Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Med Dosim ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38849262

RESUMO

Bolus electron conformal therapy (BECT) in the treatment of cancers of the head and neck is often limited by an inability to reduce dosimetric hot spots resulting from surface irregularity or tissue heterogeneity. We examined the potential benefits of using intensity modulation for electron therapy (IM-BECT) to reduce hotspots in patients undergoing electron beam therapy for superficial cancers of the head and neck (HN). Twenty patients with HN cancer previously treated with BECT were identified. Each case included the treatment targets and a primary organ at risk (OAR) that were defined by the radiation oncologist. A target +2 cm rind structure was created for analysis of the dose deposition in areas surrounding the target volume as a measure of conformality. Each patient plan was transferred into the novel IM-BECT planning software and each case was recomputed as per the original parameters. Next, each case was replanned with the inclusion of intensity modulation, as well as a new custom conformal bolus that was redesigned for optimized range compensation when paired with an intensity modulator. The plans were then normalized to prescription dose and compared for target coverage/dose and OAR dose. For patients who had a hotspot of 125% or greater, the hotspot was on average reduced by 13.1% with IM-BECT. For IM-BECT, the average primary OAR means dose and target+2cm rind mean dose increased slightly by 10.6% and 6.4%, respectively (primary OAR mean [p = 0.0001], and Target+2cm rind mean [p = 0.0001], paired t-test). IM-BECT is an effective method of reducing hotspots in patients with superficial HN cancer. Improvements came at the expense of slight increases in dose to the underlying tissues. This retrospective planning study represents the first example of IM-BECT to actual HN patient cases. Expanding the role of IM-BECT in other disease sites could potentially compared to conventional BECT.

2.
J Appl Clin Med Phys ; : e14347, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576174

RESUMO

PURPOSE: This work investigated the dosimetric accuracy of the intensity-modulated bolus electron conformal therapy (IM-BECT) planning and delivery process using the decimal ElectronRT (eRT) treatment planning system. METHODS: An IM-BECT treatment plan was designed using eRT for a cylindrical, anthropomorphic retromolar trigone phantom. Treatment planning involved specification of beam parameters and design of a variable thickness wax bolus and Passive Radiotherapy Intensity Modulator for Electrons (PRIME) device, which was comprised of 33 tungsten island blocks of discrete diameters from 0.158 to 0.223 cm (Intensity Reduction Factors from 0.937 to 0.875, respectively) inside a 10.1 × 6.7 cm2 copper cutout. For comparison of calculation accuracy, a BECT plan was generated by copying the IM-BECT plan and removing the intensity modulation. For both plans, a 16 MeV electron beam was used with 104.7 cm source-to-surface distance to bolus. In-phantom TLD-100 measurements (N = 47) were compared with both eRT planned dose distributions, which used the pencil beam redefinition algorithm with modifications for passive electron intensity modulation (IM-PBRA). Dose difference and distance to agreement (DTA) metrics were computed for each measurement point. RESULTS: Comparison of measured dose distributions with planned dose distributions yielded dose differences (calculated minus measured) characterized by a mean and standard deviation of -0.36% ± 1.64% for the IM-BECT plan, which was similar to -0.36% ± 1.90% for the BECT plan. All dose measurements were within 5% of the planned dose distribution, with both the BECT and IM-BECT measurement sets having 46/47 (97.8%) points within 3% or within 3 mm of the respective treatment plans. CONCLUSIONS: It was found that the IM-BECT treatment plan generated using eRT was sufficiently accurate for clinical use when compared to TLD measurements in a cylindrical, anthropomorphic phantom, and was similarly accurate to the BECT treatment plan in the same phantom.

3.
J Clin Med ; 13(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38592098

RESUMO

BACKGROUND: Pineal parenchymal cell tumors constitute a rare group of primary central nervous system neoplasms (less than 1%). Their classification, especially the intermediate subtype (PPTIDs), remains challenging. METHODS: A literature review was conducted, navigating through anatomo-pathological, radiotherapy, and neurosurgical dimensions, aiming for a holistic understanding of these tumors. RESULTS: PPTIDs, occupying an intermediate spectrum of malignancy, reveal diverse histological patterns, mitotic activity, and distinct methylation profiles. Surgical treatment is the gold standard, but when limited to partial removal, radiotherapy becomes crucial. While surgical approaches are standardized, due to the low prevalence of the pathology and absence of randomized prospective studies, there are no shared guidelines about radiation treatment modalities. CONCLUSION: Surgical removal remains pivotal, demanding a personalized approach based on the tumor extension. This review underscores the considerable variability in treatment approaches and reported survival rates within the existing literature, emphasizing the need for ongoing research to better define optimal therapeutic strategies and prognostic factors for PPTIDs, aiming for further and more detailed stratification among them.

