Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Fitoterapia ; 177: 106098, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950636

RESUMO

Brain edema after ischemic stroke could worsen cerebral injury in patients who received intravenous thrombolysis. Cornus officinalis Sieb. et Zucc., a long-established traditional Chinese medicine, is beneficial to the treatment of neurodegenerative diseases including ischemic stroke. In particular, its major component, cornel iridoid glycoside (CIG), was evidenced to exhibit neuroprotective effects against cerebral ischemic/reperfusion injury (CIR/I). Aimed to explore the effects of the CIG on brain edema of the CIR/I rats, the CIG was analyzed with the main constituents by using HPLC. The molecular docking analysis was performed between the CIG constituents and AQP4-M23. TGN-020, an AQP4 inhibitor, was used as a comparison. In the in vivo experiments, the rats were pre-treated with the CIG and were injured by performing middle cerebral artery occlusion/reperfusion (MCAO/R). After 24 h, the rats were examined for neurological function, pathological changes, brain edema, and polarized Aqp4 expressions in the brain. The HPLC analysis indicated that the CIG was composed of morroniside and loganin. The molecular docking analysis showed that both morroniside and loganin displayed lower binding energies to AQP4-M23 than TGN-020. The CIG pre-treated rats exhibited fewer neurological function deficits, minimized brain swelling, and reduced lesion volumes compared to the MCAO/R rats. In the peri-infarct and infarct regions, the CIG pre-treatment restored the polarized Aqp4 expression which was lost in the MCAO/R rats. The results suggested that the CIG could attenuate brain edema of the cerebral ischemia/reperfusion rats by modulating the polarized Aqp4 through the interaction of AQP4-M23 with morroniside and loganin.

2.
Nat Prod Res ; : 1-9, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646805

RESUMO

The present study was undertaken on the chemical constituents of ethanol extract of aerial parts of Nyctanthes arbor-tristis Linn., and their determination of growth inhibitory activity against glioblastoma multiforme cell line (U87) and urease inhibitory activity. Six constituents were isolated including two new arbortristoside F tetraacetate (1) and arbortristoside G heptaacetate (2) and four known arborside A tetraacetate (3), arborside C pentaacetate (4), 6,7-di-O-acetyl-6ß-hydroxyloganin hexaacetate (5) and nyctanthoside heptaacetate (6) iridoid glycoside acetates. Their structures were elucidated using spectroscopic methods, including 1D and 2D NMR and mass analyses. Compounds 3 and 6 showed significant growth inhibition of U87 cell line (76.41 and 87.62% inhibition) respectively while 2, 4 and 5 showed moderate inhibition. 3 and 6 showed notable urease inhibition (IC50 = 17.2 ± 0.4 and 17.2 ± 0.7 µM) respectively, and IC50 of 2, 4 and 5 were 23.8 - 56.3 µM. Compound 1 was inactive.

3.
Fitoterapia ; 175: 105896, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471574

RESUMO

Morroniside (MOR) is an iridoid glycoside and the main active principle of the medicinal plant, Cornus officinalis Sieb. This phytochemical is associated with numerous health benefits due to its antioxidant properties. The primary objective of the present study was to assess the pharmacological effects and underlying mechanisms of MOR, utilizing published data obtained from literature databases. Data collection involved accessing various sources, including PubMed/Medline, Scopus, Science Direct, Google Scholar, Web of Science, and SpringerLink. Our findings demonstrate that MOR can be utilized for the treatment of several diseases and disorders, as numerous studies have revealed its significant therapeutic activities. These activities encompass anti-inflammatory, antidiabetic, lipid-lowering capability, anticancer, trichogenic, hepatoprotective, gastroprotective, osteoprotective, renoprotective, and cardioprotective effects. MOR has also shown promising benefits against various neurological ailments, including Alzheimer's disease, Parkinson's disease, spinal cord injury, cerebral ischemia, and neuropathic pain. Considering these therapeutic features, MOR holds promise as a lead compound for the treatment of various ailments and disorders. However, further comprehensive preclinical and clinical trials are required to establish MOR as an effective and reliable therapeutic agent.


