Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39.579
Filtrar
1.
J Environ Sci (China) ; 147: 131-152, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003035

RESUMO

Biomineralization has garnered significant attention in the field of wastewater treatment due to its notable cost reduction compared to conventional methods. The reinjection water from oilfields containing an exceedingly high concentration of calcium and ferric ions will pose a major hazard in production. However, the utilization of biomineralization for precipitating these ions has been scarcely investigated due to limited tolerance among halophiles towards such extreme conditions. In this study, free and immobilized halophiles Virgibacillus dokdonensis were used to precipitate these ions and the effects were compared, at the same time, biomineralization mechanisms and mineral characteristics were further explored. The results show that bacterial concentration and carbonic anhydrase activity were higher when additionally adding ferric ion based on calcium ion; the content of protein, polysaccharides, deoxyribonucleic acid and humic substances in the extracellular polymers also increased compared to control. Calcium ions were biomineralized into calcite and vaterite with multiple morphology. Due to iron doping, the crystallinity and thermal stability of calcium carbonate decreased, the content of OC = O, NC = O and CO-PO3 increased, the stable carbon isotope values became much more negative, and ß-sheet in minerals disappeared. Higher calcium concentrations facilitated ferric ion precipitation, while ferric ions hindered calcium precipitation. The immobilized bacteria performed better in ferric ion removal, with a precipitation ratio exceeding 90%. Free bacteria performed better in calcium removal, and the precipitation ratio reached a maximum of 56%. This research maybe provides some reference for the co-removal of calcium and ferric ions from the oilfield wastewater.


Assuntos
Cálcio , Ferro , Virgibacillus , Cálcio/química , Ferro/química , Virgibacillus/metabolismo , Eliminação de Resíduos Líquidos/métodos , Precipitação Química , Águas Residuárias/química , Biomineralização , Carbonato de Cálcio/química
2.
ChemSusChem ; : e202400970, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39113614

RESUMO

Biomass-derived carbon materials are gaining attention for their environmental and economic advantages in waste resource recovery, particularly for their potential as high-energy materials for alkali metal ion storage. However, ensuring the reliability of secondary battery anodes remains a significant hurdle. Here, we report Areca Catechu sheath-inner part derived carbon (referred to as ASIC) as a high-performance anode for both rechargeable Li-ion (LIBs) and Na-ion batteries (SIBs). We explore the microstructure and electrochemical performance of ASIC materials synthesized at various pyrolysis temperatures ranging from 700 to 1400 °C. ASIC-9, pyrolyzed at 900 °C, exhibits multilayer stacked sheets with the highest specific surface area, and the least lateral size and stacking height. ASIC-14, pyrolyzed at 1400 °C, demonstrates the most ordered carbon structure with the least defect concentration and the highest stacking height and an increased lateral size. ASIC-9 achieves the highest capacities (676 mAh/g at 0.134C) and rate performance (94 mAh/g at 13.4C) for hosting Li+ ions, while ASIC-14 exhibits superior electrochemical performance for hosting Na+ ions, maintaining a high specific capacity after 300 cycles with over 99.5% Coulombic efficiency. This comprehensive understanding of structure-property relationships paves the way for the practical utilization of biomass-derived carbon in various battery applications.

3.
Angew Chem Int Ed Engl ; : e202409160, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39113640

RESUMO

Flexible and high-performance aqueous Zn-ion batteries (ZIBs), coupled with low cost and safe, are considered as one of the most promising energy storage candidates for wearable electronics. However, most of hydrogel electrolytes suffer from poor mechanical properties and interfacial chemistry, which limits them to suppressed performance levels in flexible ZIBs, especially under harsh mechanical strains. Herein, a bio-inspired multifunctional hydrogel electrolyte network (polyacrylamide (PAM)/trehalose) with improved mechanical and adhesive properties was developed via a simple trehalose network-repairing strategy to stabilize the interfacial chemistry for highly reversible flexible ZIBs. As a result, the trehalose-modified PAM hydrogel exhibits a superior strength and stretchability up to 100 kPa and 5338%, respectively, as well as strong adhesive properties to various substrates. Also, the PAM/trehalose hydrogel electrolyte provides superior anti-corrosion capability for Zn anode and regulates Zn nucleation/growth, resulting in achieving a high Coulombic efficiency of 98.8%, and long-term stability over 2400 h. Importantly, the flexible Zn//MnO2 pouch cell exhibits excellent cycling performance under different bending conditions, which offers a great potential in flexible energy-related applications and beyond.