4.
Med Phys ; 51(1): 545-555, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37748133

RESUMO

BACKGROUND: Automatic solutions for generating radiotherapy treatment plans using deep learning (DL) have been investigated by mimicking the voxel's dose. However, plan optimization using voxel-dose features has not been extensively studied. PURPOSE: This study aims to investigate the efficiency of a direct optimization strategy with finite elements (FEs) after DL dose prediction for automatic intensity-modulated radiation therapy (IMRT) treatment planning. METHODS: A double-UNet DL model was adapted for 220 cervical cancer patients (200 for training and 20 for testing), who underwent IMRT between 2016 and 2020 at our clinic. The model inputs were computed tomography (CT) slices, organs at risk (OARs), and planning target volumes (PTVs), and the outputs were dose distributions of uniformly generated high-dose region-controlled plans. The FEs were discretized into equal intervals of the dose prediction value within the [OARs avoid PTV(O-P)] and [body avoids OARs & PTV(B-OP)] regions in the test cohort and used to define the objectives for IMRT plan optimization. The plans were optimized using a two-step process. In the beginning, the plans of two extra cases with and without low-dose region control were compared to pursue robust and optimal dose adjustment degree pattern of FEs. In the first step, the mean dose of O-P FEs were constrained to differing degrees according to the pattern. The further the FEs from the PTV, the tighter the constraints. In the second step, the mean dose of O-P FEs from first step were constrained again but weakly and the dose of the B-OP FEs from dose prediction and PTV were tightly regulated. The dosimetric parameters of the OARs and PTV were evaluated and compared using an interstep approach. In another 10 cases, the plans optimized via the aforementioned steps (method 1) were compared with those directly generated by the double-UNet dose prediction model trained by low and high region-controlled plans (method 2). RESULTS: The mean differences in dose metrics between the UNet-predicted dose and the clinical plans were: 0.47 Gy for bladder D50% ; 0.62 Gy for rectum D50% ; 0% for small intestine V30Gy ; 1% for small intestine V40Gy ; 4% for left femoral head V30Gy ; and 6% for right femoral head V30Gy . The reductions in mean dose (p < 0.001) after FE-based optimization were: 4.0, 1.9, 2.8, 5.9, and 5.7 Gy for the bladder, rectum, small intestine, left femoral head, and right femoral head, respectively, with flat PTV homogeneity and conformity. Method 1 plans produced lower mean doses than those of method 2 for the bladder (0.7 Gy), rectum (1.0 Gy), and small intestine (0.6 Gy), while maintaining  PTV homogeneity and conformity. CONCLUSION: FE-based direct optimization produced lower OAR doses and adequate PTV doses after DL prediction. This solution offers rapid and automatic plan optimization without manual adjustment, particularly in low-dose regions.


Assuntos
Aprendizado Profundo , Radioterapia de Intensidade Modulada , Neoplasias do Colo do Útero , Feminino , Humanos , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia , Órgãos em Risco
5.
Sensors (Basel) ; 23(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139650

RESUMO

Cascaded inverse fast Fourier transform/fast Fourier transform (IFFT/FFT)-based multi-channel aggregation/de-aggregation offers a promising solution in constructing highly desirable flexible optical transceivers for considerably improving optical networks' elasticity, flexibility, and adaptability. However, the multi-channel aggregation operation unavoidably results in generated signals having high peak-to-average power ratios (PAPRs). To solve this technical challenge, this paper first explores the PAPR characteristics of the corresponding flexible transceivers in optical back-to-back (B2B) and 20 km intensity modulation and direct detection (IMDD) transmission systems, and then numerically investigates the feasibility and effectiveness of utilizing the conventional clipping techniques in reducing their PAPR reductions. The results show that the last IFFT operation size is the primary factor determining the PAPRs rather than the channel count and modulation format. For a given last IFFT operation size, the optimal clipping ratio can be identified, which is independent of channel count. With the identified optimal clipping ratio, when the channel count is >4, every two-channel increase in the channel count can only lead to <1.2 Gb/s decreases in the maximum aggregated signal transmission capacity.