Assuntos
Cornus , Glicosídeos , Compostos Fitoquímicos , Animais , Humanos , Antioxidantes/farmacologia , Cornus/química , Glicosídeos/farmacologia , Glicosídeos/isolamento & purificação , Estrutura Molecular , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação
4.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542434

RESUMO

Aucubin, an iridoid glycoside, possesses beneficial bioactivities in many diseases, but little is known about its neuroprotective effects and mechanisms in brain ischemia and reperfusion (IR) injury. This study evaluated whether aucubin exhibited neuroprotective effects against IR injury in the hippocampal CA1 region through anti-inflammatory activity in gerbils. Aucubin (10 mg/kg) was administered intraperitoneally once a day for one week prior to IR. Neuroprotective effects of aucubin were assessed by neuronal nuclei (NeuN) immunofluorescence and Floro-Jade C (FJC) histofluorescence. Microgliosis and astrogliosis were evaluated using immunohistochemistry with anti-ionized calcium binding adapter protein 1 (Iba1) and glial fibrillary acidic protein (GFAP). Protein levels of proinflammatory cytokines interleukin1 beta (IL1ß) and tumor necrosis factor alpha (TNFα) were assayed using enzyme-linked immunosorbent assay and Western blot. Changes in toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway were assessed by measuring levels of TLR4, inhibitor of NF-κB alpha (IκBα), and NF-κB p65 using Western blot. Aucubin treatment protected pyramidal neurons from IR injury. IR-induced microgliosis and astrogliosis were suppressed by aucubin treatment. IR-induced increases in IL1ß and TNFα levels were significantly alleviated by the treatment. IR-induced upregulation of TLR4 and downregulation of IκBα were significantly prevented by aucubin treatment, and IR-induced nuclear translocation of NF-κB was reversed by aucubin treatment. Briefly, aucubin exhibited neuroprotective effects against brain IR injury, which might be related to the attenuation of neuroinflammation through inhibiting the TLR-4/NF-κB signaling pathway. These results suggest that aucubin pretreatment may be a potential approach for the protection of brain IR injury.


Assuntos
Isquemia Encefálica , Glucosídeos Iridoides , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Inibidor de NF-kappaB alfa/metabolismo , Gerbillinae/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptor 4 Toll-Like/metabolismo , Gliose , Transdução de Sinais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia , Infarto Cerebral , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
5.
Chin Med ; 19(1): 53, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519940

RESUMO

BACKGROUND: Lamiophlomis rotata (Benth.) Kudo (L. rotata), the oral Traditional Tibetan herbal medicine, is adopted for treating knife and gun wounds for a long time. As previously demonstrated, total iridoid glycoside extract of L. rotata (IGLR) induced polarization of M2 macrophage to speed up wound healing. In diabetic wounds, high levels inflammatory and chemotactic factors are usually related to high reactive oxygen species (ROS) levels. As a ROS target gene, nuclear factor erythroid 2-related factor 2 (NRF2), influences the differentiation of monocytes to M1/M2 macrophages. Fortunately, iridoid glycosides are naturally occurring active compounds that can be used as the oxygen radical scavenger. Nevertheless, the influence of IGLR in diabetic wound healing and its associated mechanism is largely unclear. MATERIALS AND METHODS: With macrophages and dermal fibroblasts in vitro, as well as a thickness excision model of db/db mouse in vivo, the role of IGLR in diabetic wound healing and the probable mechanism of the action were investigated. RESULTS: Our results showed that IGLR suppressed oxidative distress and inflammation partly through the NRF2/cyclooxygenase2 (COX2) signaling pathway in vitro. The intercellular communication between macrophages and dermal fibroblasts was investigated by the conditioned medium (CM) of IGLR treatment cells. The CM increased the transcription and translation of collagen I (COL1A1) and alpha smooth muscle actin (α-SMA) within fibroblasts. With diabetic wound mice, the data demonstrated IGLR activated the NRF2/KEAP1 signaling and the downstream targets of the pathway, inhibited COX2/PEG2 signaling and decreased the interaction inflammatory targets of the axis, like interleukin-1beta (IL-1ß), interleukin 6 (IL-6), apoptosis-associated speck-like protein (ASC), cysteinyl aspartate specific proteinase1 (caspase1) and NOD-like receptor-containing protein 3 (NLRP3).In addition, the deposition of COL1A1, and the level of α-SMA, and Transforming growth factor-ß1 (TGF-ß1) obviously elevated, whereas that of pro-inflammatory factors reduced in the diabetic wound tissue with IGLR treatment. CONCLUSION: IGLR suppressed oxidative distress and inflammation mainly through NRF2/COX2 axis, thus promoting paracrine and accelerating wound healing in diabetes mice.