4.
Small ; : e2406110, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39113670

RESUMO

In this study, state-of-the-art on-line pyrolysis MS (OP-MS) equipped with temperature-controlled cold trap and on-line pyrolysis GC/MS (OP-GC/MS) injected through high-vacuum negative-pressure gas sampling (HVNPGS) programming are originally designed/constructed to identify/quantify the dynamic change of common permanent gases and micromolecule organics from the anode/cathode-electrolyte reactions during thermal runaway (TR) process, and corresponding TR mechanisms are further perfected/complemented. On LiCx anode side, solid electrolyte interphase (SEI) would undergo continuous decomposition and regeneration, and the R-H+ (e.g., HF, ROH, etc.) species derived from electrolyte decomposition would continue to react with Li/LiCx to generate H2. Up to above 200 °C, the O2 would release from the charged NCM cathode and organic radicals would be consumed/oxidized by evolved O2 to form COx, H2O, and more corrosive HF. On the contrary, charged LFP cathode does not present obvious O2 evolution during heating process and the unreacted flammable/toxic organic species would exit in the form of high temperature/high-pressure (HT/HP) vapors within batteries, indicating higher potential safety risks. Additionally, the in depth understanding of the TR mechanism outlined above provides a clear direction for the design/modification of thermostable electrodes and non-flammable electrolytes for safer batteries.

5.
ACS Nano ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39114876

RESUMO

Synthetic membranes featuring confined nanostructures have emerged as a prominent category of leading materials that can selectively separate target ions from complex water matrices. Further advancements in these membranes will pressingly rely on the ability to elucidate the inherent connection between transmembrane ion permeation behaviors and the ion-selective nanostructures. In this review, we first abstract state-of-the-art nanostructures with a diversity of spatial confinements in current synthetic membranes. Next, the underlying mechanisms that govern ion permeation under the spatial nanoconfinement are analyzed. We then proceed to assess ion-selective membrane materials with a focus on their structural merits that allow ultrahigh selectivity for a wide range of monovalent and divalent ions. We also highlight recent advancements in experimental methodologies for measuring ionic permeability, hydration numbers, and energy barriers to transport. We conclude by putting forth the future research prospects and challenges in the realm of high-performance ion-selective membranes.

6.
Small ; : e2405982, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115088

RESUMO

Sodium-ion batteries are increasingly recognized as ideal for large-scale energy storage applications. Alluaudite Na2+2 δFe2- δ(SO4)3 has become one of the focused cathode materials in this field. However, previous studies employing aqueous-solution synthesis often overlooked the formation mechanism of the impurity phase. In this study, the nonequilibrium evolution mechanism between Na2+2 δFe2- δ(SO4)3 and impurities by adjusting ratios of the Na2SO4/FeSO4·7H2O in the binary system is investigated. Then an optimal ratio of 0.765 with reduced impurity content is confirmed. Compared to the poor electrochemical performance of the Na2.6Fe1.7(SO4)3 (0.765) cathode, the optimized Na2.6Fe1.7(SO4)3@CNTs (0.765@CNTs) cathode, with improved electronic and ionic conductivity, demonstrates an impressive discharge specific capacity of 93.8 mAh g-1 at 0.1 C and a high-rate capacity of 67.84 mAh g-1 at 20 C, maintaining capacity retention of 71.1% after 3000 cycles at 10 C. The Na2.6Fe1.7(SO4)3@CNTs//HC full cell reaches an unprecedented working potential of 3.71 V at 0.1 C, and a remarkable mass-energy density exceeding 320 Wh kg-1. This work not only provides comprehensive guidance for synthesizing high-voltage Na2+2 δFe2- δ(SO4)3 cathode materials with controllable impurity content but also lays the groundwork of sodium-ion batteries for large-scale energy storage applications.

