Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Neurobiol Aging ; 141: 14-20, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38796942

RESUMO

Physiological age-related alterations in the interstitial flow in the brain, which plays an important role in waste product removal, remain unclear. Using [15O]H2O positron emission tomography (PET), water dynamics were evaluated in 63 healthy adult participants aged between 20 and 80 years. Interstitial flow was assessed by influx ratio (IR) and drain rate (DR), using time-activity concentration data. Participants were divided into four age groups with 15-year ranges, to evaluate age-related functional alterations. At least one of the indices declined significantly with age across all groups. A significant linear negative correlation between age and both indicators was found in the scatter plots (IR: R2 = 0.54, DR: R2 = 0.44); both indicators were predominantly lower after age 50 years. These results suggest interstitial flow decreases with age, especially after 50 years. These important findings can contribute to devising therapeutic interventions for neurological diseases characterized by abnormal accumulation of waste products, and suggest the need for taking measures to maintain interstitial flow starting around the age of 50 years.

2.
Biomech Model Mechanobiol ; 23(1): 179-192, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37668853

RESUMO

Vascular smooth muscle cells (VSMCs) are subject to interstitial flow-induced shear stress, which is a critical parameter in cardiovascular disease progression. Transmural pressure loading and residual stresses alter the hydraulic conductivity of the arterial layers and modulate the interstitial fluid flux through the arterial wall. In this paper, a biphasic multilayer model of a common carotid artery (CCA) with anisotropic fiber-reinforced soft tissue and strain-dependent permeability is developed in FEBio software. After the verification of the numerical predictions, age-related arterial thickening and stiffening effects on arterial deformation and interstitial flow are computed under physiological geometry and physical parameters. We found that circumferential residual stress shifts outward in each layer and its gradient increases up to 6 times with aging. Internally pressurized CCA displays nonlinear deformation. In the aged artery, the circumferential stress becomes greater on the media layer (82-158 kPa) and lower on the intima and adventitia (19-23 kPa and 25-28 kPa, respectively). The radial compression of the intima reduces the total hydraulic conductivity by 48% in the young and 16% in the aged arterial walls. Consequently, the average radial interstitial flux increases with pressure by 14% in the young and 91% in the aged arteries. Accordingly, the flow shear stress experienced by the VSMCs becomes more significant for aged arteries, which may accelerate cardiovascular disease progression compared to young arteries.


Assuntos
Doenças Cardiovasculares , Humanos , Idoso , Fenômenos Biomecânicos , Artéria Carótida Primitiva/fisiologia , Túnica Média/fisiologia , Estresse Mecânico
3.
Cell Mol Bioeng ; 16(4): 325-339, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37811004

RESUMO

Introduction: Lymphatic vessels (LVs) maintain fluid homeostasis by draining excess interstitial fluid, which is accomplished by two distinct LVs: initial LVs and collecting LVs. The interstitial fluid is first drained into the initial LVs through permeable "button-like" lymphatic endothelial cell (LEC) junctions. Next, the drained fluid ("lymph") transports to lymph nodes through the collecting LVs with less permeable "zipper-like" junctions that minimize loss of lymph. Despite the significance of LEC junctions in lymphatic drainage and transport, it remains unclear how luminal or interstitial flow affects LEC junctions in vascular endothelial growth factors A and C (VEGF-A and VEGF-C) conditions. Moreover, it remains unclear how these flow and growth factor conditions impact lymphatic sprouting. Methods: We developed a 3D human lymphatic vessel-on-chip that can generate four different flow conditions (no flow, luminal flow, interstitial flow, both luminal and interstitial flow) to allow an engineered, rudimentary LV to experience those flows and respond to them in VEGF-A/C. Results: We examined LEC junction discontinuities, lymphatic sprouting, LEC junction thicknesses, and cell contractility-dependent vessel diameters in the four different flow conditions in VEGF-A/C. We discovered that interstitial flow in VEGF-C generates discontinuous LEC junctions that may be similar to the button-like junctions with no lymphatic sprouting. However, interstitial flow or both luminal and interstitial flow stimulated lymphatic sprouting in VEGF-A, maintaining zipper-like LEC junctions. LEC junction thickness and cell contractility-dependent vessel diameters were not changed by those conditions. Conclusions: In this study, we provide an engineered lymphatic vessel platform that can generate four different flow regimes and reveal the roles of interstitial flow and VEGF-A/C for lymphatic sprouting and discontinuous junction formation. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-023-00780-0.