6.
J Asian Nat Prod Res ; 26(6): 690-698, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38192122

RESUMO

Two neolignan glycosides including a new one (1), along with seven iridoid glycosides (3 - 9) and nine flavonoid glycosides (10 - 18), were isolated from the leaves of Vaccinium bracteatum. Their structures were established mainly on the basis of 1D/2D NMR and ESIMS analyses, as well as comparison to known compounds in the literature. The structure of 1 with absolute stereochemistry was also confirmed by chemical degradation and ECD calculation. Selective compounds showed antiradical activity against ABTS and/or DPPH. Moreover, several isolates also suppressed the production of ROS in RAW264.7 cells and exerted neuroprotective effect toward PC12 cells.


Assuntos
Flavonoides , Glicosídeos , Lignanas , Folhas de Planta , Folhas de Planta/química , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Animais , Camundongos , Células PC12 , Glicosídeos/química , Glicosídeos/farmacologia , Glicosídeos/isolamento & purificação , Estrutura Molecular , Lignanas/química , Lignanas/farmacologia , Lignanas/isolamento & purificação , Ratos , Células RAW 264.7 , Vaccinium/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Iridoides/química , Iridoides/farmacologia , Iridoides/isolamento & purificação , Glicosídeos Iridoides/química , Glicosídeos Iridoides/farmacologia , Glicosídeos Iridoides/isolamento & purificação , Espécies Reativas de Oxigênio , Picratos/farmacologia
7.
J Asian Nat Prod Res ; 26(3): 293-301, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37162445

RESUMO

Four new iridoid glycosides (1-4), rehmaglutosides L-O, were isolated from the air-dried roots of Rehmannia glutinosa. Their structures were established from the spectroscopic data obtained and by chemical evidence. The known mellittoside (5) and ajugol (6) were also obtained in the current investigation, and the structure of mellittoside was unequivocally defined using X-ray diffraction data. Compounds 1-6 were tested for their cytotoxicity against five human tumor cell lines and proliferation effects on Lactobacillus Reuteri.


Assuntos
Glicosídeos , Rehmannia , Humanos , Glicosídeos/farmacologia , Glicosídeos/química , Rehmannia/química , Glicosídeos Iridoides/farmacologia
8.
Phytochemistry ; 216: 113890, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852566

RESUMO

Four undescribed bis-iridoid glycosides, named phukettosides A-D, and one iridoid glycoside, referred to as phukettoside E, were isolated and fully characterized from the leaves of Morinda umbellata L. Phytochemical analysis also revealed the presence of eight known compounds. The structures were determined through extensive analysis of 1D and 2D-NMR spectroscopic and HRMS spectral data, and the absolute configurations of the isolates were deduced through ECD calculations. Biogenetic pathways for the bis-iridoid glycosides, phukettosides A-C, through intermolecular Diels-Alder type reactions, were proposed. The isolated compounds, with the exception of phukettosides B and D, were evaluated against a panel of cancer cell lines (MOLT-3, HuCCA-1, A549, HeLa, HepG2, and MDA-MB-231) and a non-cancerous cell line (MRC-5) for their cytotoxicity. None of the isolates had significant cytotoxic effects on the tested cell lines.


