RESUMO
Chronic kidney disease (CKD) is a prevalent health concern associated with various pathological conditions, including hypertensive nephropathy. Mesangial cells are crucial in maintaining glomerular function, yet their involvement in CKD pathogenesis remains poorly understood. Recent evidence indicates that overactivation of Pannexin-1 (Panx1) channels could contribute to the pathogenesis and progression of various diseases. Although Panx1 is expressed in the kidney, its contribution to the dysfunction of renal cells during pathological conditions remains to be elucidated. This study aimed to investigate the impact of Panx1 channels on mesangial cell function in the context of hypertensive nephropathy. Using an Ang II-infused mouse model and primary mesangial cell cultures, we demonstrated that in vivo exposure to Ang II sensitizes cultured mesangial cells to show increased alterations when they are subjected to subsequent in vitro exposure to Ang II. Particularly, mesangial cell cultures treated with Ang II showed elevated activity of Panx1 channels and increased release of ATP. The latter was associated with enhanced basal intracellular Ca2+ ([Ca2+]i) and increased ATP-mediated [Ca2+]i responses. These effects were accompanied by increased lipid peroxidation and reduced cell viability. Crucially, all the adverse impacts evoked by Ang II were prevented by the blockade of Panx1 channels, underscoring their critical role in mediating cellular dysfunction in mesangial cells. By elucidating the mechanisms by which Ang II negatively impacts mesangial cell function, this study provides valuable insights into the pathogenesis of renal damage in hypertensive nephropathy.
RESUMO
Airway smooth muscle (ASM) contraction is determined by the increase in intracellular Ca2+ concentration ([Ca2+]i) caused by its release from the sarcoplasmic reticulum (SR) or by extracellular Ca2+ influx. Major channels involved in Ca2+ influx in ASM cells are L-type voltage-dependent Ca2+ channels (L-VDCCs) and nonselective cation channels (NSCCs). Transient receptor potential vanilloid 4 (TRPV4) is an NSCC recently studied in ASM. Mechanical stimuli, such as contraction, can activate TRPV4. We investigated the possible activation of TRPV4 by histamine (His)- or carbachol (CCh)-induced contraction in guinea pig ASM. In single myocytes, the TRPV4 agonist (GSK101) evoked an increase in [Ca2+]i, characterized by a slow onset and a plateau phase. The TRPV4 antagonist (GSK219) decreased channel activity by 94%, whereas the Ca2+-free medium abolished the Ca2+ response induced by GSK101. Moreover, GSK101 caused Na+ influx in tracheal myocytes. GSK219 reduced the Ca2+ peak and the Ca2+ plateau triggered by His or CCh. TRPV4 blockade shifted the concentration-response curve relating to His and CCh to the right in tracheal rings and reduced the maximal contraction. Finally, the activation of TRPV4 in single myocytes increased the Ca2+ refilling of the SR. We conclude that contraction of ASM cells after stimulation with His or CCh promotes TRPV4 activation, the subsequent influx of Ca2+ and Na+, and the opening of L-VDCCs. The entry of Ca2+ into ASM cells via TRPV4 and L-VDCCs contributes to optimal smooth muscle contraction.