6.
Sensors (Basel) ; 23(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139744

RESUMO

Fluidic and non-fluidic surface plasmon resonance measurements were realized for the same type of sensory layer and using the same mouse IgG antibody and anti-mouse IgG antibody biomolecular system. A comparison of the thicknesses of the anti-mouse IgG antibody layers bound to the ligand at increasing analyte concentrations ranging from 0.0 µg mL-1 to 5.0 µg mL-1 in the non-fluidic and the fluidic variant showed that the thickness of the bound anti-mouse antibody layers in the fluidic variant was approximately 1.5-3 times larger than in the non-fluidic variant. The greater thicknesses of the deposited layers were also reflected in the larger increment of the resonant angle in the fluidic variant compared to the non-fluidic variant in the considered range of analyte concentrations. The choice between fluidic and non-fluidic surface plasmon resonance biosensors may be justified by the availability of analyte volume and the intended modulation technique. When working with limited analyte, non-fluidic biosensors with intensity modulation are more advantageous. For larger analyte quantities, fluidic biosensors with angular modulation are recommended, primarily due to their slightly higher sensitivity in this measurement mode.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Animais , Camundongos , Ressonância de Plasmônio de Superfície/métodos , Técnicas Biossensoriais/métodos , Imunoglobulina G , Ligantes
7.
Clin Transl Radiat Oncol ; 43: 100674, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37753462

RESUMO

We compiled a sampling of the treatment techniques of intensity-modulated total body irradiation, total marrow irradiation and total marrow and lymphoid irradiation utilized by several centers across North America and Europe. This manuscript does not serve as a consensus guideline, but rather is meant to serve as a convenient reference for centers that are considering starting an intensity-modulated program.

8.
Sensors (Basel) ; 23(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37571649

RESUMO

In mobile applications such as geomagnetic surveying, two major effects hamper the use of optically pumped magnetometers: dead zones, sensor orientations where the sensors signal amplitude drops; and heading errors, a dependence of the measured magnetic field value on the sensor orientation. We present a concept for an omnidirectional magnetometer to overcome both of these effects. The sensor uses two cesium vapor cells, interrogated by circularly-polarized amplitude-modulated laser light split into two beams propagating perpendicular to each other. This configuration is experimentally investigated using a setup wherein the laser beam and magnetic field direction can be freely adjusted relative to each other within a magnetically shielded environment. We demonstrate that a dead-zone-free magnetometer can be realized with nearly isotropic magnetic-field sensitivity. While in the current configuration we observe heading errors emerging from light shifts and shifts due to the nonlinear Zeeman effect, we introduce a straightforward approach to suppress these systematic effects in an advanced sensor realization.

9.
Sensors (Basel) ; 23(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37447800

RESUMO

This work proposes an efficient and easy-to-implement single-layer artificial neural network (ANN)-based equalizer with improved compensation performance. The proposed equalizer is used for effectively mitigating the distortions induced in the short-haul fiber-optic communication systems based on intensity modulation and direct detection (IMDD). The compensation performance of the ANN equalizer is significantly improved, exploiting an introduced advanced training scheme. The efficiency and robustness of the proposed ANN equalizer are illustrated through 10- and 28-Gbaud short-reach optical-fiber communication systems. Compared to the efficient but computationally expensive maximum likelihood sequence estimator (MLSE), the proposed ANN equalizer not only significantly reduces its computational equalization cost and storage memory requirements, but it also outperforms its bit error rate performance.


