Sulfur-induced plant phytotoxicity effects and quanti-qualitative parameters on apple fruits were also recorded. Halyomorpha halys infestation was significantly reduced in sulfur-treated compared to untreated pears and apples. Furthermore, sulfur sprays reduced fruit damage caused by H. halys. Besides, sulfur-mediated phytotoxicity such as symptoms on leaves and fruit drop were not observed. Fruit quality was not influenced by sulfur treatments. CONCLUSIONS: Wettable sulfur seems to be a promising formulation given the low phytotoxicity, considering the technical aspects for an effective use of sulfur-based products to counteract H. halys in pome fruit orchards. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Pest Manag Sci ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105428

RESUMO

BACKGROUND: Long-lasting insecticide-incorporated netting (LLIN) has been used to deliver contact insecticides as an integrated pest management tool for stored product insect pests in food facilities. Although the presence of food is known to improve insect recovery after exposure, it is not clear whether food nutritional quality plays a role. Here, the red flour beetle Tribolium castaneum adults were exposed to two commercially available LLINs, Carifend (active ingredient α-cypermethrin) and D-Terrence (deltamethrin), then transferred to Petri dishes with foods with varying nutritional quality (e.g., 0-100% ratios of flour to non-nutritive cellulose). We investigated the effects of nutrition, LLIN type, and exposure time on post-exposure recovery, mortality, and mobility. RESULTS: After exposure for 2-168 h, the immediate mortality of T. castaneum adults ranged from 0.5% to 91.0% with Carifend and 0% to 75.3% with D-Terrence. Adult recovery and delayed mortality were significantly affected by nutritional quality, LLIN type, exposure time, and recovery time. For both LLINs, adult recovery increased over time, with a trend for higher recovery and lower mortality with increasing nutritional quality and decreasing exposure time. In addition, adult mobility decreased multiple-fold after Carifend or D-Terrence exposure for 30, 60 or 90 min compared to 10 min. CONCLUSION: This study shows nutrition significantly modulates the efficacy of LLIN against T. castaneum, and thus strengthens the rationale for implementing stringent sanitation protocols for food facility managers. © 2024 Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

3.
Environ Entomol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956828

RESUMO

The twolined spittlebug, Prosapia bicincta (Say), is a major economic pest of forage grass and turfgrass. Prosapia bicincta was first detected in rangelands on Hawai'i Island in 2016 and has since spread to an estimated 72,000 ha in the North and South Kona districts. This study aimed to quantify P. bicincta abundance, plant associations, and impacts on groundcover over time. Monthly surveys of P. bicincta nymphs and adults were conducted from February 2018 to September 2022 along 17 established 100-m transects at 4 ranches located in Kona, Hawai'i Island, spanning an elevation gradient from 519 to 1,874 m above sea level (a.s.l.). Monitoring revealed P. bicincta occurs from 519 to 1,679 m a.s.l., primarily in Kikuyu grass (Cenchrus clandestinus (Hochst. ex Chiov.)) Morrone (Poales: Poaceae) pastures. Peaks in P. bicincta abundance coincided with the wet season, with most activity occurring from April to October and little to no activity between November and March. Mid elevation (1,000-1,300 m) transects had significantly higher mean P. bicincta abundance (126 nymphs/m2) relative to low (500-999 m) (64 nymphs/m2) and high elevations (>1,300 m) (20 nymphs/m2). Sites with the highest abundance of P. bicincta were also associated with the greatest decrease in mean grass cover (30%) and were replaced by forbs, bare ground, and shrubs. Grasses accounted for 72% of the total P. bicincta detections, with the remaining plants comprised of legumes (16%), sedges (6%), and forbs (6%). Twenty new P. bicincta plant associations were found. This information will help improve the effectiveness of management to suppress populations below economic thresholds.