7.
ChemSusChem ; : e202400844, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115117

RESUMO

Alkaline ion-solvating membranes derived from a tetrazole functionalized poly(arylene alkylene) are prepared, characterized and evaluated as electrode separators in alkaline water electrolysis. The base polymer, poly[[1,1'-biphenyl]-4,4'-diyl(1,1,1-trifluoropropan-2-yl)], is synthesized by superacid catalyzed polyhydroxyalkylation and subsequently functionalized with tetrazole pendants. After equilibration in aqueous KOH, the relatively acidic tetrazole pendants are deprotonated to form the corresponding potassium tetrazolides. The room temperature ion conductivity is found to peak at 19 mS cm-1 in 5 wt. % KOH, and slightly declines with increasing KOH concentration to 13 mS cm-1 in 30 wt. % KOH. Based on an overall assessment of the mechanical properties, conductivity and electrode activity, 30 wt. % KOH is applied for alkaline electrolysis cell tests. Current densities of up to 1000 mA cm-2 were reached with uncatalyzed Ni-foam electrodes at a cell voltage of less than 2.6 V, with improved gas barrier characteristics compared to that of the several times thicker Zirfon separator.

8.
ACS Nano ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115190

RESUMO

Organic-inorganic hybrid metal halide perovskite solar cells have been considered as one of the most promising next-generation photovoltaic technologies. Nevertheless, perovskite defects and Li+ ionic migration will seriously affect the power conversion efficiency and stability of the formal device. Herein, we designed two crown ether derivatives (PC12 and PC15) with different cavity diameters, which selectively bind to different metal cations. It is found that PC15 in perovskite precursor solution can actively regulate the nucleation and crystallization processes and passivate the uncoordinated Pb2+ ions, while PC12 at the interface between the perovskite layer and hole-transporting layer can effectively inhibit the migration of Li+ ions and reduce nonradiative recombination losses. Therefore, PC12 and PC15 can act as "lubricant" and defect passivators, as well as inhibitors of ion migration, when they are synergistically applied at the surface and bulk of perovskite layer. Consequently, the optimized device achieved a champion efficiency of 24.8% with significantly improved humidity, thermal, and light stability.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39115308

RESUMO

O3-type NaNi0.5Mn0.5O2 (NNM) is very competitive for sodium-ion batteries (SIBs) due to its high capacity and easy production. Nevertheless, the intricate phase transitions during the charging-discharging significantly impede its practical application. This paper proposes a strategy for successfully synthesizing NaNi0.5Mn0.3Ti0.2O2 (NNMT) by combining coprecipitation and a high-temperature solid-state method. This method introduces Ti elements while retaining the electrochemically active Ni2+ content, thus, the NNMT has a high initial specific capacity of 151.4 mAh g-1 at 1 C. It is demonstrated that introducing Ti4+ leads to the transition metal layers becoming disordered by ex situ XRD, thus mitigating the irreversible phase transition of the material. In addition, Ti4+ does not have an outer electron, which can reduce electron delocalization in the transition metal layer and improve the material's cyclic stability. The NNMT possesses a capacity retention rate of 60.66% after 150 cycles, much higher than the initial NNM's 18.96%. It also exhibits an excellent discharge capacity of 86.8 mAh g-1 at 5 C. In conclusion, the cycling and rate performance of the Ti-substituted NNMT are greatly improved without capacity loss, which offers innovative concepts for the modification means of the SIBs layered oxide cathode materials.

10.
Angew Chem Int Ed Engl ; : e202410396, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115462

RESUMO

The pursuit of carbon-neutral energy has intensified the interest in green hydrogen production from direct seawater electrolysis, given the scarcity of freshwater resources. While Ni-based catalysts are known for their robust activity in alkaline water oxidation, their catalytic sites are prone to rapid degradation in the chlorine-rich environments of seawater, leading to limited operation time. Herein, we report a Ni(OH)2 catalyst interfaced with laser-ablated LiFePO4 (Ni(OH)2/L-LFP), derived from spent Li-ion batteries (LIBs), as an effective and stable electrocatalyst for direct seawater oxidation. Our comprehensive analyses reveal that the PO43- species, formed around L-LFP, effectively repels Cl- ions during seawater oxidation, mitigating corrosion. Simultaneously, the interface between in situ generated NiOOH and Fe3(PO4)2 enhances OH- adsorption and electron transfer during the oxygen evolution reaction. This synergistic effect leads to a low overpotential of 237 mV to attain a current density of 10 mA cm-2 and remarkable durability, with only a 3.3 % activity loss after 600 h at 100 mA cm-2 in alkaline seawater. Our findings present a viable strategy for repurposing spent LIBs into high-performance catalysts for sustainable seawater electrolysis, contributing to the advancement of green hydrogen production technologies.