Assuntos
Glicosídeos Iridoides , Morinda , Humanos , Glicosídeos Iridoides/química , Morinda/química , Glicosídeos/química , Folhas de Planta/química , Iridoides/química , Células HeLa
9.
Biol Pharm Bull ; 46(6): 848-855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258151

RESUMO

A methanol extract of rhizomes of Picrorhiza kurroa Royle ex Benth. (Plantaginaceae) showed hepatoprotective effects against D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced liver injury in mice. We had previously isolated 46 compounds, including several types of iridoid glycosides, phenylethanoid glycosides, and aromatics, etc., from the extract. Among them, picroside II, androsin, and 4-hydroxy-3-methoxyacetophenone exhibited active hepatoprotective effects at doses of 50-100 mg/kg, per os (p.o.) To characterize the mechanisms of action of these isolates and to clarify the structural requirements of phenylethanoid glycosides for their hepatoprotective effects, their effects were assessed in in vitro studies on (i) D-GalN-induced cytotoxicity in mouse primary hepatocytes, (ii) LPS-induced nitric oxide (NO) production in mouse peritoneal macrophages, and (iii) tumor necrosis factor-α (TNF-α)-induced cytotoxicity in L929 cells. These isolates decreased the cytotoxicity caused by D-GalN without inhibiting LPS-induced macrophage activation and also reduced the sensitivity of hepatocytes to TNF-α. In addition, the structural requirements of phenylethanoids for the protective effects of D-GalN-induced cytotoxicity in mouse primary hepatocytes were evaluated.


Assuntos
Picrorhiza , Rizoma , Camundongos , Animais , Rizoma/química , Picrorhiza/química , Lipopolissacarídeos/toxicidade , Fator de Necrose Tumoral alfa , Glicosídeos Iridoides/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/análise , Galactosamina/toxicidade
10.
J Ethnopharmacol ; 307: 116193, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36746295

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lamiophlomis rotata (Benth.) Kudo (L. rotata), a Tibetan medicinal plant, is used to treat "yellow-water diseases", such as skin disease, jaundice and rheumatism. Our previous study showed that the iridoid glycoside extract of L. rotata (IGLR) is the major constituent of skin wound healing. However, the role of IGLR in the biological process of trauma repair and the probable mechanism of the action remain largely unknown. AIM OF THE STUDY: To investigate the role of IGLR in the biological process of trauma repair and the probable mechanism of the action. MATERIALS AND METHODS: The role of IGLR in wound healing was investigated by overall skin wound in mice with Hematoxylin and Eosin (H&E) and Masson trichrome staining. The anti-inflammatory, angiogenesis-promoting and fibril formation effects of IGLR were visualized in wound skin tissue by immunofluorescence staining, and the proinflammatory factors and growth factors were assayed by real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Macrophages, dermal fibroblasts, and endothelial cells were cultured to measure the direct/indirect interaction effects of IGLR on the proliferation and migration of cells, and flow cytometry was employed to assess the role of IGLR on macrophage phenotype. Network pharmacology combined with Western blot experiments were conducted to explore possible mechanisms of the actions. RESULTS: IGLR increased the expression of CD206 (M2 markers) through the RAS/p38 MAPK/NF-κB signaling pathway during wound injury in vivo and in vitro. IGLR suppressed the inflammatory cytokines iNOS, IL-1ß and TNF-α in the early stage of wound healing. During the proliferation step of wound repair, IGLR promoted angiogenesis and fibril formation by increasing the expression of VEGF, CD31, TGF-ß and α-SMA in wound tissue, and similar results were verified by RT-PCR and ELISA. In a paracrine mechanism, the extract promoted the proliferation of dermal fibroblasts, and endothelial cells were founded by the conditioned medium (CM). CONCLUSION: IGLR induced M2 macrophage polarization in the early stage of wound healing; in turn, IGLR played a key role in the transition from inflammation to cell proliferation during the biological process of wound healing.


Assuntos
Iridoides , NF-kappa B , Animais , Camundongos , Células Endoteliais , Glicosídeos Iridoides/farmacologia , Iridoides/farmacologia , Macrófagos , Cicatrização , Extratos Vegetais/farmacologia , Lamiaceae/química
11.
J Asian Nat Prod Res ; 25(1): 27-35, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35503565

RESUMO

Two new iridoid glycosides, named productasperulosidic acid butyl ester (1) and E-6-O-3-hydroxy-p-methoxycinnamoyl scandoside methyl ester (2), along with nine known ones (3-11), were isolated from Hedyotis diffusa Willd. The structures of them were elucidated by extensive 1D, 2D NMR and HR-ESI-MS spectral data. Compounds 1-11 showed no significant cytotoxic activity against HeLa cells.