4.
World J Microbiol Biotechnol ; 40(9): 260, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967730

RESUMO

This study aimed to isolate and characterize a native strain of Beauveria bassiana, coded as Bv065, showcasing its potential as a biological control agent targeting the palm weevil Dynamis borassi. Originating from a naturally infected D. borassi specimen collected in southwestern Colombia, the fungus underwent molecular identification and was identified as B. bassiana, exhibiting high sequence similarity with known reference strains. The physiological characterization revealed that Bv065 thrived within a temperature range of 25 to 30 °C and a pH range of 6 to 9. Moreover, the key carbon sources that allow optimal growth of the strain were identified through metabolic profiling, including sucrose, D-mannose, and γ-amino-butyric acid. These findings offer strategic insights for scalability and formulation methodologies. Additionally, enzymatic analyses unveiled robust protease activity within Bv065, crucial for catalysing insect cuticle degradation and facilitating host penetration, thus accentuating its entomopathogenic potential. Subsequent evaluations exposed Bv065's pathogenicity against D. borassi, causing significant mortality within nine days of exposure, albeit exhibiting limited effectiveness against Rhynchophorus palmarum. This study underscores the importance of understanding optimal growth conditions and metabolic preferences of B. bassiana strains for developing effective biopesticides. The findings suggest Bv065 as a promising candidate for integrated pest management strategies in neotropical regions, particularly for controlling palm weevil infestations in coconut and peach palm cultivation. Future research avenues include refining mass production methodologies, formulating novel delivery systems, and conducting comprehensive field efficacy trials to unlock the full potential of Bv065 in fostering sustainable pest management practices. Overall, this study contributes to the growing body of knowledge on entomopathogenic fungi and their pivotal role in biological control, offering nuanced perspectives on eco-friendly alternatives to conventional insecticidal interventions.


Assuntos
Beauveria , Controle Biológico de Vetores , Gorgulhos , Beauveria/fisiologia , Beauveria/patogenicidade , Animais , Gorgulhos/microbiologia , Controle Biológico de Vetores/métodos , Colômbia , Filogenia , Temperatura , Concentração de Íons de Hidrogênio
5.
Plants (Basel) ; 13(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39065469

RESUMO

Factors such as extreme temperatures, light radiation, and nutritional condition influence the physiological, biochemical, and molecular processes associated with fruit development and its quality. Besides abiotic stresses, biotic constraints can also affect fruit growth and quality. Moreover, there can be interactions between stressful conditions. However, it is challenging to predict and generalize the risks of climate change scenarios on seasonal patterns of growth, development, yield, and quality of fruit species because their responses are often highly complex and involve changes at multiple levels. Advancements in genetic editing technologies hold great potential for the agricultural sector, particularly in enhancing fruit crop traits. These improvements can be tailored to meet consumer preferences, which is crucial for commercial success. Canopy management and innovative training systems are also key factors that contribute to maximizing yield efficiency and improving fruit quality, which are essential for the competitiveness of orchards. Moreover, the creation of habitats that support pollinators is a critical aspect of sustainable agriculture, as they play a significant role in the production of many crops, including fruits. Incorporating these strategies allows fruit growers to adapt to changing climate conditions, which is increasingly important for the stability of food production. By investing in these areas, fruit growers can stay ahead of challenges and opportunities in the industry, ultimately leading to increased success and profitability. In this review, we aim to provide an updated overview of the current knowledge on this important topic. We also provide recommendations for future research.

6.
Insects ; 15(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39057208

RESUMO

Since the invasion of the sorghum aphid Melanaphis sorghi (Theobald), farmers in the sorghum (Sorghum bicolor L. Moench) production region in the Great Plains of the U.S. have faced significant crop damage and reduced yields. One widely used practice to aid in managing sorghum aphids is pest monitoring, which often results in field-level insecticide applications when an economic threshold is reached. However, relying on this traditional management practice includes the application of insecticides to non-infested plants. To reduce insecticide usage in sorghum, we proposed spraying individual plants when aphids are present or absent compared to traditional spraying based on a standard economic threshold using field replicate plots over two summer seasons. The experimental results of this study indicated fewer aphids in plots managed with an economic threshold, followed by randomly sprayed and plant-specific treatments compared with the untreated control treatment. Therefore, compared with traditional management, those treatments can be alternative strategies for managing aphids on sorghum within our field plot study.