5.
Adv Funct Mater ; 32(43)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36569597

RESUMO

Self-organized microvascular networks (MVNs) have become key to the development of many microphysiological models. However, the self-organizing nature of this process combined with variations between types or batches of endothelial cells (ECs) often lead to inconsistency or failure to form functional MVNs. Since interstitial flow (IF) has been reported to play a beneficial role in angiogenesis, vasculogenesis, and 3D capillary morphogenesis, we systematically investigated the role IF plays during neovessel formation in a customized single channel microfluidic chip for which IF has been fully characterized. Compared to static conditions, MVNs formed under IF have higher vessel density and diameters and greater network perfusability. Through a series of inhibitory experiments, we demonstrated that IF treatment improves vasculogenesis by ECs through upregulation of matrix metalloproteinase-2 (MMP-2). We then successfully implemented a novel strategy involving the interplay between IF and MMP-2 inhibitor to regulate morphological parameters of the self-organized MVNs, with vascular permeability and perfusability well maintained. The revealed mechanism and proposed methodology were further validated with a brain MVN model. Our findings and methods have the potential to be widely utilized to boost the development of various organotypic MVNs and could be incorporated into related bioengineering applications where perfusable vasculature is desired.

6.
Bioengineering (Basel) ; 9(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36354579

RESUMO

Interstitial flow plays a significant role in vascular system development, mainly including angiogenesis and vasculogenesis. However, compared to angiogenesis, the effect of interstitial flow on vasculogenesis is less explored. Current in vitro models for investigating the effect of interstitial flow on vasculogenesis heavily rely on microfluidic chips, which require microfluidic expertise and facilities, and may not be accessible to biological labs. Here, we proposed a facile approach to building perfusable vascular networks through the self-assembly of endothelial cells in a modified transwell format and investigated the effect of interstitial flow on vasculogenesis. We found that the effect of interstitial flow on vasculogenesis was closely related to the existence of VEGF and fibroblasts in the developed model: (1) In the presence of fibroblasts, interstitial flow (within the range of 0.1-0.6 µm/s) facilitated the perfusability of the engineered vasculatures. Additional VEGF in the culture medium further worked synergically with interstitial flow to develop longer, wider, denser, and more perfusable vasculatures than static counterparts; (2) In the absence of fibroblasts, vasculatures underwent severe regression within 7 days under static conditions. However, interstitial flow greatly inhibited vessel regression and enhanced vascular perfusability and morphogenesis without the need for additional VEGF. These results revealed that the effect of interstitial flow might vary depending on the existence of VEGF and fibroblasts, and would provide some guidelines for constructing in vitro self-assembled vasculatures. The established transwell-based vascularized model provides a simple method to build perfusable vasculatures and could also be utilized for creating functional tissues in regenerative medicine.

7.
Front Bioeng Biotechnol ; 10: 983317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225599

RESUMO

Electrical stimulation (ES) promotes healing of chronic epidermal wounds and delays degeneration of articular cartilage. Despite electrotherapeutic treatment of these non-excitable tissues, the mechanisms by which ES promotes repair are unknown. We hypothesize that a beneficial role of ES is dependent on electrokinetic perfusion in the extracellular space and that it mimics the effects of interstitial flow. In vivo, the extracellular space contains mixtures of extracellular proteins and negatively charged glycosaminoglycans and proteoglycans surrounding cells. While these anionic macromolecules promote water retention and increase mechanical support under compression, in the presence of ES they should also enhance electro-osmotic flow (EOF) to a greater extent than proteins alone. To test this hypothesis, we compare EOF rates between artificial matrices of gelatin (denatured collagen) with matrices of gelatin mixed with anionic polymers to mimic endogenous charged macromolecules. We report that addition of anionic polymers amplifies EOF and that a matrix comprised of 0.5% polyacrylate and 1.5% gelatin generates EOF with similar rates to those reported in cartilage. The enhanced EOF reduces mortality of cells at lower applied voltage compared to gelatin matrices alone. We also use modeling to describe the range of thermal changes that occur during these electrokinetic experiments and during electrokinetic perfusion of soft tissues. We conclude that the negative charge density of native extracellular matrices promotes electrokinetic perfusion during electrical therapies in soft tissues and may promote survival of artificial tissues and organs prior to vascularization and during transplantation.

