Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 871326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35652099

RESUMO

Actomyosin-mediated cellular contractility is highly conserved for mechanotransduction and signalling. While this phenomenon has been observed in adherent cell models, whether/how contractile forces regulate the function of suspension cells like natural killer (NK) cells during cancer surveillance, is unknown. Here, we demonstrated in coculture settings that the evolutionarily conserved NK cell transcription factor, Eomes, undergoes nuclear shuttling during lung cancer cell surveillance. Biophysical and biochemical analyses revealed mechanistic enhancement of NK cell actomyosin-mediated contractility, which is associated with nuclear flattening, thus enabling nuclear entry of Eomes associated with enhanced NK cytotoxicity. We found that NK cells responded to the presumed immunosuppressive TGFß in the NK-lung cancer coculture medium to sustain its intracellular contractility through myosin light chain phosphorylation, thereby promoting Eomes nuclear localization. Therefore, our results demonstrate that lung cancer cells provoke NK cell contractility as an early phase activation mechanism and that Eomes is a plausible mechano-responsive protein for increased NK cytotoxicity. There is scope for strategic application of actomyosin-mediated contractility modulating drugs ex vivo, to reinvigorate NK cells prior to adoptive cancer immunotherapy in vivo (177 words).

2.
Zhongguo Fei Ai Za Zhi ; 25(4): 245-252, 2022 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-35477188

RESUMO

BACKGROUND: Lung cancer is the cancer with the highest mortality at home and abroad at present. The detection of lung nodules is a key step to reducing the mortality of lung cancer. Artificial intelligence-assisted diagnosis system presents as the state of the art in the area of nodule detection, differentiation between benign and malignant and diagnosis of invasive subtypes, however, a validation with clinical data is necessary for further application. Therefore, the aim of this study is to evaluate the effectiveness of artificial intelligence-assisted diagnosis system in predicting the invasive subtypes of early­stage lung adenocarcinoma appearing as pulmonary nodules. METHODS: Clinical data of 223 patients with early-stage lung adenocarcinoma appearing as pulmonary nodules admitted to the Lanzhou University Second Hospital from January 1st, 2016 to December 31th, 2021 were retrospectively analyzed, which were divided into invasive adenocarcinoma group (n=170) and non-invasive adenocarcinoma group (n=53), and the non-invasive adenocarcinoma group was subdivided into minimally invasive adenocarcinoma group (n=31) and preinvasive lesions group (n=22). The malignant probability and imaging characteristics of each group were compared to analyze their predictive ability for the invasive subtypes of early-stage lung adenocarcinoma. The concordance between qualitative diagnostic results of artificial intelligence-assisted diagnosis of the invasive subtypes of early-stage lung adenocarcinoma and postoperative pathology was then analyzed. RESULTS: In different invasive subtypes of early-stage lung adenocarcinoma, the mean CT value of pulmonary nodules (P<0.001), diameter (P<0.001), volume (P<0.001), malignant probability (P<0.001), pleural retraction sign (P<0.001), lobulation (P<0.001), spiculation (P<0.001) were significantly different. At the same time, it was also found that with the increased invasiveness of different invasive subtypes of early-stage lung adenocarcinoma, the proportion of dominant signs of each group gradually increased. On the issue of binary classification, the sensitivity, specificity, and area under the curve (AUC) values of the artificial intelligence-assisted diagnosis system for the qualitative diagnosis of invasive subtypes of early-stage lung adenocarcinoma were 81.76%, 92.45% and 0.871 respectively. On the issue of three classification, the accuracy, recall rate, F1 score, and AUC values of the artificial intelligence-assisted diagnosis system for the qualitative diagnosis of invasive subtypes of early-stage lung adenocarcinoma were 83.86%, 85.03%, 76.46% and 0.879 respectively. CONCLUSIONS: Artificial intelligence-assisted diagnosis system could predict the invasive subtypes of early­stage lung adenocarcinoma appearing as pulmonary nodules, and has a certain predictive value. With the optimization of algorithms and the improvement of data, it may provide guidance for individualized treatment of patients.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão/patologia , Inteligência Artificial , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Invasividade Neoplásica , Estudos Retrospectivos
3.
Chinese Journal of Lung Cancer ; (12): 245-252, 2022.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-928805

RESUMO

BACKGROUND@#Lung cancer is the cancer with the highest mortality at home and abroad at present. The detection of lung nodules is a key step to reducing the mortality of lung cancer. Artificial intelligence-assisted diagnosis system presents as the state of the art in the area of nodule detection, differentiation between benign and malignant and diagnosis of invasive subtypes, however, a validation with clinical data is necessary for further application. Therefore, the aim of this study is to evaluate the effectiveness of artificial intelligence-assisted diagnosis system in predicting the invasive subtypes of early‑stage lung adenocarcinoma appearing as pulmonary nodules.@*METHODS@#Clinical data of 223 patients with early-stage lung adenocarcinoma appearing as pulmonary nodules admitted to the Lanzhou University Second Hospital from January 1st, 2016 to December 31th, 2021 were retrospectively analyzed, which were divided into invasive adenocarcinoma group (n=170) and non-invasive adenocarcinoma group (n=53), and the non-invasive adenocarcinoma group was subdivided into minimally invasive adenocarcinoma group (n=31) and preinvasive lesions group (n=22). The malignant probability and imaging characteristics of each group were compared to analyze their predictive ability for the invasive subtypes of early-stage lung adenocarcinoma. The concordance between qualitative diagnostic results of artificial intelligence-assisted diagnosis of the invasive subtypes of early-stage lung adenocarcinoma and postoperative pathology was then analyzed.@*RESULTS@#In different invasive subtypes of early-stage lung adenocarcinoma, the mean CT value of pulmonary nodules (P<0.001), diameter (P<0.001), volume (P<0.001), malignant probability (P<0.001), pleural retraction sign (P<0.001), lobulation (P<0.001), spiculation (P<0.001) were significantly different. At the same time, it was also found that with the increased invasiveness of different invasive subtypes of early-stage lung adenocarcinoma, the proportion of dominant signs of each group gradually increased. On the issue of binary classification, the sensitivity, specificity, and area under the curve (AUC) values of the artificial intelligence-assisted diagnosis system for the qualitative diagnosis of invasive subtypes of early-stage lung adenocarcinoma were 81.76%, 92.45% and 0.871 respectively. On the issue of three classification, the accuracy, recall rate, F1 score, and AUC values of the artificial intelligence-assisted diagnosis system for the qualitative diagnosis of invasive subtypes of early-stage lung adenocarcinoma were 83.86%, 85.03%, 76.46% and 0.879 respectively.@*CONCLUSIONS@#Artificial intelligence-assisted diagnosis system could predict the invasive subtypes of early‑stage lung adenocarcinoma appearing as pulmonary nodules, and has a certain predictive value. With the optimization of algorithms and the improvement of data, it may provide guidance for individualized treatment of patients.


Assuntos
Humanos , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão/patologia , Inteligência Artificial , Neoplasias Pulmonares/patologia , Nódulos Pulmonares Múltiplos , Invasividade Neoplásica , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...