RESUMO
Introduction: Endothelial cells (ECs), being located at the interface between flowing blood and vessel wall, maintain cardiovascular homeostasis by virtue of their ability to integrate chemical and physical cues through a spatio-temporally coordinated increase in their intracellular Ca2+ concentration ([Ca2+]i). Endothelial heterogeneity suggests the existence of spatially distributed functional clusters of ECs that display different patterns of intracellular Ca2+ response to extracellular inputs. Characterizing the overall Ca2+ activity of the endothelial monolayer in situ requires the meticulous analysis of hundreds of ECs. This complex analysis consists in detecting and quantifying the true Ca2+ events associated to extracellular stimulation and classifying their intracellular Ca2+ profiles (ICPs). The injury assay technique allows exploring the Ca2+-dependent molecular mechanisms involved in angiogenesis and endothelial regeneration. However, there are true Ca2+ events of nearly undetectable magnitude that are almost comparable with inherent instrumental noise. Moreover, undesirable artifacts added to the signal by mechanical injury stimulation complicate the analysis of intracellular Ca2+ activity. In general, the study of ICPs lacks uniform criteria and reliable approaches for assessing these highly heterogeneous spatial and temporal events. Methods: Herein, we present an approach to classify ICPs that consists in three stages: 1) identification of Ca2+ candidate events through thresholding of a feature termed left-prominence; 2) identification of non-true events, known as artifacts; and 3) ICP classification based upon event temporal location. Results: The performance assessment of true-events identification showed competitive sensitivity = [0.9995, 0.9831], specificity = [0.9946, 0.7818] and accuracy = [0.9978, 0.9579] improvements of 2x and 14x, respectively, compared with other methods. The ICP classifier enhanced by artifact detection showed 0.9252 average accuracy with the ground-truth sets provided for validation. Discussion: Results indicate that our approach ensures sturdiness to experimental protocol maneuvers, besides it is effective, simple, and configurable for different studies that use unidimensional time dependent signals as data. Furthermore, our approach would also be effective to analyze the ICPs generated by other cell types, other dyes, chemical stimulation or even signals recorded at higher frequency.
RESUMO
Type 2 Diabetes Mellitus (T2DM) is a rapidly rising disease with cardiovascular complications constituting the most common cause of death among diabetic patients. Chronic hyperglycemia can induce vascular dysfunction through damage of the components of the vascular wall, such as vascular smooth muscle cells (VSMCs), which regulate vascular tone and contribute to vascular repair and remodeling. These functions are dependent on intracellular Ca2+ changes. The mechanisms by which T2DM affects Ca2+ handling in VSMCs still remain poorly understood. Therefore, the objective of this study was to determine whether and how T2DM affects Ca2+ homeostasis in VSMCs. We evaluated intracellular Ca2+ signaling in VSMCs from Zucker Diabetic Fatty rats using Ca2+ imaging with Fura-2/AM. Our results indicate that T2DM decreases Ca2+ release from the sarcoplasmic reticulum (SR) and increases the activity of store-operated channels (SOCs). Moreover, we were able to identify an enhancement of the activity of the main Ca2+ extrusion mechanisms (SERCA, PMCA and NCX) during the early stage of the decay of the ATP-induced Ca2+ transient. In addition, we found an increase in Ca2+ entry through the reverse mode of NCX and a decrease in SERCA and PMCA activity during the late stage of the signal decay. These effects were appreciated as a shortening of ATP-induced Ca2+ transient during the early stage of the decay, as well as an increase in the amplitude of the following plateau. Enhanced cytosolic Ca2+ activity in VSMCs could contribute to vascular dysfunction associated with T2DM.
RESUMO
Alzheimer's disease (AD) is the most common cause of senile dementia worldwide, characterized by both cognitive and behavioral deficits. Amyloid beta peptide (Aß) oligomers (AßO) have been found to be responsible for several pathological mechanisms during the development of AD, including altered cellular homeostasis and synaptic function, inevitably leading to cell death. Such AßO deleterious effects provide a way for identifying new molecules with potential anti-AD properties. Available treatments minimally improve AD symptoms and do not extensively target intracellular pathways affected by AßO. Naturally-derived compounds have been proposed as potential modifiers of Aß-induced neurodysfunction and cytotoxicity based on their availability and chemical diversity. Thus, the aim of this study was to evaluate boldine, an alkaloid derived from the bark and leaves of the Chilean tree Peumus boldus, and its capacity to block some dysfunctional processes caused by AßO. We examined the protective effect of boldine (1-10 µM) in primary hippocampal neurons and HT22 hippocampal-derived cell line treated with AßO (24-48 h). We found that boldine interacts with Aß in silico affecting its aggregation and protecting hippocampal neurons from synaptic failure induced by AßO. Boldine also normalized changes in intracellular Ca2+ levels associated to mitochondria or endoplasmic reticulum in HT22 cells treated with AßO. In addition, boldine completely rescued the decrease in mitochondrial membrane potential (ΔΨm) and the increase in mitochondrial reactive oxygen species, and attenuated AßO-induced decrease in mitochondrial respiration in HT22 hippocampal cells. We conclude that boldine provides neuroprotection in AD models by both direct interactions with Aß and by preventing oxidative stress and mitochondrial dysfunction. Additional studies are required to evaluate the effect of boldine on cognitive and behavioral deficits induced by Aß in vivo.