11.
Se Pu ; 42(8): 766-772, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39086245

RESUMO

Hydrogen sulfide (H2S) is a pervasive gaseous pollutant that emits the characteristic odor of rotten gas, even at low concentrations. It is generated during various industrial processes, including petroleum and natural gas refining, mining operations, wastewater treatment activities, and refuse disposal practices. According to statistics from the World Health Organization (WHO), over 70 occupations are exposed to H2S, rendering it a key monitoring factor in occupational disease detection. Although H2S has legitimate uses in the chemical, medical, and other fields, prolonged exposure to this gas can cause severe damage to the respiratory and central nervous systems, as well as other organs in the human body. Moreover, the substantial release of H2S into the environment can lead to significant pollution. This noxious substance has the potential to impair soil, water, and air quality, while disrupting the equilibrium of the surrounding ecosystems. Therefore, sulfide has become one of the most commonly measured substances for environmental monitoring worldwide. Achieving the stable enrichment and accurate detection of low-level H2S is of great significance. Common methods for detecting this gas include spectrophotometry, chemical analysis, gas chromatography, rapid field detection, and ion chromatography. Although these methods provide relatively reliable results, they suffer from limitations such as high detection cost, low recovery, lack of environmental friendliness, and imprecise quantification of low-concentration H2S. Furthermore, the sampling processes involved in these methods are complex and require specialized equipment and electrical devices. Additionally, approximately 20% of the sulfides in a sample are lost after 2 h in a conventional alkaline sodium hydroxide solution, causing difficulties in preservation and detection. In this study, an accurate, efficient, and cost-saving method based on ion chromatography-pulse amperometry was developed for H2S determination. A conventional IonPac AS7 (250 mm×4 mm) anion-exchange column was employed, and a new eluent based on sodium hydroxide and sodium oxalate was used to replace the original sodium hydroxide-sodium acetate eluent. The main factors influencing the separation and detection performance of the proposed method, including the pulse amperage detection potential parameters and integration time, as well as the type and content of additives in the stabilizing solution, were optimized. The results showed that the proposed method had a good linear relationship between 10 and 3000 µg/L, with correlation coefficients (r2) of up to 0.999. The limits of detection (S/N=3) and quantification (S/N=10) were 1.53 and 5.10 µg/L, respectively. The relative standard deviations (RSDs) of the peak area and retention time of sulfides were less than 0.2% (n=6). The new method exhibited excellent stability, with up to 90% reduction in reagent costs. Compared with conventional ion chromatography-pulse amperometry, this method is more suitable for detecting low concentrations of sulfides in actual samples. Sulfides in a 250 mmol/L sodium hydroxide-0.8% (mass fraction) ethylenediaminetetraacetic acid disodium salt solution were effectively maintained for over 10 h. The new stabilizer significantly improved the reliability of both large-scale and long-term detection. The recovery of the proposed method was investigated by combining the system with a badge-type passive sampler. This sampling method requires no power devices; it is inexpensive, simple to operate, and can realize long-term sampling without the need for skilled personnel. Moreover, it can overcome the influence of short-term changes in pollutant concentration. The sampling results have high reference value for large-scale intervention-less pollutant monitoring in ultraclean rooms, museum counters, and other places. The results demonstrated that the recovery of the proposed method was greater than 95% for the blank sample and 80% for the sample plus standard solution. Finally, the newly established method was applied to determine H2S levels in air samples collected via passive sampling at school garbage stations. The measured results did not exceed the national limit.


Assuntos
Poluentes Atmosféricos , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Cromatografia por Troca Iônica/métodos
12.
Se Pu ; 42(8): 805-811, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39086250