Assuntos
Medicamentos de Ervas Chinesas , Hedyotis , Humanos , Glicosídeos Iridoides , Hedyotis/química , Células HeLa , Estrutura Molecular , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química
12.
Nat Prod Res ; 37(13): 2215-2224, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35129017

RESUMO

Aims of the study were the phytochemical investigation and chemical transformation of isolated compounds of medicinal plant listed in 'Ayurveda' like Dolichandrone atrovirens, endemic to Indian subcontinents. From chloroform extract of D. atrovirens four compounds; Ursolic acid (1), Maslinic acid (2), Lupeol (3), ß-sitosterol (4) and from methanol extract five compounds; ß-sitosterol-3-O-ß-D-glucopyranoside (5), 10-O-trans-p-Methoxycinnamoylcatalpol (6), Kaempferol-3-O-ß-D-glucopyranoside (7), 6-O-[6"(S)-hydroxy-2",6"dimethyl-2"(E)-7"-octadienoyl] catalpol (8) and Ixoside (9) were isolated. Ixoside was used for the semi-synthetic modification via azomethine ylide cycloaddition leading to novel spiro-oxindolo-pyrrolizidine adduct. The structures of novel adducts were elucidated by analysis of IR, MS and 1 D/2D NMR data. Furthermore, to confirm the chemo selection of only one double bond, we performed density functional theory (DFT) calculation, which confirms the chemo selectivity. In addition, in-silico ADME studies and atom-additive approach based on SASA was also examined for the molecules which suggest that they may be potential future candidates for drug discovery.


Assuntos
Compostos Fitoquímicos , Extratos Vegetais , Reação de Cicloadição , Estrutura Molecular
13.
Nat Prod Res ; 37(13): 2135-2143, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35067130

RESUMO

In the course of our continuing search for biologically active compounds from medicinal herbs, four undescribed terpenoids including one monoterpenoid glycoside, (1 R, 3S, 4S, 5 R)-(-)-1,8-epoxy-p-menthan-5-ethoxycarbonyl-3-O-ß-D-glucopyranoside (1), one iridoid glycoside, 3'-O-ß-D-glucopyranosyl-melampyroside (2), one sesquiterpene, 1-(2-methylbutanol)-2-pentyl-1,3-cyclohexadiene (3), and one triterpenoid, 28-nor-3ß,18ß-dihydroxyurs-12-ene (4), together with nine known terpenoids (5-13) were isolated from the dried aerial parts of Dracocephalum moldavica (Lamiaceae). Their chemical structures were elucidated by detailed spectroscopy (1 D and 2 D NMR), HRESIMS data analysis and acid hydrolysis. Among them, compounds 9 and 10 were isolated from the family Lamiaceae, compounds 5, 6 and 11-13 were identified from the genus Dracocephalum and compounds 7 and 8 were reported from the D. moldavica for the first time. The biological evaluation of anti-complementary activity revealed that some compounds, 4, 6 and 12 exhibited anti-complementary activity with CH50 and AP50 values ranging from 0.67-1.43 and 1.12-1.55 mM, respectively.


Assuntos
Lamiaceae , Terpenos , Terpenos/farmacologia , Lamiaceae/química , Espectroscopia de Ressonância Magnética , Componentes Aéreos da Planta
14.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-992186