RESUMO
BACKGROUND: The signaling pathways of the intracellular second messengers cAMP and Ca2+ play a crucial role in numerous physiological processes in human spermatozoa. One such process is the acrosome reaction (AR), which is necessary for spermatozoa to traverse the egg envelope and to expose a fusogenic membrane allowing the egg-sperm fusion. Progesterone and zona pellucida elicit an intracellular Ca2+ increase that is needed for the AR in the mammalian spermatozoa. This increase is mediated by an initial Ca2+ influx but also by a release from intracellular Ca2+ stores. It is known that intracellular Ca2+ stores play a central role in the regulation of [Ca2+ ]i and in the generation of complex Ca2+ signals such as oscillations and waves. In the human spermatozoa, it has been proposed that the cAMP analog and specific agonist of Epac 8-(p-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (2'-O-Me-cAMP) elicits an intracellular Ca2+ release involved in the AR. OBJECTIVE: To identify the molecular entities involved in the Ca2+ mobilization triggered by 2'-O-Me-cAMP in human spermatozoa. MATERIALS AND METHODS: In capacitated human spermatozoa, we monitored Ca2+ dynamics and the occurrence of the AR in real time using Fluo 3-AM and FM4-64 in a Ca2+ -free medium. RESULTS: Epac activation by 2'-O-Me-cAMP induced a Ca2+ wave that started in the midpiece and propagated to the acrosome region. This Ca2+ response was sensitive to rotenone, CGP, xestospongin, NED-19, and thapsigargin, suggesting the participation of different ion transporters (mitochondrial complex I and Na+ /Ca2+ exchanger, inositol 3-phosphate receptors, two-pore channels and internal store Ca2+ -ATPases). DISCUSSION: Our results suggest that Epac activation promotes a dynamic crosstalk between three different intracellular Ca2+ stores: the mitochondria, the redundant nuclear envelope, and the acrosome. CONCLUSION: The Ca2+ wave triggered by Epac activation is necessary to induce the AR and to enhance the flagellar beat.
Assuntos
Reação Acrossômica/fisiologia , Sinalização do Cálcio/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Espermatozoides/metabolismo , Humanos , MasculinoRESUMO
Interacting receptors at the neuronal plasma membrane represent an additional regulatory mode for intracellular transduction pathways. P2X4 receptor triggers fast neurotransmission responses via a transient increase in intracellular Ca2+ levels. It has been proposed that the P2X4 receptor interacts with the 5-HT3A receptor in hippocampal neurons, but their binding stoichiometry and the role of P2X4 receptor activation by ATP on this crosstalking system remains unknown. Via pull-down assays, total internal reflection fluorescence (TIRF) microscopy measurements of the receptors colocalization and expression at the plasma membrane, and atomic force microscopy (AFM) imaging, we have demonstrated that P2X4/5-HT3A receptor complexes can interact with each other in a 1:1 stoichiometric manner that is preserved after ATP binding. Also, macromolecular docking followed by 100 ns molecular dynamics (MD) simulations suggested that the interaction energy of the P2X4 receptor with 5-HT3A receptor is similar at the holo and the apo state of the P2X4 receptor, and the interacting 5-HT3A receptor decreased the ATP binding energy of P2X4 receptor. Finally, the P2X4 receptor-dependent Ca2+ mobilization is inhibited by the 5-HT3A interacting receptor. Altogether, these findings provide novel molecular insights into the allosteric regulation of P2X4/5-HT3A receptor complex in lipid bilayers of living cells via stoichiometric association, rather than accumulation or unspecific clustering of complexes.