Assuntos
Tecnologia de Fibra Óptica , Fibras Ópticas , Comunicação , Redes Neurais de Computação
10.
J Appl Clin Med Phys ; 24(7): e13943, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36855930

RESUMO

PURPOSE: This work developed an x-ray-based method for performing factory quality assurance (QA) of Passive Radiotherapy Intensity Modulators for Electrons (PRIME) device fabrication. This method measures errors in position, diameter, and orientation of cylindrical island blocks on a hexagonal grid that comprises PRIME devices and the impact of such errors on the underlying intensity distribution. METHODS: X-ray images were acquired of six PRIME devices, which modeled three error cases (small random, large random, and systematic errors) for two island block diameters (0.158 and 0.352 cm). Island blocks in each device, 0.6 cm long tungsten cylinders of constant diameter, were spaced 0.6 cm on a hexagonal grid over approximately 8 cm square. Using a 50 kVp x-ray image, each island block projected a racetrack, whose perimeter was fit to a function that allowed determination of its position, diameter, and angular orientation (θ, ϕ). These measured parameters were input into a pencil beam algorithm (PBA) dose calculation performed in water (16 MeV, SSD = 103 cm) for each device. PBA calculated intensity distributions using measured and planned (exact) island block parameters were compared. RESULTS: Θ distributions for the 0.158 and 0.352 cm devices were nearly identical for each error case, with θ values for most island blocks being within 3.2°, 8.5°, and 7.5° for the small random, large random, and systematic error PRIME devices, respectively. Corresponding intensity differences between using measured and planned island block parameters were within 1.0% and 2.8% (small random), 2.2% and 4.8% (large random), and 3.2% and 6.7% (systematic) for the 0.158 and 0.352 cm devices, respectively. CONCLUSION: This approach provides a viable and economical method for factory QA of fabricated PRIME devices by determining errors in their planned intensity distribution from which their quality can be assessed prior to releasing to the customer.


Assuntos
Elétrons , Radioterapia de Intensidade Modulada , Humanos , Raios X , Radiografia , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Imagens de Fantasmas , Radioterapia de Intensidade Modulada/métodos
11.
Sensors (Basel) ; 23(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36679595

RESUMO

Powerful and reliable estimation of transmission parameters is an indispensable task in each receiver unit-not only for radio frequency, but also for optical wireless communication systems. In this context, the signal-to-noise ratio (SNR) plays an eminent role, especially for adaptive scenarios. Assuming a bandlimited optical intensity channel, which requires a unipolar waveform design, an algorithm for SNR estimation is developed in this paper, which requires no knowledge of the transmitted data. This non-data-aided approach benefits to a great extent from the fact that very long observation windows of payload symbols might be used for the estimation process to increase the accuracy of the result; this is in striking contrast to a data-aided approach based on pilot symbols reducing the spectral efficiency of a communication link. Since maximum likelihood, moment-based or decision-directed algorithms are not considered for complexity and performance reasons, an expectation-maximization solution is introduced whose error performance is close to the Cramer-Rao lower bound as the theoretical limit, which has been derived as well.


Assuntos
Algoritmos , Comunicação , Razão Sinal-Ruído
12.
J Appl Clin Med Phys ; 24(2): e13889, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36610042

RESUMO

PURPOSE: Passive Radiotherapy Intensity Modulators for Electrons (PRIME) devices are comprised of cylindrical tungsten island blocks imbedded in a machinable foam slab within the patient's cutout. Intensity-modulated bolus electron conformal therapy (IM-BECT) uses PRIME devices to reduce dose heterogeneity caused by the irregular bolus surface. Heretofore, IM-BECT dose calculations used the pencil beam redefinition algorithm (PBRA) assuming perfect collimation. This study investigates modeling electron scatter into and out the sides of island blocks. METHODS: Dose distributions were measured in a water phantom at 7, 13, and 20 MeV for devices having nominal intensity reduction factors of 1.000 (foam only), 0.937, 0.812, and 0.688, corresponding to nominal island block diameters (dnom ) of 0.158, 0.273, and 0.352 cm, respectively. Pencil beam theory derived an effective diameter (dIS ) to account for in-scattered electrons as a function of dnom and beam energy (Ep,0 ). However, for out-scattered electrons, an effective diameter (dmod ) was estimated by best fitting measured data. RESULTS: In the modulated region (under island blocks, depth < R90 ), modified PBRA-calculated dose distributions showed 2%/2 mm passing rates for dnom  = 0.158, 0.273, and 0.352 cm of (100%, 100%, 100%) at 7 MeV, (100%, 100%, 93.5%) at 13 MeV, and (99.8%, 85.4%, and 71.5%) at 20 MeV. The largest dose differences (≤ 6%) occurred at the highest energy (20 MeV), largest dnom , shallowest depths (≤ 2 cm), and on central axis. CONCLUSIONS: An equation for modeling island block scatter, dmod (dnom , Ep,0 ), has been developed for use in the PBRA, insignificantly impacting calculation time. Although inaccuracy sometimes exceeded our 2%/2 mm criteria, it could be clinically acceptable, as superficial dose differences often fall inside the bolus. Also, patient PRIME devices are expected to have fewer large diameter island blocks than did test devices. Inaccuracies are attributed to out-scattered electrons having energy spectra different than the primary beams.