7.
J Econ Entomol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39047177

RESUMO

Social paper wasps regularly prey upon lepidopteran larvae, some of which are economically impactful agricultural pest species. We examined the potential of native North American Polistes metricus Say (Hymenoptera: Vespidae) and Polistes fuscatus (Fabricius) for biocontrol of Brassica L. pests in an experimental setting. First, we translocated P. metricus to one-half of a divided screened hoop house and placed a mix of 4th-5th instar lepidopteran larvae (Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), Pieris spp. Schrank (Lepidoptera: Pieridae), and Plutella xylostella (L.) (Lepidoptera: Plutellidae)) on half of the broccoli plants on both sides of the hoop house. We recorded and replaced missing caterpillars daily, and assessed leaf damage after 1 wk. P. metricus was 100% effective at removing all caterpillars from the wasp side of the hoop house, and plant damage by caterpillars was significantly reduced in the presence of wasps. We then replicated the study using a different combination of Polistes (fuscatus) and Brassica crop (kale) with a 2 × 2 experimental design in which plants had either T. ni larvae added or absent (factor 1), and were either covered with insect mesh or left exposed (factor 2). By the second day of exposure to these pest species, wasps removed over 80% of the larvae within 3 h of placing them on the plants. We discuss implications of this study for the potential use of native Polistes wasps as an integrated pest management strategy.

8.
Pest Manag Sci ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046187

RESUMO

Entomopathogenic fungi capable of establishing mutualistic endophytic relationships with plants have a tremendous potential as biocontrol agents of insect pests. While fungi have long played an important and highly effective role in pest suppression, the utility of endophytic entomopathogenic fungi in pest management is a relatively new and emerging topic of biocontrol. Here we discuss the relevance of endophytic fungi to plant health in general, synthesize the current knowledge of the effectiveness of endophytic entomopathogenic fungi against diverse insect pests, discuss the indirect plant-mediated effects of endophytic entomopathogenic fungi on arthropods, and describe the diverse benefits of endophytic fungi to plants that are likely to affect herbivores and plant pathogens as well. Lastly, we consider major challenges to incorporating endophytic entomopathogenic fungi in biocontrol, such as their non-target effects and field efficacy, which can be variable and influenced by environmental factors. Continued research on endophyte-insect-plant-environment interactions is critical to advancing our knowledge of these fungi as a sustainable pest management tactic. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

9.
Insect Sci ; 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034425

RESUMO

We made separate experiments to examine life-history traits and activities of protective enzymes as affected by carbon dioxide (CO2) elevation to 780 µL/L as compared to 390 µL/L in imidacloprid- or buprofezin-resistant strains of the brown planthopper (BPH) Nilaparvata lugens. We found an interaction effect between resistance and the CO2 level on the nymphal survival and duration in both resistant strains. Nymphal durations in both resistant strains were much shorter in the resistant than susceptible BPH at 780 µL/L but similar between them or slightly shorter in the resistant than susceptible BPH at 390 µL/L. Nymphal survival was lower for imidacloprid-resistant than its susceptible BPH at 390 µL/L but higher at 780 µL/L; it stayed unaffected by the CO2 elevation in buprofezin-resistant BPH. We did not observe an interaction effect between resistance and the CO2 level on major reproductive parameters in both resistant strains. But the 2 strains were not consistent across CO2 levels in all parameters. Our measurements of protective enzyme activities of superoxide dismutase, catalase, and peroxidase showed an interaction between resistance and the CO2 level. Overall, these enzymes became similar in activity between resistant and susceptible BPH at 780 µL/L compared to 390 µL/L and the change was more distinct in the imidacloprid- than buprofezin-resistant BPH strains. Our findings suggest that CO2 elevation can affect life-history traits of insecticide-resistant BPH, while the effect may vary depending on the kind of insecticides it is resistant to.