RESUMO

OBJECTIVE Vascular dementia(VaD)is associated with cerebral hypoperfusion,which results in long-term cognitive impairment and memory loss.Neuroin-flammation is an important mechanism of vascular demen-tia.Cornel iridoid glycoside(CIG)is the major active con-stituent isolated from the ripe fruit of Cornus officinalis.Previous studies have shown that CIG enhances neuro-logical function in VaD rats.In the present research,we attempted to clarify the molecular processes underlying the role of CIG on neuroinflammation in VaD.METHODS In vivo,we created a chronic cerebral ischemia rat model by ligation of the bilateral common carotid arteries(2VO).The rats were divided into sham operation,2VO,2VO + CIG(60 and120 mg·kg-1·d-1),and 2VO+ butylphthalide(100 mg·kg-1·d-1)groups and then treated rats with differ-ent concentrations of CIG.In vitro,BV2 microglia cells were induced with bacterial lipopolysaccharide(LPS)and interferon-γ(IFN-γ)to construct the model of microglias with analog neuroinflammation.Histopathology and biel-schowsky silver staining were used to detect myelin integrity and neuronal loss.Immunofluorescence was used to observe changes in microglia.Magnetic Luminex Assay was used to detect changes in inflammatory fac-tors.Western blotting,ELISA or calpain activity assay was used to measure the expression and activity of cal-pain,as well as the expression of NLRP3 inflammasome protein.Furthermore,NLRP3 overexpressing cells were used to further elucidate the potential anti-inflammatory molecular mechanism of CIG.RESULTS ① CIG improved neuronal impairment in the brain of 2VO rats.②CIG increased white matter(WM)integrity in 2VO rats.③ CIG reduced microglia inflammatory response in the cortex and hippocampus of 2VO rats.④ CIG inhibited calpain activity in the cortex and hippocampus of 2VO rats.⑤ CIG exerted anti-inflammatory effects on BV2 cells stimulated by LPS and IFN-γ.⑥ CIG Inhibited the expression and activity of calpain in LPS/IFN-γ-activated BV2 cells.⑦ The main component of CIG had a weak binding force to calpain1.⑧ CIG inhibited the activation of the NLRP3 inflammasome.⑨CIG reduced the activity of calpain induced by NLRP3 overexpression.CONCLU-SION CIG inhibits microglial polarization into a proinflam-matory state by attenuating the assembly of the NLRP3 inflammasome and calpain activation,thus reducing brain inflammation,WM injury,and the loss of neurons.To sum up,the present study suggests that CIG inhibits neuroinflammation.The NLRP3/calpain pathway may be the main pathway by which CIG protects against neuroin-flammation.

15.
J Agric Food Chem ; 70(38): 11967-11980, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36104266

RESUMO

Vascular dementia (VaD) is associated with cerebral hypoperfusion, which results in long-term cognitive impairment and memory loss. Cornel iridoid glycoside (CIG) is the major active constituent isolated from the ripe fruit of Cornus officinalis. Previous studies have shown that CIG enhances neurological function in VaD rats. In the present research, we attempted to clarify the molecular processes underlying the role of CIG in neuroinflammation in VaD. We created a chronic cerebral ischemia rat model by ligation of the bilateral common carotid arteries (2VO) and then treated rats with different concentrations of CIG. Comprehensive analyses revealed that CIG ameliorated myelin integrity and neuronal loss. Furthermore, we also found that CIG inhibited polarized microglia activation and attenuated inflammasome-mediated production of proinflammatory cytokines in BV2 microglia cells induced by LPS/IFN-γ and in the brains of 2VO rats. To further elucidate the role of CIG in microglia-mediated inflammatory response, we investigated the expression and activity of calpain. CIG inhibited the expression and activity of calpain 1/2, which was characterized by decreased calpastatin and spectrin αII expression. In particular, intra- and extracellular calpain 1 levels were reduced by CIG. However, CIG showed weak interaction with calpain 1. In addition, we found that CG administration significantly repressed the assembly of the NOD-like receptor protein 3 (NLRP3) inflammasome, including NLRP3, ASC, and caspase-1. In conclusion, our knowledge of the mechanisms by which CIG regulates NLRP3/calpain signaling to influence inflammatory responses offers further insights into potential therapeutic strategies to treat VaD.


Assuntos
Iridoides , Microglia , Animais , Calpaína/metabolismo , Caspases/metabolismo , Citocinas/metabolismo , Inflamassomos/genética , Inflamassomos/metabolismo , Glicosídeos Iridoides/farmacologia , Glicosídeos Iridoides/uso terapêutico , Iridoides/metabolismo , Lipopolissacarídeos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR/metabolismo , Ratos , Espectrina/metabolismo
16.
Allergol Immunopathol (Madr) ; 50(5): 121-128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36086972