RESUMO
Ca2+ is an essential signaling messenger in all eukariotic cells, playing a pivotal role in many cellular functions as cell growth control (differentiation, fertilization and apoptosis), secretion, gene expression, enzyme regulation, among many others. This basic premise includes trypanosomatids as Trypanosoma cruzi and various species of Leishmania, the causative agents of Chagas disease and leishmaniasis respectively, where intracellular Ca2+ concentration ([Ca2+]i) has been demonstrated to be finely regulated. Nevertheless [Ca2+]i has been difficult to measure because of its very low cytoplasmic concentration (typically around 50-100 nM), when compared to the large concentration in the outside milieu (around 2 mM in blood). The development of intracellular fluorescent Ca2+-sensitive indicators has been of paramount importance to achieve this goal. The success was based on the synthesis of acetoximethylated derivative precursors, which allow the fluorescent molecules typically composed of many hydrophilic carboxyl groups responsible for its high affinity Ca2+-binding (and therefore very hydrophilic), to easily cross the plasma membrane. Once in the cell interior, unspecific esterases split the hydrophobic moiety from the fluorescent backbone structure, releasing the carboxyl groups, transforming it in turn to the acid form of the molecule, which remain trapped in the cytoplasm and regain its ability to fluoresce in a Ca2+-dependent manner. Among them, Fura-2 is by far the most used, because it is a ratiometric (two different wavelength excitation and one emission) Ca2+ indicator with a Ca2+ affinity compatible with the [Ca2+]i. This protocol essentially consists in loading exponential phase parasites with Fura-2 and recording changes in [Ca2+]i by mean of a double wavelength spectrofluorometer. This technique allows the acquisition of valuable information about [Ca2+]i changes in real time, as a consequence of diverse stimuli or changes in conditions, as addition of drugs or different natural modulators.
RESUMO
The skeletal muscle and myocardial cells present highly specialized structures; for example, the close interaction between the sarcoplasmic reticulum (SR) and mitochondria-responsible for excitation-metabolism coupling-and the junction that connects the SR with T-tubules, critical for excitation-contraction (EC) coupling. The mechanisms that underlie EC coupling in these two cell types, however, are fundamentally distinct. They involve the differential expression of Ca2+ channel subtypes: CaV1.1 and RyR1 (skeletal), vs. CaV1.2 and RyR2 (cardiac). The CaV channels transform action potentials into elevations of cytosolic Ca2+, by activating RyRs and thus promoting SR Ca2+ release. The high levels of Ca2+, in turn, stimulate not only the contractile machinery but also the generation of mitochondrial reactive oxygen species (ROS). This forward signaling is reciprocally regulated by the following feedback mechanisms: Ca2+-dependent inactivation (of Ca2+ channels), the recruitment of Na+/Ca2+ exchanger activity, and oxidative changes in ion channels and transporters. Here, we summarize both well-established concepts and recent advances that have contributed to a better understanding of the molecular mechanisms involved in this bidirectional signaling.
Assuntos
Canais de Cálcio/metabolismo , Canais de Cálcio/fisiologia , Sarcolema/metabolismo , Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/fisiologia , Citosol/metabolismo , Acoplamento Excitação-Contração/fisiologia , Humanos , Músculo Esquelético/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sarcolema/fisiologia , Retículo Sarcoplasmático/fisiologia , Transdução de SinaisRESUMO
For several years, cell culture techniques have been physiologically relevant to understand living organisms both structurally and functionally, aiming at preserving as carefully as possible the in vivo integrity and function of the cells. However, when studying cardiac cells, glass or plastic Petri dishes and culture-coated plates lack important cues that do not allow to maintain the desired phenotype, especially for primary cell culture. In this work, we show that microscaffolds made with polydimethylsiloxane (PDMS) enable modulating the stiffness of the surface of the culture substrate and this originates different patterns of adhesion, self-organization, and synchronized or propagated activity in the culture of chick embryonic cardiomyocytes. Thanks to the calcium imaging technique, we found that the substrate stiffness affected cardiomyocyte adhesion, as well as the calcium signal propagation in the formed tissue. The patterns of activity shown by the calcium fluorescence variations are reliable clues of the functional organization achieved by the cell layers. We found that PDMS substrates with a stiffness of 25 kPa did not allow the formation of cell layers and therefore the optimal propagation of the intracellular calcium signals, while softer PDMS substrates with Young's modulus within the physiological in vivo reported range did permit synchronized and coordinated contractility and intracellular calcium activity. This type of methodology allows us to study phenomena such as arrhythmias. For example, the occurrence of synchronized activity or rotors that can initiate or maintain cardiac arrhythmias can be reproduced on different substrates for study, so that replacement tissues or patches can be better designed.