8.
J Clin Med ; 11(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36294439

RESUMO

BACKGROUND: Elucidation of the mechanism of amyloid-ß accumulation plays an important role in therapeutic strategies for Alzheimer's disease (AD). The aim of this study is to elucidate the relationship between the function of the blood-cerebrospinal fluid barrier (BCSFB) and the clearance of amyloid-ß (Aß). METHODS: Twenty-five normal older adult volunteers (60-81 years old) participated in this PET study for clarifying the relationship between interstitial water flow and Aß accumulation. Water dynamics were analyzed using two indices in [15O]H2O PET, the influx ratio (IR) and drain rate (DR), and Aß accumulation was assessed qualitatively by [18F]flutemetamol PET. RESULTS: [15O]H2O PET examinations conducted initially and after 2 years showed no significant changes in both indices over the 2-year period (IR: 1.03 ± 0.21 and 1.02 ± 0.20, DR: 1.74 ± 0.43 and 1.67 ± 0.47, respectively). In [18F]flutemetamol PET, on the other hand, one of the 25 participants showed positive results and two showed positive changes after 2 years. In these three participants, the two indices of water dynamics showed low values at both periods (IR: 0.60 ± 0.15 and 0.60 ± 0.13, DR: 1.24 ± 0.12 and 1.11 ± 0.10). CONCLUSIONS: Our results indicated that BCSFB function disturbances could be followed by Aß accumulation, because the reduced interstitial flow preceded amyloid accumulation in the positive-change subjects, and amyloid accumulation was not observed in the older adults with sufficiently high values for the two indices. We believe that further elucidation of interstitial water flow will be the key to developing therapeutic strategies for AD, especially with regard to prevention.

9.
Trends Cancer ; 8(8): 683-697, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35568647

RESUMO

An early step of metastasis requires a complex and coordinated migration of invasive tumor cells into the surrounding tumor microenvironment (TME), which contains extracellular matrix (ECM). It is being appreciated that 3D matrix-based microfluidic models have an advantage over conventional in vitro and animal models to study tumor progression events. Recent microfluidic models have enabled recapitulation of key mechanobiological features present within the TME to investigate collective cancer cell migration and invasion. Microfluidics also allows for functional interrogation and therapeutic manipulation of specific steps to study the dynamic aspects of tumor progression. In this review, we focus on recent developments in cancer cell migration and how microfluidic strategies have evolved to address the physiological complexities of the TME to visualize migration modes adapted by various tumor cells.


Assuntos
Microfluídica , Neoplasias , Animais , Movimento Celular , Matriz Extracelular/patologia , Neoplasias/patologia , Microambiente Tumoral
10.
Acta Biomater ; 144: 258-265, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35364320

RESUMO

Tumors, unlike normal tissue, have vascular anomalies and create interstitial flow (IF), which allows soluble substances from cancer cells to be transported directionally toward the tumor stroma. In the stroma, IF activates fibroblasts. Cancer-associated fibroblasts (CAFs) are formed from stimulated cells and aid cancer growth. A microfluidic device was designed to generate a one-directional flow of a small volume mimicking IF from donor cells to recipient at steady-state conditions only based on the medium evaporation from reservoirs with different diameter. The IF carried substances from donor cells, which stimulated the activation of fibroblasts on the receiving side, as well as their migration and stellate formation. Matrix metallopeptidases 9 and 14 as well as CAF markers such as fibroblast activation protein alpha, vimentin, and alpha-smooth muscle actin are abundantly expressed in the migrating fibroblasts. The created platform mimicked one-directional delivery in tumor stroma. This will allow researchers to investigate how cancer cells activate and differentiate stromal cells. STATEMENT OF SIGNIFICANCE: We show how to provide continuous one-directional interstitial flow (IF) in a microfluidic device without using any power source and instrumentation. This microfluidic technology was used to simulate the tumor microenvironment. Fibroblasts in the tumor stroma are activated and migrated toward cancer cells, as recapitulated by co-culture of cancer cells as donor and fibroblasts as recipient under the one-directional IF. We believe that soluble substances from cancerous cells delivered by the one-directional IF efficiently regulated the development of cancer-associated fibroblasts (CAFs),  as shown by increasing roundness and decreased circularity, taking on a stellate morphology, and by enhanced invasion into a type I collagen hydrogel. Migrating fibroblasts into the hydrogel had significant levels of MMP-9, MMP-14, FAP, vimentin, and αSMA, all of which are CAF markers, bearing a capacity to form hot stroma affecting tumor malignancy.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Humanos , Hidrogéis/metabolismo , Microfluídica , Neoplasias/patologia , Microambiente Tumoral/fisiologia , Vimentina/metabolismo
11.
Micromachines (Basel) ; 13(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35208349