RESUMO

BACKGROUND: Sepsis-induced acute lung injury (ALI) is a syndrome associated with inflammation. Cornus iridoid glycoside (CIG), a bioactive component isolated from Corni Fructus, exhibits anti-inflammatory activities. However, the function and underlying mechanisms of CIG in mice with sepsis-induced ALI remain elusive. METHODS: The sepsis-elicited ALI model of mice was established by the induction of cecal ligation and puncture (CLP). The wet/dry (W/D) ratio of lung tissues was examined, and the pathological alterations were determined by hematoxylin and eosin staining. The messenger RNA (mRNA) expressions and serum levels of Interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α) were measured by reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent serologic assay, respectively. The concentrations of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were assessed by biochemical kits. In addition, the relative protein levels of p-p65, p65, phosphorylated- nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (p-IκBα), IκBα, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) gene were analyzed by Western blotting analysis. RESULTS: CLP enhanced W/D ratio and aggravated pathological changes and scores in mice, which were obviously alleviated by the two concentrations of CIG treatment. CIG treatment notably decreased the CLP-induced mRNA expressions and serum levels of IL-1ß, IL-6, TNF-α, and MDA, but enhanced the decreased concentrations (caused by CLP) of SOD and GSH-Px. Moreover, CIG treatment significantly decreased the ratios of p65/p-p65 and IκBα/p-IκBα caused by CLP, but aggravated the CLP-induced relative protein levels of Nrf2 and HO-1. CONCLUSIONS: CIG obviously ameliorated the sepsis-induced ALI in mice by suppressing inflammation and oxidative stress, which was closely associated with nuclear factor kappa B (NF-κB) and Nrf2-HO-1 signaling pathways.


Assuntos
Lesão Pulmonar Aguda , Cornus , Sepse , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/etiologia , Animais , Cornus/genética , Cornus/metabolismo , Inflamação/complicações , Interleucina-6 , Glicosídeos Iridoides/efeitos adversos , Iridoides/efeitos adversos , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , RNA Mensageiro , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/patologia , Superóxido Dismutase/efeitos adversos , Fator de Necrose Tumoral alfa
17.
Allergol. immunopatol ; 50(5): 121-128, sept. 2022. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-208632

RESUMO

Background: Sepsis-induced acute lung injury (ALI) is a syndrome associated with inflamma-tion. Cornus iridoid glycoside (CIG), a bioactive component isolated from Corni Fructus, exhibits anti-inflammatory activities. However, the function and underlying mechanisms of CIG in mice with sepsis-induced ALI remain elusive.Methods: The sepsis-elicited ALI model of mice was established by the induction of cecal ligation and puncture (CLP). The wet/dry (W/D) ratio of lung tissues was examined, and the pathological alterations were determined by hematoxylin and eosin staining. The messenger RNA (mRNA) expressions and serum levels of Interleukin (IL)-1Beta IL-6, and tumor necrosis factor-alfa(TNF-alpha) were measured by reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent serologic assay, respectively. The concentrations of malondial-dehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were assessed by biochemical kits. In addition, the relative protein levels of p-p65, p65, phosphorylated-nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (p-IκBalpha), IκBalpha, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) gene were analyzed by Western blotting analysis.Results: CLP enhanced W/D ratio and aggravated pathological changes and scores in mice, which were obviously alleviated by the two concentrations of CIG treatment. CIG treatment notably decreased the CLP-induced mRNA expressions and serum levels of IL-1Beta, IL-6, TNF-alpha, and MDA, but enhanced the decreased concentrations (caused by CLP) of SOD and GSH-Px. Moreover, CIG treatment significantly decreased the ratios of p65/p-p65 and IκBα/p-IκBalpha caused by CLP, but...(AU)


Assuntos
Animais , Masculino , Camundongos , Lesão Pulmonar Aguda , Cornus , Sepse , Modelos Animais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/etiologia , Cornus/genética , Cornus/metabolismo , Inflamação/complicações , Interleucina-6 , Glucosídeos Iridoides/efeitos adversos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , RNA Mensageiro , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/patologia , Superóxido Dismutase/efeitos adversos
18.
Front Plant Sci ; 13: 913717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812974