RESUMO
NEW FINDINGS: What is the central question of this study? Does protein restriction in early life modify glucose-induced insulin secretion by altering [Ca2+ ]i and the expression of SNARE proteins in pancreatic islets from pregnant rats? What is the main finding and its importance? Protein restriction in early life increased the first phase of glucose-induced insulin secretion and [Ca2+ ]i without altering the expression of SNARE proteins during pregnancy. This finding contributes to our understanding of the mechanisms of altered insulin secretion and might provide new perspectives for the development of therapeutic tools for gestational diabetes. ABSTRACT: We investigated the kinetics of glucose-induced insulin secretion and their relationship with [Ca2+ ]i and the expression of protein from exocytotic machinery in islets from recovered pregnant and long-term protein-deficient pregnant rats. Isolated islets were evaluated from control-fed pregnant (CP), protein-deficient pregnant (DP), control-fed non-pregnant (CNP) and protein-deficient non-pregnant (DNP) female adult rats, and from protein-deficient pregnant (RP) and non-pregnant (RNP) rats that were recovered after weaning. The insulin responses to glucose during the first phase of secretion were higher in RP than in CP groups, and both were higher than in the DP group. Islets from RP rats displayed a rapid increase in insulin release (first phase), followed by a plateau that was maintained thereafter. The [Ca2+ ]i in islets from the protein-deficient groups was lower than in the control groups, and both were lower than in the RP and RNP groups. SNAP-25 was increased in islets from pregnant rats independently of their nutritional status, and the syntaxin-1A content was reduced in islets from the RP rats compared with the RNP rats. The VAMP2 content was similar among the groups. Thus, protein restriction during intrauterine life and lactation increased insulin secretion during pregnancy, attributable, in part, to increased [Ca2+ ]i , and independent of an alteration of expression of SNARE proteins.
Assuntos
Cálcio/metabolismo , Dieta com Restrição de Proteínas/tendências , Regulação da Expressão Gênica no Desenvolvimento , Secreção de Insulina/fisiologia , Líquido Intracelular/metabolismo , Proteínas SNARE/biossíntese , Animais , Glicemia/metabolismo , Feminino , Ilhotas Pancreáticas/metabolismo , Masculino , Gravidez , Ratos , Ratos Wistar , Proteínas SNARE/genéticaRESUMO
Leishmaniasis is a parasitic disease representing an important problem of public health. Visceral leishmaniasis, resulting from infection with Leishmania donovani, causes considerable mortality and morbidity in the poorest region of the word. At present there is no current effective treatment, since the approved, drugs are expensive and are not free of undesirable side effects. Therefore, there is a need for the identification of new drugs. In this context, the parasite Ca2+ regulatory mechanisms in which mitochondria and acidocalcisomes are involved have been postulated as important targets for several trypanocidal drugs. Thus, amiodarone and dronedarone, common human antiarrythmics, exert its known action on these parasites through the disruption of the intracellular Ca2+ homeostasis. AMIODER is a benzofuran derivate based on the structure of amiodarone that recently demonstrates a significant effect on Trypanosoma cruzi. We now report the effect of AMIODER on Leishmania donovani demonstrating that it inhibit the growth of promastigotes and also of amastigotes inside macrophages, the clinically relevant stage of the parasite, obtaining IC50 values significantly lower than those reported for T. cruzi. We also show that this compound disrupted Ca2+ homeostasis in L. donovani, through its action on two organelles involved in the intracellular Ca2+ regulation and on the bioenergetics of the parasite. AMIODER totally collapsed the electrochemical membrane potential of the unique giant mitochondrion and simultaneously induced the alkalinization of acidocalcisomes, driving together to a large increase in the intracellular Ca2+ concentration of the parasite as the main mechanism of action of this benzofurane derivative.