RESUMO

Angiogenesis occurs during both physiological and pathological processes. In this study, a microfluidic chip for the development of angiogenesis was utilized to assess angiogenic sprouting and functional vessel formation. We also found that vascular endothelial growth factor (VEGF) was a determinant of the initiation of vascular sprouts, while the direction of these sprouts was greatly influenced by interstitial flow. Isoforms of VEGF such as VEGF121, VEGF165, and VEGF189 displayed different angiogenic properties on the chip as assessed by sprout length and number, vessel perfusion, and connectivity. VEGF165 had the highest capacity to induce vascular sprouting among the three isoforms assessed and furthermore, also induced functional vessel formation. This chip could be used to analyze the effect of different angiogenic factors and drugs, as well as to explore the mechanism of angiogenesis induced by such factors.

12.
Methods Mol Biol ; 2394: 651-668, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35094351

RESUMO

This chapter describes methods to engineer human lymphatic microvessels in vitro and to assess their fluid and solute drainage capacities. The lymphatics are formed within micropatterned type I collagen gels that contain a blind-ended channel for the growth of lymphatic endothelial cells. Because the vessels have one blind end and one open end each, they mimic the terminal structure of the native lymphatic microvascular tree. The solute drainage rates that are measured from the engineered lymphatics in vitro can be directly compared with published results from intact vessels in vivo. Practical considerations to increase the accuracy of the drainage assays are discussed.


Assuntos
Células Endoteliais , Vasos Linfáticos , Colágeno Tipo I , Humanos , Sistema Linfático , Microvasos
13.
Biofabrication ; 14(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34991082

RESUMO

Efficient delivery of oxygen and nutrients to tissues requires an intricate balance of blood, lymphatic, and interstitial fluid pressures (IFPs), and gradients in fluid pressure drive the flow of blood, lymph, and interstitial fluid through tissues. While specific fluid mechanical stimuli, such as wall shear stress, have been shown to modulate cellular signaling pathways along with gene and protein expression patterns, an understanding of the key signals imparted by flowing fluid and how these signals are integrated across multiple cells and cell types in native tissues is incomplete due to limitations with current assays. Here, we introduce a multi-layer microfluidic platform (MµLTI-Flow) that enables the culture of engineered blood and lymphatic microvessels and independent control of blood, lymphatic, and IFPs. Using optical microscopy methods to measure fluid velocity for applied input pressures, we demonstrate varying rates of interstitial fluid flow as a function of blood, lymphatic, and interstitial pressure, consistent with computational fluid dynamics (CFD) models. The resulting microfluidic and computational platforms will provide for analysis of key fluid mechanical parameters and cellular mechanisms that contribute to diseases in which fluid imbalances play a role in progression, including lymphedema and solid cancer.


Assuntos
Vasos Linfáticos , Microfluídica , Microfluídica/métodos , Estresse Mecânico
14.
Biomaterials ; 280: 121248, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794827

RESUMO

Hemodynamics play a central role in the health and disease of the coronary and peripheral vascular systems. Vessel-lining endothelial cells are known mechanosensors, responding to disturbances in flow - with mechanosensitivity hypothesized to change in response to metabolic demands. The health of our smallest microvessels have been lauded as a prognostic marker for cardiovascular health. Yet, despite numerous animal models, studying these small vessels has proved difficult. Microfluidic technologies have allowed a number of 3D vascular models to be developed and used to investigate human vessels. Here, two such systems are employed for examining 1) interstitial flow effects on neo-vessel formation, and 2) the effects of flow-conditioning on vascular remodeling following sustained static culture. Interstitial flow is shown to enhance early vessel formation via significant remodeling of vessels and interconnected tight junctions of the endothelium. In formed vessels, continuous flow maintains a stable vascular diameter and causes significant remodeling, contrasting the continued anti-angiogenic decline of statically cultured vessels. This study is the first to couple complex 3D computational flow distributions and microvessel remodeling from microvessels grown on-chip (exposed to flow or no-flow conditions). Flow-conditioned vessels (WSS < 1Pa for 30 µm vessels) increase endothelial barrier function, result in significant changes in gene expression and reduce reactive oxygen species and anti-angiogenic cytokines. Taken together, these results demonstrate microvessel mechanosensitivity to flow-conditioning, which limits deleterious vessel regression in vitro, and could have implications for future modeling of reperfusion/no-flow conditions.