Assuntos
Elétrons , Radioterapia Conformacional , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Imagens de Fantasmas
13.
Sensors (Basel) ; 24(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38202885

RESUMO

In a previous work of the author about non-data-aided estimation of the signal-to-noise ratio (SNR) for bandlimited optical intensity channels, a couple of limitations have been identified in terms of error performance and computational complexity. In the current paper, these deficiencies are avoided by the introduction of a second receiver filter with specific properties that is operated in parallel to the receiver filter normally used in this respect. Although not initially intended, the concept is also applied to data-aided SNR estimation by deriving a maximum likelihood algorithm and the Cramer-Rao lower bound (CRLB) as the theoretical limit of the error performance. In the next step, the dual-filter framework is used in the context of SNR estimation without knowledge about data symbols. The most significant benefit of this method is that the number of payload data employed for the estimation procedure might be selected arbitrarily long without impacting the spectral efficiency of the link. Since the computation of the true CRLB was out of scope due to complexity reasons, an asymptotic variant for very low SNR values is analyzed, which ends up in a closed-form solution. Furthermore, an algorithm based on first- and second-order moments of the samples at the dual-filter output is investigated, which turned out to be very attractive in terms of error performance and computational complexity.

14.
Cancer Research and Clinic ; (6): 111-114, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-996196

RESUMO

Objective:To investigate the efficacy and adverse reactions of simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) combined with chemotherapy in the treatment of superior mediastinal lymph node metastasis after esophageal cancer surgery.Methods:The clinical data of 72 patients with concurrent chemoradiotherapy for superior mediastinal lymph node metastasis after esophageal cancer surgery in Tai'an Cancer Prevention and Treatment Hospital from January 2019 to May 2021 were retrospectively analyzed, and they were divided into intensity-modulated radiotherapy (IMRT) group (36 cases) and SIB-IMRT group (36 cases) according to different radiotherapy methods. The short-term efficacy, long-term survival rate and adverse reactions of the two groups were compared.Results:The response rate in the IMRT group was 66.7% (24/36), the response rate in the SIB-IMRT group was 86.1% (31/36), and the difference between the two groups was statistically significant ( χ2 = 3.77, P = 0.047). The 1-, 2- and 3-year overall survival rates in the IMRT group were 75.0%, 44.4% and 27.8%, and the 1-, 2- and 3-year overall survival rates in the SIB-IMRT group were 83.3%, 52.8% and 33.3%; the difference in the overall survival between the two groups was not statistically significant ( χ2 = 0.70, P = 0.401). There were statistical differences in the incidence of leukopenia, radiation esophagitis and radiation pleural gastritis between the two groups (all P < 0.05). There were no statistical differences in the incidence of radiation pneumonia and gastrointestinal reactions between the two groups (both P > 0.05). Conclusions:SIB-IMRT combined with chemotherapy in patients with superior mediastinal lymph node metastasis after esophageal cancer surgery has good local control rate and mild adverse reactions.

15.
Sensors (Basel) ; 22(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36433255

RESUMO

Not only for radio frequency but also for optical communication systems, knowledge of the signal-to-noise ratio (SNR) is essential, e.g., for an adaptive network, where modulation schemes and/or error correction methods should be selected according to the varying channel states. In the current paper, this topic is discussed for a bandlimited optical intensity link under the assumption that the data symbols are known to the receiver unit in form of pilot sequences. This requires a unipolar signal design regarding the symbol constellation, but also a non-negative pulse shape satisfying the Nyquist criterion is necessary. Focusing on this kind of scenario, the modified Cramer-Rao lower bound is derived, representing the theoretical limit of the error performance of the data-aided SNR estimator developed in this context. Furthermore, we derive and analyze a maximum likelihood algorithm for SNR estimation, which turns out to be particularly simple for specific values of the excess bandwidth, among them the most attractive case of minimum bandwidth occupation. Numerical results confirming the analytical work conclude the paper.