10.
Environ Entomol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037436

RESUMO

Wireworms, the larvae of click beetles (Coleoptera: Elateridae), are often the target of insecticide seed treatments commonly used in corn (Zea mays L.) and soybean (Glycine max (L.) Merr.) production in North America. Nevertheless, there is a lack of knowledge of the species, life history, and economic impact of wireworms present in these agroecosystems. An extensive survey of wireworms was conducted in corn and soybean fields in Ontario, Canada, from 2014 to 2017 to document species distribution and co-occurrence and to identify risk factors related to their abundance. In total, 4,332 specimens were collected from 1,245 different sampling records. The dominant species collected was Limonius agonus (Say) (Coleoptera: Elateridae) comprising 71.5% of the specimens. The remaining wireworm specimens were identified as Hypnoidus abbreviatus (Say), Melanotus similis (Kirby), M. cribulosus (LeConte), M. depressus (Melsheimer), M. communis (Gyllenhal), Agriotes mancus (Say), Aeolus mellillus (Say), and Hemicrepidius spp (Germar). Multiple wireworm species were found to commonly occur within the same field and the same sample. Path analysis was conducted to investigate whether site, soil, and agronomic characteristics influenced wireworm distribution and abundance. Several significant relationships were found between wireworm species and geographic factors, soil texture, and agronomic practices. The results of this survey provide critical information that can be used to improve integrated pest management of the major wireworm genera found in corn and soybean agroecosystems in Ontario.

11.
Neotrop Entomol ; 53(4): 955-963, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963530

RESUMO

Globally, people use sugarcane (Saccharum officinarum) to produce sugar and ethanol. Rainfed or irrigated sugarcane agricultural systems are available. Among the pests affecting this crop, the weevil Sphenophorus levis, Vaurie 1978 (Coleoptera: Curculionidae), is increasingly becoming a significant threat in southern South America. Sphenophorus levis populations are controlled using chemical or biological measures. Control decisions hinge upon the economic injury level (EIL). The EIL delineates the pest density that results in financial losses for producers. This study aims to determine the EIL for S. levis, considering the factors favoring this insect pest and chemical and biological control methods in rainfed and irrigated systems. The intensity of S. levis attacks was monitored in commercial sugarcane plantations over four years in João Pinheiro, Minas Gerais, Brazil. Sampling occurred in a 50 × 50 × 30-cm-deep trench dug in the soil surrounding the sugarcane clump. The total number of stumps in the clump, including those attacked by S. levis, was tallied. The EILs for this pest were 5.93% and 4.85% of targeted stumps for chemical control in rainfed and irrigated crops, respectively. Biological control in sugarcane plots resulted in an EIL of 4.15% and 3.40% for stumps attacked in rainfed and irrigated crops, respectively. Pest attacks were more severe during rainy years and in older sugarcane crops. The EIL values determined in this study could inform integrated pest management programs for sugarcane crops.


Assuntos
Irrigação Agrícola , Produtos Agrícolas , Saccharum , Gorgulhos , Animais , Brasil , Controle Biológico de Vetores , Controle de Insetos
12.
Yakugaku Zasshi ; 144(6): 675-683, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38825476

RESUMO

Recently, feeding damage by the olive weevil Pimelocerus (Dyscerus) perforatus Roelofs, which utilizes olive trees (Olea europaea Linne) as a host plant, has become the biggest obstacle to olive cultivation in Japan. We previously identified several volatile plant-derived natural products that exhibit repellent activity against olive weevils. In this study, we conducted a pilot test of repellents in an olive orchard along with the use of insecticide. During three consecutive years from 2021 to 2023, the first year was the observation period, and the second and third years were set aside for a trial period for o-vanillin and geraniol as repellents, respectively. Using o-vanillin, the number of adult olive weevil outbreaks decreased to almost half a year in the experimental area, the use of geraniol then resulted in a drastic reduction of the number of individual olive weevils in the experimental area. In contrast, adults and larvae outbreaks increased in the control area without a repellent, despite the use of insecticide. These results indicate that the volatile repellents drove the olive weevils away and kept them at bay in the field. Based on the observations, we will be able to provide a new approach for the control of olive cultivation, including fruit and leaves used for commercial purposes, following integrated pest management (IPM) practices, such as reducing environmental poisoning from intense insecticides, and returning olive weevils to their original habitat outside of olive orchards.