RESUMO

Tobacco flavor, an important tobacco additive, is an essential raw material in cigarette production that can effectively improve the quality of tobacco products, add aroma and taste, and increase the suction flavor. The quality consistency of tobacco flavors affects the quality stability of branded cigarettes. Therefore, the quality control of tobacco flavors is a major concern for cigarette and flavor manufacturers. Physical and chemical indices, odor similarity, and sensory efficacy are employed to evaluate the quality of tobacco flavors, and the analysis of chemical components in tobacco flavors is usually conducted using gas chromatography (GC) and high performance liquid chromatography (HPLC). However, because the composition of tobacco flavors is complex, their quality cannot be fully reflected using a single component or combination of components. Therefore, establishing an objective analytical method for the quality control of tobacco flavors is of extreme importance. Chromatographic fingerprint analysis is routinely used for the discriminative analysis of tobacco flavors. Chromatographic fingerprints refer to the general characteristics of the concentration profiles of different chemical compounds. In the daily procurement process, fingerprints established by GC and HPLC are effective for the evaluation and identification of tobacco flavors. However, given continuous improvements in aroma-imitation technology, some flavors with high similarity cannot be directly distinguished using existing methods. In this study, a method for the determination of organic acids and inorganic anions in tobacco flavors based on ion chromatography (IC) was developed to ensure the quality consistency of tobacco flavors. A 1.0 g sample of tobacco flavors and 10 mL of deionized water were mixed and vibrated for 30 min. The aqueous sample solution was passed through a 0.45 µm membrane filter and RP pretreatment column in succession to eliminate interferences and then subjected to IC. Standard solutions containing nine organic acids and seven inorganic anions were used to identify the anions in the tobacco flavors, and satisfactory reproducibility was obtained. The relative standard deviations (RSDs) for retention times and peak areas were <0.71% and <6.02%, respectively. The chromatographic fingerprints of four types of tobacco flavors (samples A-D) from five different batches were obtained. Nine tobacco flavor samples from different manufacturers (samples AY1-AY3, BY1-BY2, CY1-CY2, DY1-DY2) were also analyzed to obtain their chromatographic fingerprints. Hierarchical cluster and similarity analyses were used to evaluate the quality of tobacco flavors from different manufacturers. Hierarchical clustering refers to the process of subdividing a group of samples into clusters that exhibit a high degree of intracluster similarity and intercluster dissimilarity. The dendrograms obtained using SPSS 12.0 indicated good quality consistency among the samples in different batches. Samples AY3, BY2, CY2, and DY1 clustered with the batches of standard tobacco flavors. Therefore, hierarchical cluster analysis can effectively distinguish the quality of products from different manufacturers. The Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine (version 2.0) was used to evaluate the similarity between the standard tobacco flavors and products from different manufacturers. Among the samples analyzed, samples AY3, BY2, CY2, and DY1 showed the highest similarity values (>97.7%), which was consistent with the results of the hierarchical cluster analysis. This finding indicates that IC combined with chromatographic fingerprint analysis could accurately determine the quality of tobacco flavors. GC combined with ultrasonic-assisted liquid-liquid extraction was also used to analyze the tobacco flavors and verify the accuracy of the proposed method. Compared with GC coupled with ultrasonic-assisted liquid-liquid extraction, IC demonstrated more significant quality differences among certain tobacco flavors.


Assuntos
Nicotiana , Controle de Qualidade , Nicotiana/química , Aromatizantes/análise , Produtos do Tabaco/análise , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Gasosa/métodos , Cromatografia por Troca Iônica/métodos
13.
Bull Exp Biol Med ; 177(2): 231-234, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39093477

RESUMO

Acute nociceptive pain in mice caused by subcutaneous (intraplantar) injection of TRPV1 ion channel agonist capsaicin (1.6 µg/mouse) and the effects of protein kinase A inhibitor H-89 (0.05 mg/mouse, intraplantar injection) and NMDA receptor channel antagonists MK-801 (7.5 and 15 µg/mouse, topical application) and hemantane (0.5 mg/mouse, topical application) on the pain were assessed. MK-801 and hemantane were found to reduce the duration of the pain response. H-89 did not significantly affect the pain in animals, but preliminary administration of this drug abolished the antinociceptive effect of MK-801 (7.5 µg/mouse) and weakens the effect of hemantane (0.5 mg/mouse).