Assuntos
Amiodarona/farmacologia , Benzofuranos/farmacologia , Leishmania donovani/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Tripanossomicidas/farmacologia , Animais , Cálcio/metabolismo , Linhagem Celular , Sobrevivência Celular , Citoplasma/química , Citoplasma/parasitologia , Descoberta de Drogas , Homeostase , Concentração Inibidora 50 , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/metabolismo , Leishmaniose Visceral/tratamento farmacológico , Macrófagos/parasitologia , Redes e Vias Metabólicas , CamundongosRESUMO
Ca2+ is essential for proper structure and function of skeletal muscle. It not only activates contraction and force development but also participates in multiple signaling pathways. Low levels of Ca2+ restrain muscle regeneration by limiting the fusion of satellite cells. Ironically, sustained elevations of Ca2+ also result in muscle degeneration as this ion promotes high rates of protein breakdown. Moreover, transforming growth factors (TGFs) which are well known for controlling muscle growth also regulate Ca2+ channels. Thus, therapies focused on changing levels of Ca2+ and TGFs are promising for treating muscle-wasting disorders. Three principal systems govern the homeostasis of Ca2+, namely, excitation-contraction (EC) coupling, excitation-coupled Ca2+ entry (ECCE), and store-operated Ca2+ entry (SOCE). Accordingly, alterations in these systems can lead to weakness and atrophy in many hereditary diseases, such as Brody disease, central core disease (CCD), tubular aggregate myopathy (TAM), myotonic dystrophy type 1 (MD1), oculopharyngeal muscular dystrophy (OPMD), and Duchenne muscular dystrophy (DMD). Here, the interrelationship between all these molecules and processes is reviewed.
Assuntos
Sinalização do Cálcio , Cálcio/fisiologia , Homeostase , Músculo Esquelético/fisiopatologia , Atrofia Muscular/fisiopatologia , Acoplamento Excitação-Contração , Humanos , Doenças Musculares/genética , Doenças Musculares/fisiopatologiaRESUMO
Pirfenidone (PFD) is used to treat human pulmonary fibrosis. Its administration to animals with distinct forms of cardiovascular disease results in striking improvement in cardiac performance. Here, its functional impact on cardiac myocytes was investigated. Cells were kept 1-2 days under either control culture conditions or the presence of PFD (1 mM). Subsequently, they were subjected to electrical stimulation to assess the levels of contractility and intracellular Ca2+. The PFD treatment promoted an increase in both peak contraction and kinetics of shortening and relaxation. Moreover, the amplitude and kinetics of Ca2+ transients were enhanced as well. Excitation-contraction coupling (ECC) was also investigated, under whole-cell patch-clamp conditions. In keeping with a previous report, PFD increased twofold the density of Ca2+ current (ICa). Notably, a similar increase in the magnitude of Ca2+ transients was also observed. Thus, the gain of ECC was unaltered. Likewise, PFD did not alter the peak amplitude of caffeine-induced Ca2+ release, indicating stimulation of Ca2+-induced-Ca2+-release (CICR) at constant sarcoplasmic reticulum Ca2+ load. A phase-plane analysis indicated that PFD promotes myofilament Ca2+ desensitization, which is being compensated by higher levels of Ca2+ to promote contraction. Interestingly, although the expression of the Na+/Ca2+ exchanger (NCX) was unaffected, the decay of Ca2+ signal in the presence of caffeine was 50% slower in PFD-treated cells (compared with controls), suggesting that PFD downregulates the activity of the exchanger. PFD also inhibited the production of reactive oxygen species, under both, basal conditions and the presence of oxidative insults (acetaldehyde and peroxide hydrogen). Conversely, the production of nitric oxide was either increased (in atrial myocytes) or remained unchanged (in ventricular myocytes). Protein levels of endothelial and neuronal nitric oxide synthases (eNOS and nNOS) were also investigated. eNOS values did not exhibit significant changes. By contrast, a dual regulation was observed for nNOS, which consisted of inhibition and stimulation, in ventricular and atrial myocytes, respectively. In the latter cells, therefore, an up-regulation of nNOS was sufficient to stimulate the synthesis of NO. These findings improve our knowledge of molecular mechanisms of PFD action and may also help in explaining the corresponding cardioprotective effects.