Assuntos
Monoterpenos Acíclicos , Repelentes de Insetos , Olea , Gorgulhos , Olea/química , Animais , Projetos Piloto , Inseticidas , Terpenos , Japão
13.
Pest Manag Sci ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934844

RESUMO

BACKGROUND: The predatory flower bug Orius strigicollis serves as a valuable biocontrol agent against small arthropods; however, its effectiveness can vary, especially when population establishment fails due to low prey/pest densities. A promising approach to improve the efficacy of O. strigicollis as a biocontrol agent is through gene editing. However, as females lay their eggs in plant tissue, the conventional embryo injection approach is challenging in this species. RESULTS: In this study, we aimed to develop an efficient and practical gene editing technique for O. strigicollis using direct parental CRISPR (DIPA-CRISPR). Female bugs at various postemergence stages received Cas9 ribonucleoprotein injections, with subsequent genotyping of their offspring (G0) using PCR and a heteroduplex mobility assay. We targeted the kynurenine 3-monooxygenase gene (cinnabar), pivotal for insect ommochrome pigment biosynthesis. Through experimental optimization, we achieved a peak gene editing efficiency of 52%, i.e., 52% of G0 progeny carried gene-edited alleles when injecting 1 day postemergence. Notably, some gene-edited G0 adults exhibited a red-eye mosaic phenotype, in contrast to the black-eyed wild type. Crossing experiments confirmed the heritability of the introduced mutations in the subsequent generation (G1), enabling the establishment of a cinnabar-knockout line with bright red eyes. CONCLUSION: We demonstrate that our DIPA-CRISPR gene editing method tailored for O. strigicollis is efficient and practical. Our findings highlight the potency of DIPA-CRISPR as a tool for O. strigicollis genetic engineering and suggest broader applications for enhancing other biocontrol agents. © 2024 Society of Chemical Industry.

14.
Exp Appl Acarol ; 93(2): 253-272, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38869730

RESUMO

Florida's strawberry industry is currently valued at $511 million annually but faces challenges from pathogens and arthropod pests especially Tetranychus urticae Koch (twospotted spider mite) and Scirtothrips dorsalis Hood (chilli thrips). Predatory mites, particularly Neoseiulus cucumeris Oudemans, Neoseiulus californicus McGregor, and Amblyseius swirskii Athias-Henriot, play a crucial role in pest management. However, there are concerns regarding how these biological control agents are affected by fungicides used in current pathogen management strategies. This study assessed the residual effects of commonly used fungicides in strawberries on the survival, feeding, and oviposition of these predatory mites. Commercially sourced predatory mites were reared on S. dorsalis larvae, and gravid female predators placed on fungicide treated strawberry leaf discs in a Munger cell for 120 h. Fungicides tested included two formulations of Captan, hydrogen peroxide + peroxyacetic acid, cyprodinil + fludioxonil, tetramethylthiuram disulfide, cyflufenamid and a control. All fungicides tested had an impact on the survival, feeding, and oviposition of the predators. Among the fungicide treatments, the lowest predator survival was observed in the cyprodinil + fludioxonil treatment, while the highest was observed in the hydrogen peroxide + peroxyacetic acid and tetramethylthiuram disulfide treatments. In all treatments, feeding and oviposition greatly varied among predators; specifically, N. cucumeris and A. swirskii had the lowest prey consumption, while N. californicus had the highest. These findings highlight the potential incompatibility between fungicides and predatory mites and demonstrate the need for the development of a fungicide rotation program tailored to the different susceptibilities of predators to fungicides.


Assuntos
Fragaria , Fungicidas Industriais , Ácaros , Animais , Fungicidas Industriais/farmacologia , Ácaros/efeitos dos fármacos , Ácaros/fisiologia , Feminino , Oviposição/efeitos dos fármacos , Controle Biológico de Vetores , Comportamento Predatório/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/efeitos dos fármacos
15.
Sci Total Environ ; 947: 173619, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38825208