Assuntos
Analgésicos , Capsaicina , Maleato de Dizocilpina , Receptores de N-Metil-D-Aspartato , Animais , Capsaicina/farmacologia , Camundongos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Masculino , Maleato de Dizocilpina/farmacologia , Analgésicos/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Dor Nociceptiva/tratamento farmacológico , Dor Nociceptiva/induzido quimicamente , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos
14.
Expert Opin Investig Drugs ; : 1-12, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39096248

RESUMO

INTRODUCTION: Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. Its prevalence has increased due to worldwide populations that are aging in combination with the growing incidence of risk factors associated. Recent advances in our understanding of AF pathophysiology and the identification of nodal players involved in AF-promoting atrial remodeling highlights potential opportunities for new therapeutic approaches. AREAS COVERED: This detailed review summarizes recent developments in the field antiarrhythmic drugs in the field AF. EXPERT OPINION: The current situation is far than optimal. Despite clear unmet needs in drug development in the field of AF treatment, the current development of new drugs is absent. The need for a molecule with absence of cardiac and non-cardiac toxicity in the short and long term is a limitation in the field. Improvement in the understanding of AF genetics, pathophysiology, molecular alterations, big data and artificial intelligence with the objective to provide a personalized AF treatment will be the cornerstone of AF treatment in the coming years.

15.
Front Immunol ; 15: 1428584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091498

RESUMO

Renal cell carcinoma (RCC) is considered radio- and chemo-resistant. Immune checkpoint inhibitors (ICIs) have demonstrated significant clinical efficacy in advanced RCC. However, the overall response rate of RCC to monotherapy remains limited. Given its immunomodulatory effects, a combination of radiotherapy (RT) with immunotherapy is increasingly used for cancer treatment. Heavy ion radiotherapy, specifically the carbon ion radiotherapy (CIRT), represents an innovative approach to cancer treatment, offering superior physical and biological effectiveness compared to conventional photon radiotherapy and exhibiting obvious advantages in cancer treatment. The combination of CIRT and immunotherapy showed robust effectiveness in preclinical studies of various tumors, thus holds promise for overcoming radiation resistance of RCC and enhancing therapeutic outcomes. Here, we provide a comprehensive review on the biophysical effects of CIRT, the efficacy of combination treatment and the underlying mechanisms involved in, as well as its therapeutic potential specifically within RCC.


Assuntos
Carcinoma de Células Renais , Radioterapia com Íons Pesados , Inibidores de Checkpoint Imunológico , Neoplasias Renais , Humanos , Carcinoma de Células Renais/terapia , Carcinoma de Células Renais/radioterapia , Carcinoma de Células Renais/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Renais/terapia , Neoplasias Renais/radioterapia , Neoplasias Renais/imunologia , Terapia Combinada , Animais , Imunoterapia/métodos
16.
Artigo em Inglês | MEDLINE | ID: mdl-39093713

RESUMO

The aqueous zinc-ion batteries (ZIBs) have gained increasing attention because of their high specific capacity, low cost, and good safety. However, side reactions, hydrogen evolution reaction, and uncontrolled zinc dendrites accompanying the Zn metal anodes have impeded the applications of ZIBs in grid-scale energy storage. Herein, the poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires as an interfacial layer on the Zn anode (Zn-PEDOT) are reported to address the above issues. Our experimental results and density functional theory simulation reveal that the interactions between the Zn2+ and S atoms in thiophene rings of PEDOT not only facilitate the desolvation of hydrated Zn2+ but also can regulate the diffusion of Zn2+ along the thiophene molecular chains and induce the dendrite-free deposition of Zn along the (002) surface. Consequently, the Zn||Cu-PEDOT half-cell exhibits highly reversible plating/stripping behavior with an average Coulombic efficiency of 99.7% over 2500 cycles at 1 mA cm-2 and a capacity of 0.5 mAh cm-2. A symmetric Zn-PEDOT cell can steadily operate over 1100 h at 1 mA cm-2 (1 mAh cm-2) and 470 h at 10 mA cm-2 (2 mAh cm-2), outperforming the counterpart bare Zn anodes. Besides, a Zn-PEDOT||V2O5 full cell could deliver a specific capacity of 280 mAh g-1 at 1 A g-1 and exhibits a decent cycling stability, which are much superior to the bare Zn||V2O5 cell. Our results demonstrate that PEDOT nanowires are one of the promising interfacial layers for dendrite-free aqueous ZIBs.