RESUMO
In cardiac muscle cells both T-and L-type Ca(2+) channels (TTCCs and LTCCs, respectively) are expressed, and the latter are relevant to a process known as excitation-contraction coupling (ECC). Evidence obtained from docking studies suggests that isoindolines derived from α-amino acids bind to the LTCC CaV1.2. In the present study, we investigated whether methyl (S)-2-(1,3-dihydroisoindol-2-yl)-4-methylpentanoate (MDIMP), which is derived from L-leucine, modulates both Ca(2+) channels and ECC. To this end, mechanical properties, as well as Ca(2+) transients and currents, were all investigated in isolated cardiac myocytes. The effects of MDIMP on CaV1.2 (transiently expressed in 293T/17 cells) were also studied. In this system, evidence was found for an inhibitory action that develops and recovers in min, with an IC50 of 450µM. With respect to myocytes: atrial-TTCCs, atrial-LTCCs, and ventricular-LTCCs were also inhibited, in that order of potency. Accordingly, Ca(2+) transients, contractions, and window currents of LTCCs were all reduced more strongly in atrial cells. Interestingly, while the modulation of LTCCs was state-independent in these cells, it was state-dependent, and dual, on the ventricular ones. Furthermore, practically all of the ventricular LTCCs were closed at resting membrane potentials. This could explain their resistance to MDIMP, as they were affected in only open or inactivated states. All these features in turn explain the preferential down-regulation of the atrial ECC. Thus, our results support the view that isoindolines bind to Ca(2+) channels, improve our knowledge of the corresponding structure-function relationship, and may be relevant for conditions where decreased atrial activity is desired.
Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/metabolismo , Isoindóis/farmacologia , Ácidos Pentanoicos/farmacologia , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Células HEK293 , Átrios do Coração/citologia , Ventrículos do Coração/citologia , Humanos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos , Fatores de TempoRESUMO
PURPOSE: Nutrients and immunological factors of breast milk are essential for newborn growth and the development of their immune system, but this secretion can contain organic and inorganic toxins such as barium. Colostrum contamination with barium is an important issue to investigate because this naturally occurring element is also associated with human activity and industrial pollution. The study evaluated the administration of barium nanoparticles to colostrum, assessing the viability and functional activity of colostral mononuclear phagocytes. METHODS: Colostrum was collected from 24 clinically healthy women (aged 18-35 years). Cell viability, superoxide release, intracellular Ca(2+) release, and phagocyte apoptosis were analyzed in the samples. RESULTS: Treatment with barium lowered mononuclear phagocyte viability, increased superoxide release, and reduced intracellular calcium release. In addition, barium increased cell death by apoptosis. CONCLUSION: These data suggest that nanoparticles of barium in colostrum are toxic to cells, showing the importance of avoiding exposure to this element.
Assuntos
Apoptose/efeitos dos fármacos , Bário/química , Colostro/efeitos dos fármacos , Nanopartículas/administração & dosagem , Fagócitos/patologia , Adolescente , Adulto , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Citometria de Fluxo , Humanos , Nanopartículas/química , Fagócitos/efeitos dos fármacos , Gravidez , Superóxidos/metabolismo , Adulto JovemRESUMO
INTRODUCTION: Short-term plasticity of synaptic function is an important physiological control of transmitter release. Short-term plasticity can be regulated by intracellular calcium released by ryanodine and inositol triphosphate (IP3) receptors, but the role of these receptors at the neuromuscular junction is understood incompletely. METHODS: We measured short-term plasticity of evoked endplate potential (EPP) amplitudes from frog neuromuscular junctions treated with ryanodine, 2-aminoethoxydiphenylborane (2-APB), or 1-[6-[[(17ß)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U- 73122). RESULTS: Ryanodine decreases paired-pulse facilitation for intervals <20 ms and markedly decreases tetanic depression. Treatment with 2-APB reduces EPP amplitude, increases paired-pulse facilitation for intervals of <20 ms, and significantly reduces tetanic depression. U-73122 decreases EPP amplitude and decreases paired-pulse depression for intervals <20 ms. CONCLUSIONS: Ryanodine, IP3 receptors, and phospholipase C modulate short-term plasticity of transmitter release at the neuromuscular junction. These results suggest possible targets for improving the safety factor of neuromuscular transmission during repetitive activity of the neuromuscular junction.