RESUMO

The globalization in plant material trading has caused the emergence of invasive pests in many ecosystems, such as the alder pathogen Phytophthora ×alni in European riparian forests. Due to the ecological importance of alder to the functioning of rivers and the increasing incidence of P. ×alni-induced alder decline, effective and accessible decision tools are required to help managers and stakeholders control the disease. This study proposes a Bayesian belief network methodology to integrate diverse information on the factors affecting the survival and infection ability of P. ×alni in riparian habitats to help predict and manage disease incidence. The resulting Alder Decline Network (ADnet) management tool integrates information about alder decline from scientific literature, expert knowledge and empirical data. Expert knowledge was gathered through elicitation techniques that included 19 experts from 12 institutions and 8 countries. An original dataset was created covering 1189 European locations, from which P. ×alni occurrence was modeled based on bioclimatic variables. ADnet uncertainty was evaluated through its sensitivity to changes in states and three scenario analyses. The ADnet tool indicated that mild temperatures and high precipitation are key factors favoring pathogen survival. Flood timing, water velocity, and soil type have the strongest influence on disease incidence. ADnet can support ecosystem management decisions and knowledge transfer to address P. ×alni-induced alder decline at local or regional levels across Europe. Management actions such as avoiding the planting of potentially infected trees or removing man-made structures that increase the flooding period in disease-affected sites could decrease the incidence of alder disease in riparian forests and limit its spread. The coverage of the ADnet tool can be expanded by updating data on the pathogen's occurrence, particularly from its distributional limits. Research on the role of genetic variability in alder susceptibility and pathogen virulence may also help improve future ADnet versions.


Assuntos
Alnus , Teorema de Bayes , Doenças das Plantas/microbiologia , Doenças das Plantas/estatística & dados numéricos , Phytophthora , Ecossistema , Europa (Continente)/epidemiologia , Florestas , Conservação dos Recursos Naturais
16.
J Therm Biol ; 122: 103886, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38878392

RESUMO

Life history traits have been studied under various environmental factors, but the ability to combine them into a simple function to assess pest response to climate is still lacking complete understanding. This study proposed a risk index derived by combining development, mortality, and fertility rates from a stage-structured dynamic mathematical model. The first part presents the theoretical framework behind the risk index. The second part of the study is concerned with the application of the index in two case studies of major economic pest: the brown planthopper (Nilaparvata lugens) and the spotted wing drosophila (Drosophila suzukii), pests of rice crops and soft fruits, respectively. The mathematical calculations provided a single function composed of the main thermal biodemographic rates. This function has a threshold value that determines the possibility of population increase as a function of temperature. The tests carried out on the two pest species showed the capability of the index to describe the range of favourable conditions. With this approach, we were able to identify areas where pests are tolerant to climatic conditions and to project them on a geospatial risk map. The theoretical background developed here provided a tool for understanding the biogeography of Nilaparvata lugens and Drosophila suzukii. It is flexible enough to deal with mathematically simple (N. lugens) and complex (D. Suzukii) case studies of crop insect pests. It produces biologically sound indices that behave like thermal performance curves. These theoretical results also provide a reasonable basis for addressing the challenge of pest management in the context of seasonal weather variations and climate change. This may help to improve monitoring and design management strategies to limit the spread of pests in invaded areas, as some non-invaded areas may be suitable for the species to develop.


Assuntos
Drosophila , Hemípteros , Animais , Hemípteros/fisiologia , Hemípteros/crescimento & desenvolvimento , Drosophila/fisiologia , Drosophila/crescimento & desenvolvimento , Temperatura , Medição de Risco/métodos , Modelos Biológicos
17.
Pest Manag Sci ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856012

RESUMO

BACKGROUND: Integrated pest management (IPM) plays a crucial role in protecting agricultural environments and enhancing the quality of agricultural products. However, a major challenge in China is the conflicting understanding of IPM among farmers, leading to low adoption rates. This undermines farmers' ability to control pests and diseases while increasing risks to agricultural quality and safety. This study aimed to investigate the impact of cognitive conflicts on farmers' adoption of IPM in kiwifruit farms in Shaanxi and Sichuan provinces. Additionally, the study explored the moderating role of internet use in the relationship between cognitive conflicts and farmer adoption of IPM. Data were collected from 686 kiwifruit farms through field surveys in 2018. The binary Probit model and moderating effect models were used to assess the influence of internet use and cognitive conflict on farmer adoption of IPM. RESULTS: The study found that cognitive conflicts significantly hindered farmers' adoption of IPM. Higher levels of cognitive conflict were associated with lower likelihoods of adopting IPM. Internet use and frequency had positive effects on farmer adoption of IPM, promoting its implementation. Moreover, internet use and frequency helped alleviate the inhibitory effect of cognitive conflicts on farmer adoption IPM. CONCLUSION: This research enhances our understanding of cognitive conflicts among farmers when promoting IPM and provides viable strategies to improve the effectiveness of public sector promotion and stimulate farmers' willingness to adopt IPM. It emphasizes the importance of addressing cognitive conflicts and utilizing internet resources to enhance IPM adoption among kiwifruit growers in China. © 2024 Society of Chemical Industry.