16.
Front Surg ; 9: 905678, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677748

RESUMO

Objective: To analyze and compare the efficacy and safety of simultaneous integrated boost intensity-modulation radiation therapy (SIB-IMRT) combined with systematic and standardized management for esophageal cancer. Methods: From January 2012 to January 2019, 200 patients with esophageal cancer who received radical chemoradiotherapy in our hospital were treated with lymphatic drainage area radiation prevention combined with systematic and standardized management. According to difference in radiotherapy methods, the patients were divided into local lesion 92 patients treated with simultaneous integrated boost intensity-modulation radiation therapy (SIB-IMRT) combined with systematic standardized management (SIB-IMRT group), and late course boost intensity-modulation radiation therapy (LCB-IMRT) combined with systematic standardized management 108 patients (LCB-IMRT group). The short-term eficacy of the two groups were compared. The dose volume parameters of the organ in danger are evaluated based on the dose volume histogram. The related adverse reactions during chemoradiotherapy were compared between two groups. The local control rate and survival rate were compared between the two groups. Results: The recent total effective rates of rats in the SIB-IMRT group and LCB-IMRT group were 95.65% and 90.74%, respectively, and there was no significant difference between the two groups (p > 0.05). The mean doses to left and right lung, heart and spinal cord in the SIB-IMRT group were significantly lower than that in the LCB-IMRT group (p < 0.05). There was no significant difference in the incidence of adverse reactions such as radiation esophagitis, radiation pneumonitis, radiation tracheitis, gastrointestinal reaction and bone marrow suppression between the SIB-IMRT group and LCB-IMRT groups (p > 0.05). The one-year and three-year overall survival rates in the SIB-IMRT group and LCB-IMRT groups were 82.61%, 42.39% and 77.78%, 34.26%, respectively, and the median survival times were 38 and 29 months, respectively. The local control rates in the SIB-IMRT group and LCB-IMRT group in one and three years were 84.78%, 56.52% and 75.93%, 41.67%, respectively. The 3-year local control rate in the SIB-IMRT group was higher than that in the LCB-IMRT group (p < 0.05), but there was no significant difference in the 1-and 3-year overall survival rates between the two groups (p > 0.05). Conclusion: SIB-IMRT combined with systematic and standardized management in the treatment of esophageal cancer can reduce the amount of some organs at risk and improve the local control rate of the lesion.

17.
Sensors (Basel) ; 23(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36616691

RESUMO

In this article, we divide the irradiated area of visible light communication (VLC) into three parts, according to the influence of diffuse reflection, the irradiance half angle at the source and the communication distance on VLC. We present a volume ratio method to quantitatively analyze each divided part. In this work, based on the Lambertian reflection model of the VLC system in line-of-sight channels, five factors affecting the VLC performance are compared and discussed. A VLC system of a single white-light-emitting diode in a 10 m line-of-sight channel indoors is designed by using the intensity modulation and direct detection technique, and a three-dimensional model of the irradiated area is established.By comparing the distribution of the bit error rate (BER) of the optical signal at different lampshade heights, the volume ratio method is used to calculate the volume percentage of the three irradiated areas. The experimental results show that area II with a volume ratio greater than 50% is the best signal receiving area when compared with areas I and III, having a volume ratio in the range 20∼30%.