17.
Artigo em Inglês | MEDLINE | ID: mdl-39093917

RESUMO

In this study, a nonflammable all-fluorinated electrolyte for lithium-ion cells with a Li(Ni0.8Mn0.1Co0.1)O2 cathode is investigated under high voltages. This electrolyte, named FT46, consists of fluoroethylene carbonate (FEC) and bis(2,2,2-trifluoroethyl) carbonate (TFEC) in a mass ratio of 4:6. Compared to a commercially available electrolyte and several other fluorinated electrolytes, cells containing FT46 demonstrate significantly better cycling performances under high voltage (3.0-4.5 V). This result may be ascribed to the generation of a stable, smooth, and thin passivation layer and the improved solvation structure formed by FT46. The LiF-rich passivation layer strengthens the electrode/electrolyte interface, inhibits the degradation of the electrode, and suppresses side reactions between the electrodes and electrolytes under high voltage. The solvation structure formed by FT46 is derived from anions, enabling an enhanced Li+ migration rate and inhibiting lithium plating generation. Additionally, due to the nonflammability of the electrolyte and the stable passivation layers, FT46 cells also demonstrate promising safety characteristics when exposed to typical abusive conditions, such as thermal abuse, mechanical abuse, and electrical abuse.

18.
Nano Lett ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39094116

RESUMO

Component modulation endows Mn-based electrodes with prominent energy storage properties due to their adjustable crystal structure characteristics. Herein, ZnMn2(PO4)2·nH2O (ZMP·nH2O) was obtained by a hydration reaction from ZnMn2(PO4)2 (ZMP) during an electrode-aging evolution. Benefiting from the introduction of lattice H2O molecules into the ZMP structure, the ion transmission path has been expanded along with the extended d-spacing, which will further facilitate the ZMP → ZMP·nH2O phase evolution and electrochemical reaction kinetics. Meanwhile, the hydrogen bond can be generated between H2O and O in PO43-, which strengthens the structure stability of ZMP·nH2O and lowers the conversion barrier from ZMP to ZMP·4H2O during the Zn2+ uptake/removal process. Thereof, ZMP·nH2O delivers enhanced electrochemical reaction kinetics with robust structure tolerance (106.52 mA h g-1 at 100 mA g-1 over 620 cycles). This high-energy aqueous Zn||ZMP·nH2O battery provides a facile strategy for engineering and exploration of high-performance ZIBs to realize the practical application of Mn-based cathodes.

19.
Artigo em Inglês | MEDLINE | ID: mdl-39094118

RESUMO

Graphite, with abundant resources and low cost, is regarded as a promising anode material for potassium-ion batteries (PIBs). However, because of the large size of potassium ions, the intercalation/deintercalation of potassium between the interlayers of graphite results in its huge volume expansion, leading to poor cycling stability and rate performance. Herein, a self-propagating reduction strategy is adopted to fabricate a flexible, self-supporting 3D porous graphite@reduced graphene oxide (3D-G@rGO) composite film for PIBs. The 3D porous network can not only effectively mitigate the volume expansion in graphite but also provide numerous active sites for potassium storage as well as allow for electrolyte penetration and rapid ion migration. Therefore, compared to the pristine graphite anode, the flexible 3D-G@rGO film electrode exhibits greatly improved K-storage performance with a reversible capacity of 452.8 mAh g-1 at 0.1 C and a capacity retention rate of 80.4% after 100 cycles. It also presents excellent rate capability with a high specific capacity of 139.1 and 94.2 mAh g-1 maintained at 2 and 5 C, respectively. The proposed self-propagating reduction strategy to construct a three-dimensional self-supporting structure is a viable route to improve the structural stability and potassium storage performance of graphite anodes.

20.
Biochem Biophys Res Commun ; 735: 150456, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39094230

RESUMO

Piezo1 channels are activated by mechanical stress and play a significant role in cardiac hypertrophy and fibrosis. However, the molecular mechanisms underlying Piezo1 activation on the cell membrane following pressure overload remain unclear. Caveolae are known to mitigate mechanical forces and regulate Piezo1 function. Therefore, this study aimed to investigate the interaction between caveolae and Piezo1 in the development of pressure overload-induced cardiac remodeling. We observed reduced colocalization between Piezo1 and Caveolin-3 in hypertrophic cardiomyocytes following abdominal aortic constriction and Angiotensin-II treatment, accompanied by increased Piezo1 function and expression. Furthermore, enhanced Piezo1 function was also noted upon caveolae disruption using methyl-beta-cyclodextrin (mßCD). Thus, our findings suggested that pressure overload led to Piezo1 translocation from caveolae, thereby augmenting its function and expression, which may contribute to cardiac remodeling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...