18.
Environ Entomol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856688

RESUMO

There are widespread public efforts to conserve wildlife in urbanized landscapes via the installation of nursery-grown plants that support Lepidoptera taxa. Insecticides are commonly used during nursery production to suppress key plant pests, and many products have extended periods of toxicity and affect a wide range of herbivore taxa. While there are plentiful toxicological data on bee species, predominantly the Western honey bee (Apis mellifera L.), little is known about how insecticides affect nonpest lepidopterans. Lepidoptera has different modes of exposure (e.g., leaf-feeding) and differences in susceptibility to insecticide target sites compared to bees. Consequently, many products compatible with bee conservation pose an uncertain risk to nonpest lepidopterans and thus may represent an under-recognized conflict with conservation efforts. Using the monarch butterfly (Danaus plexippus, L.), tropical milkweed (Asclepias curassavica, L.), and oleander aphid (Aphis nerii, Fonscolombe, 1841) system, we conducted leaf and whole-plant feeding assays to evaluate effects of acute and chronic monarch exposure to industry standard and alternative reduced-risk insecticides used during nursery production. We also evaluated the efficacy of these insecticides against their target pest, the oleander aphid. Our results indicate that insecticides used to control pests on ornamental milkweed can cause monarch larval mortality up to 4 wk after treatment application. Furthermore, the duration of aphid suppression is often shorter than the duration of adverse effects on monarchs. This study demonstrates a conflict between insect pest management and Lepidoptera conservation during ornamental plant production and has implications for the conservation value of ornamentals after retail sale.

19.
Insects ; 15(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38921115

RESUMO

Thrips biocontrol research in greenhouse crops has focused primarily on western flower thrips (WFT; Frankliniella occidentalis). However, recent outbreaks of onion thrips (OT; Thrips tabaci) in Ontario, Canada, demonstrate that biocontrol-based IPM programs for WFT do not control OT sufficiently to prevent crop losses. A lack of comparative studies makes it difficult to determine which program components for WFT are failing for OT. We conducted several laboratory trials examining the extent to which commercial biocontrol products kill OT compared to WFT. These included phytoseiid mites (Amblyseius swirskii, Neoseiulus cucumeris, Amblydromalus limonicus, Iphiseius degenerans), a large generalist predator (Orius insidiosus), an entomopathogenic fungus (Beauveria bassiana strain GHA), and entomopathogenic nematodes (Steinernema feltiae, S. carpocapsae, Heterorhabditis bacteriophora). In no-choice trials, A. swirskii and O. insidiosus consumed more OT than WFT (first instars and adults, respectively). In choice trials, A. swirskii, N. cucumeris, and O. insidiosus consumed more OT than WFT. Steinernema feltiae caused higher mortality in OT than WFT. There was no difference in mortality between thrips species exposed to other biocontrol agents. This suggests available tools have the potential to manage OT as well as WFT. Possible explanations why this potential is not realized in commercial settings are explored.

20.
Insects ; 15(6)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38921153

RESUMO

The sweetpotato whitefly, Bemisia tabaci MEAM1, is a pest known to significantly impact tomato development and yields through direct damage and virus transmission. To manage this pest, the current study compared the effectiveness of various insecticide rotations. Field trials included rotations involving synthetic insecticides, biochemicals, and microbial agents, applied according to their highest labeled concentrations. The results indicated that while standard synthetic insecticides consistently reduced whitefly egg and nymph counts significantly, microbial biopesticide rotations also achieved reductions, although less consistently. This study demonstrated that while traditional chemical treatments remain highly effective, microbial biopesticides containing Beauveria bassiana and Cordyceps javanica present a viable alternative to manage MEAM1 in tomato fields. The data generated in this study provided baseline information for further investigations to determine the potential for optimizing integrated pest management (IPM) and insecticide resistance management (IRM) strategies by incorporating microbial biopesticides in rotations with a variety of modes of action to sustainably manage B. tabaci MEAM1 populations in agricultural settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...