Assuntos
Capilares , Células Endoteliais , Animais , Hemodinâmica , Humanos , Microfluídica , Microvasos
15.
Front Bioeng Biotechnol ; 9: 697657, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671596

RESUMO

Lymphangiogenesis is a stage of new lymphatic vessel formation in development and pathology, such as inflammation and tumor metastasis. Physiologically relevant models of lymphatic vessels have been in demand because studies on lymphatic vessels are required for understanding the mechanism of tumor metastasis. In this study, a new three-dimensional lymphangiogenesis model in a tumor microenvironment is proposed, using a newly designed macrofluidic platform. It is verified that controllable biochemical and biomechanical cues, which contribute to lymphangiogenesis, can be applied in this platform. In particular, this model demonstrates that a reconstituted lymphatic vessel has an in vivo-like lymphatic vessel in both physical and biochemical aspects. Since biomechanical stress with a biochemical factor influences robust directional lymphatic sprouting, whether our model closely approximates in vivo, the initial lymphatics in terms of the morphological and genetic signatures is investigated. Furthermore, attempting an incorporation with a tumor spheroid, this study successfully develops a complex tumor microenvironment model for use in lymphangiogenesis and reveals the microenvironment factors that contribute to tumor metastasis. As a first attempt at a coculture model, this reconstituted model is a novel system with a fully three-dimensional structure and can be a powerful tool for pathological drug screening or disease model.

16.
Pharmaceutics ; 13(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557069

RESUMO

BACKGROUND: Glioblastoma (GBM) is the deadliest and most common brain tumor in adults, with poor survival and response to aggressive therapy. Limited access of drugs to tumor cells is one reason for such grim clinical outcomes. A driving force for therapeutic delivery is interstitial fluid flow (IFF), both within the tumor and in the surrounding brain parenchyma. However, convective and diffusive transport mechanisms are understudied. In this study, we examined the application of a novel image analysis method to measure fluid flow and diffusion in GBM patients. METHODS: Here, we applied an imaging methodology that had been previously tested and validated in vitro, in silico, and in preclinical models of disease to archival patient data from the Ivy Glioblastoma Atlas Project (GAP) dataset. The analysis required the use of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), which is readily available in the database. The analysis results, which consisted of IFF flow velocity and diffusion coefficients, were then compared to patient outcomes such as survival. RESULTS: We characterized IFF and diffusion patterns in patients. We found strong correlations between flow rates measured within tumors and in the surrounding parenchymal space, where we hypothesized that velocities would be higher. Analyzing overall magnitudes indicated a significant correlation with both age and survival in this patient cohort. Additionally, we found that neither tumor size nor resection significantly altered the velocity magnitude. Lastly, we mapped the flow pathways in patient tumors and found a variability in the degree of directionality that we hypothesize may lead to information concerning treatment, invasive spread, and progression in future studies. CONCLUSIONS: An analysis of standard DCE-MRI in patients with GBM offers more information regarding IFF and transport within and around the tumor, shows that IFF is still detected post-resection, and indicates that velocity magnitudes correlate with patient prognosis.