RESUMO

Iridoid glycoside is the important secondary metabolite and the main active component in Rehmannia glutinosa. However, the mechanisms that underlie the regulation of iridoid glycoside biosynthesis remain poorly understood in R. glutinosa. Herein, the analysis of RNA-seq data revealed that 3,394 unigenes related to the biosynthesis of secondary metabolites were identified in R. glutinosa. A total of 357 unigenes were involved in iridoid glycoside synthesis, in which the highly conservative genes, such as DXS, DXR, GPPS, G10H, and 10HGO, in organisms were overexpressed. The analysis of the above genes confirmed that the co-occurrence ratio of DXS, DXR, and GPPS was high in plants. Further, our results showed that under normal and 5-azacytidine (5-azaC) treatment, the expression levels of DXS, DXR, GPPS, G10H, and 10HGO were consistent with the iridoid glycoside accumulation in R. glutinosa, in which the application of the different concentrations of 5-azaC, especially 50 µM 5-azaC, could significantly upregulate the expression of five genes above and iridoid glycoside content. In addition, the changes in the spatiotemporal specificity of degree and levels of DNA methylation were observed in R. glutinosa, in which the hemi-methylation was the main reason for the change in DNA methylation levels. Similar to the changes in 5-methyl cytosine (5mC) content, the DNA demethylation could be induced by 5-azaC and responded in a dose-dependent manner to 15, 50, and 100 µM 5-azaC. Taken together, the expression of iridoid glycoside synthesis gene was upregulated by the demethylation in R. glutinosa, followed by triggering the iridoid glycoside accumulation. These findings not only identify the key genes of iridoid glycoside synthesis from R. glutinosa, but also expand our current knowledge of the function of methylation in iridoid glycoside accumulation.

19.
Chem Biodivers ; 19(5): e202100936, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35502889

RESUMO

Phlomis medicinalis Diels, an important perennial herbal plant unique to the Qinghai-Tibet Plateau, is often used as Tibetan Materia Medicine Radix Phlomii for the treatment of cold, cough, and convergence trauma. In order to efficiently extract the iridoid glycosides from P. medicinalis, an ultrasound-assisted deep eutectic solvent extraction technique was employed. The main parameters influencing the extraction process were studied through single-factor tests and the extraction was optimized by using response surface methodology. The hemostasis activity of total iridoid glycosides (TIG) from P. medicinalis was evaluated in vitro and in mice. The optimization results revealed that the optimal process parameters were liquid-solid ratio 20 : 1, choline chloride-lactic acid concentration 79 %, and sonication time 34 min, under which a TIG extraction yield of 20.73 % was obtained. Meanwhile, high-performance liquid chromatography-photodiode array/mass spectrometry (HPLC-PDA/MS) was employed to characterize the optimized extract and indicated that TIG from P. medicinalis mainly consisted of sixteen reported iridoid glycosides with a total content of 91.22 %. The experimental results in vivo and in vitro indicated that TIG from P. medicinalis had strong hemostasis activities, which may be achieved by increasing the fibrinogen levels. Therefore, the ultrasound-assisted deep eutectic solvent extraction is an effective method to extract iridoid glycosides from P. medicinalis and they will be promising candidates to be developed for medical hemostasis agents.


Assuntos
Glicosídeos Iridoides , Phlomis , Animais , Cromatografia Líquida de Alta Pressão/métodos , Solventes Eutéticos Profundos , Glicosídeos/farmacologia , Hemostasia , Glicosídeos Iridoides/química , Glicosídeos Iridoides/farmacologia , Camundongos , Phlomis/química
20.
Nat Prod Res ; 36(7): 1700-1706, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32820643

RESUMO

Investigation into the chemical diversity of Nardostachys chinensis Batal led to the discovery of three new (1-3) and one known (4) iridoid glycosides. Their structures were established through spectroscopic methods including 1 D and 2 D NMR experiments and HRESIMS analysis. Inhibitory effects of 1-4 on nitric oxide production were investigated in lipopolysaccaride (LPS)-mediated RAW 264.7 cells, and they displayed IC50 values in the range 7.8-15.2 µM.


Assuntos
Nardostachys , Animais , Glicosídeos/farmacologia , Glicosídeos Iridoides/farmacologia , Espectroscopia de Ressonância Magnética , Camundongos , Nardostachys/química , Óxido Nítrico , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...