Assuntos
Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Junção Neuromuscular/metabolismo , Plasticidade Neuronal/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Anuros , Biofísica , Compostos de Boro/farmacologia , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Estimulação Elétrica , Eletrofisiologia , Estrenos/farmacologia , Técnicas In Vitro , Junção Neuromuscular/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Pirrolidinonas/farmacologia , Rianodina/farmacologiaRESUMO
Calcium and voltage-activated potassium (BK) channels are key actors in cell physiology, both in neuronal and non-neuronal cells and tissues. Through negative feedback between intracellular Ca (2+) and membrane voltage, BK channels provide a damping mechanism for excitatory signals. Molecular modulation of these channels by alternative splicing, auxiliary subunits and post-translational modifications showed that these channels are subjected to many mechanisms that add diversity to the BK channel α subunit gene. This complexity of interactions modulates BK channel gating, modifying the energetic barrier of voltage sensor domain activation and channel opening. Regions for voltage as well as Ca (2+) sensitivity have been identified, and the crystal structure generated by the 2 RCK domains contained in the C-terminal of the channel has been described. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, has been found to be relevant in many physiological processes. This review includes the hallmarks of BK channel biophysics and its physiological impact on specific cells and tissues, highlighting its relationship with auxiliary subunit expression.
Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta , Animais , Cálcio/metabolismo , Doença , Humanos , Ativação do Canal Iônico , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Bloqueadores dos Canais de Potássio/farmacologiaRESUMO
PROBLEM: Inflammation and genital infections promote the increase in leukocytes, pro-inflammatory cytokines, and oxygen reactive species, impairing sperm functions such as motility, capacitation, and acrosome reaction. All these functions are primarily regulated by cytoplasmic concentration of Ca(2+) ([Ca(2+) ]cyto ). This study evaluated the effect of tumor necrosis factor (TNF)-α on the [Ca(2+) ]cyto and its regulation in human sperm. METHOD OF STUDY: Sperm loaded with fura-2 were incubated with or without TNF-α (0-500 pg/mL) from 0 to 120 min. After incubation, the basal [Ca(2+) ]cyto and membrane permeability to Ca(2+) were evaluated by spectrofluorometry, before and after Ca(2+) addition to the extracellular medium. RESULTS: Without TNF-α, the addition of Ca(2+) promotes an transitory increase in [Ca(2+) ]cyto in the spermatozoa, that returns in a few minutes to a basal level, indicating calcium regulation activation. TNF-α decreases the Ca(2+) permeation and increases the basal level of [Ca(2+) ]cyto after a Ca(2+) pulse (P < 0.04); affecting calcium regulation in a way that is time and concentration dependent. TNF-α effect was partially prevented by the addition of an antioxidant (butylated hydroxytoluene) (P < 0.03). CONCLUSION: Tumor necrosis factor-α decreases membrane permeability to Ca(2+) and affects Ca(2+) regulation in sperm cells in vitro, probably via lipid peroxidation, which may explain the decrease in sperm fertilizing capacity during inflammatory and infectious processes.
Assuntos
Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Reação Acrossômica , Adulto , Membrana Celular/metabolismo , Células Cultivadas , Fertilização , Fura-2/farmacologia , Homeostase , Humanos , Masculino , Capacitação Espermática/efeitos dos fármacos , Espermatozoides/metabolismo , Adulto JovemRESUMO
Highly efficient mechanisms regulate intracellular calcium (Ca2+) levels. The recent discovery of new components linking intracellular Ca2+ stores to plasma membrane Ca2+ entry channels has brought new insight into the understanding of Ca2+ homeostasis. Stromal interaction molecule 1 (STIM1) was identified as a Ca2+ sensor essential for Ca2+ store depletion-triggered Ca2+ influx. Orai1 was recognized as being an essential component for the Ca2+ release-activated Ca2+ (CRAC) channel. Together, these proteins participate in store-operated Ca2+ channel function. Defective regulation of intracellular Ca2+ is a hallmark of several diseases. In this review, we focus on Ca2+ regulation by the STIM1/Orai1 pathway and review evidence that implicates STIM1/Orai1 in several pathological conditions including cardiovascular and pulmonary diseases, among others.