17.
Tissue Eng Part A ; 27(7-8): 467-478, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33403936

RESUMO

Glioblastoma (GBM) is the most common and lethal type of malignant brain tumor. A deeper mechanistic understanding of the invasion of heterogeneous GBM cell populations is crucial to develop therapeutic strategies. A key regulator of GBM cell invasion is interstitial flow. However, the effect of an interstitial flow on the invasion of heterogeneous GBM cell populations composed of glioma initiating cells (GICs) and relatively differentiated progeny cells remains unclear. In the present study, we investigated how GICs invade three-dimensional (3D) hydrogels in response to an interstitial flow with respect to their differentiation status. Microfluidic culture systems were used to apply an interstitial flow to the cells migrating from the cell aggregates into the 3D hydrogel. Phase-contrast microscopy revealed that the invasion and protrusion formation of the GICs in differentiated cell conditions were significantly enhanced by a forward interstitial flow, whose direction was the same as that of the cell invasion, whereas those in stem cell conditions were not enhanced by the interstitial flow. The mechanism of flow-induced invasion was further investigated by focusing on differentiated cell conditions. Immunofluorescence images revealed that the expression of cell-extracellular matrix adhesion-associated molecules, such as integrin ß1, focal adhesion kinase, and phosphorylated Src, was upregulated in forward interstitial flow conditions. We then confirmed that cell invasion and protrusion formation were significantly inhibited by PP2, a Src inhibitor. Finally, we observed that the flow-induced cell invasion was preceded by nestin-positive immature GICs at the invasion front and followed by tubulin ß3-positive differentiated cells. Our findings provide insights into the development of novel therapeutic strategies to inhibit flow-induced glioma invasion. Impact statement A mechanistic understanding of heterogeneous glioblastoma cell invasion is crucial for developing therapeutic strategies. We observed that the invasion and protrusion formation of glioma initiating cells (GICs) were significantly enhanced by forward interstitial flow in differentiated cell conditions. The expression of integrin ß1, focal adhesion kinase, and phosphorylated Src was upregulated, and the flow-induced invasion was significantly inhibited by a Src inhibitor. The flow-induced heterogeneous cell invasion was preceded by nestin-positive GICs at the invasion front and followed by tubulin ß3-positive differentiated cells. Our findings provide insights into the development of novel therapeutic strategies to inhibit flow-induced glioma invasion.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Diferenciação Celular , Linhagem Celular Tumoral , Humanos , Células-Tronco Neoplásicas
18.
Micromachines (Basel) ; 11(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261134

RESUMO

In this paper, we developed a spheroid culture device that can trap a spheroid in the trapping site sandwiched by two extracellular matrix gels located at the upper and lower side of the spheroid. This device can form different biochemical gradients by applying target biochemicals separately in upper and lower channels, allowing us to study the angiogenic sprouting under various biochemical gradients in different directions. In the experiments, we confirmed the trapping of the spheroids and demonstrate the investigation on the direction and extent of angiogenic sprouts under unidirectional or bidirectional biochemical gradients. We believe our device can contribute to understanding the pathophysiological phenomena driven by chemical gradients, such as tissue development and tumor angiogenesis.

19.
J R Soc Interface ; 17(170): 20200612, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32993430

RESUMO

Macromolecules and drug delivery to solid tumours is strongly influenced by fluid flow through interstitium, and pressure-induced tissue deformations can have a role in this. Recently, it has been shown that temperature-induced tissue deformation can influence interstitial fluid velocity and pressure fields, too. In this paper, the effect of modulating-heat strategies to influence interstitial fluid transport in tissues is analysed. The whole tumour tissue is modelled as a deformable porous material, where the solid phase is made up of the extracellular matrix and cells, while the fluid phase is the interstitial fluid that moves through the solid matrix driven by the fluid pressure gradient and vascular capillaries that are modelled as a uniformly interspersed fluid point-source. Pulsating-heat generation is modelled with a time-variable cosine function starting from a direct current approach to solve the voltage equation, for different pulsations. From the steady-state solution, a step-variation of vascular pressure included in the model equation as a mass source term via the Starling equation is simulated. Dimensionless 1D radial equations are numerically solved with a finite-element scheme. Results are presented in terms of temperature, volumetric strain, pressure and velocity profiles under different conditions. It is shown that a modulating-heat procedure influences velocity fields, that might have a consequence in terms of mass transport for macromolecules or drug delivery.


Assuntos
Líquido Extracelular , Neoplasias , Transporte Biológico , Líquido Extracelular/metabolismo , Temperatura Alta , Humanos , Modelos Biológicos , Neoplasias/metabolismo , Porosidade
20.
Biochem Biophys Res Commun ; 533(3): 600-606, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32988592

RESUMO

Cell culture under medium flow has been shown to favor human brain microvascular endothelial cells function and maturation. Here a three-dimensional in vitro model of the human brain microvasculature, comprising brain microvascular endothelial cells but also astrocytes, pericytes and a collagen type I microfiber - fibrin based matrix, was cultured under continuous medium flow in a pressure driven microphysiological system (10 kPa, in 60-30 s cycles). The cells self-organized in micro-vessels perpendicular to the shear flow. Comparison with static culture showed that the resulting interstitial flow enhanced a more defined micro-vasculature network, with slightly more numerous lumens, and a higher expression of transporters, carriers and tight junction genes and proteins, essential to the blood-brain barrier functions.


Assuntos
Encéfalo/irrigação sanguínea , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Encéfalo/citologia , Técnicas de Cultura de Células , Linhagem Celular , Expressão Gênica , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Microvasos/citologia , Microvasos/metabolismo , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...