18.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-932583

RESUMO

Objective:To develop a dose prediction-based quantitative evaluation method of the quality of radiotherapy plans, and to verify the clinical feasibility and clinical value of the method .Methods:The 3D U-Netwas trained using the radiotherapy plans of 45 rectal cancer cases that were formulated by physicists with more than five years of radiotherapy experience. After obtaining 3D dose distribution using 3D U-Net prediction, this study established the plan quality metrics of intensity modulated radiotherapy(IMRT) rectal cancer radiotherapy plans using dose-volume histogram(DVH) indexes of dose prediction. Then, the initial scores of rectal cancer radiotherapy plans were determined.Taking the predicted dose as the optimization goal, the radiotherapy plans were optimized and scored again. The clinical significance of this scoring method was verified by comparing the scores and dosimetric parameters of the 15 rectal cancer cases before and after optimization.Results:The radiotherapy plans before and after optimization all met the clinical dose requirements. The total scores were(77.21±9.74) before optimization, and (88.78±4.92) after optimization. Therefore, the optimized radiotherapy planswon increased scores with a statistically significant difference( t=-4.105, P<0.05). Compared to the plans before optimization, the optimized plans show decreased Dmax of all organs at risk to different extents. Moreover, the Dmax, V107%, and HI of PTV and the Dmax of the bladder decreased in the optimized plans, with statistically significant differences ( t=2.346-5.771, P<0.05). There was no statistically significant difference in other indexes before and after optimization ( P>0.05).The quality of the optimized plans were improved to a certain extent. Conclusions:This study proposed a dose prediction-based quantitative evaluation method of the quality of radiotherapy plans. It can be used for the effective personalized elevation of the quality of radiotherapy plans, which is beneficial to effectively compare and review the quality of clinical plans determined by different physicists and provide personalized dose indicators. Moreover, it can provide great guidance for the formulation of clinical therapy plans.

19.
J Imaging ; 7(10)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34677295

RESUMO

Grating-based phase-contrast and dark-field imaging systems create intensity modulations that are usually modeled with sinusoidal functions to extract transmission, differential-phase shift, and scatter information. Under certain system-related conditions, the modulations become non-sinusoidal and cause artifacts in conventional processing. To account for that, we introduce a piecewise-defined periodic polynomial function that resembles the physical signal formation process, modeling convolutions of binary periodic functions. Additionally, we extend the model with an iterative expectation-maximization algorithm that can account for imprecise grating positions during phase-stepping. We show that this approach can process a higher variety of simulated and experimentally acquired data, avoiding most artifacts.

20.
J Appl Clin Med Phys ; 22(10): 8-21, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34558774

RESUMO

PURPOSE: Bolus electron conformal therapy (BECT) is a clinically useful, well-documented, and available technology. The addition of intensity modulation (IM) to BECT reduces volumes of high dose and dose spread in the planning target volume (PTV). This paper demonstrates new techniques for a process that should be suitable for planning and delivering IM-BECT using passive radiotherapy intensity modulation for electrons (PRIME) devices. METHODS: The IM-BECT planning and delivery process is an addition to the BECT process that includes intensity modulator design, fabrication, and quality assurance. The intensity modulator (PRIME device) is a hexagonal matrix of small island blocks (tungsten pins of varying diameter) placed inside the patient beam-defining collimator (cutout). Its design process determines a desirable intensity-modulated electron beam during the planning process, then determines the island block configuration to deliver that intensity distribution (segmentation). The intensity modulator is fabricated and quality assurance performed at the factory (.decimal, LLC, Sanford, FL). Clinical quality assurance consists of measuring a fluence distribution in a plane perpendicular to the beam in a water or water-equivalent phantom. This IM-BECT process is described and demonstrated for two sites, postmastectomy chest wall and temple. Dose plans, intensity distributions, fabricated intensity modulators, and quality assurance results are presented. RESULTS: IM-BECT plans showed improved D90-10 over BECT plans, 6.4% versus 7.3% and 8.4% versus 11.0% for the postmastectomy chest wall and temple, respectively. Their intensity modulators utilized 61 (single diameter) and 246 (five diameters) tungsten pins, respectively. Dose comparisons for clinical quality assurance showed that for doses greater than 10%, measured agreed with calculated dose within 3% or 0.3 cm distance-to-agreement (DTA) for 99.9% and 100% of points, respectively. CONCLUSION: These results demonstrated the feasibility of translating IM-BECT to the clinic using the techniques presented for treatment planning, intensity modulator design and fabrication, and quality assurance processes.


Assuntos
Neoplasias da Mama , Radioterapia Conformacional , Elétrons , Feminino , Humanos , Mastectomia , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...