RESUMO
The Amarillo River in Famatina, La Rioja, Argentina, is a natural acidic river with distinctive yellow-ochreous iron precipitates along its course. While mining activities have occurred in the area, the river's natural acidity is influenced by environmental factors beyond mineralogy, where microbial species have a crucial role. Although iron-oxidising bacteria have been identified, a comprehensive analysis of the entire microbial community in this extreme environment has not yet been conducted. In this study, we employ high-throughput sequencing to explore the bacterial and fungal diversity in the Amarillo River and Cueva de Pérez terraces, considered prehistoric analogues of the current river basin. Fe(II)-enrichment cultures mimicking different environmental conditions of the river were also analysed to better understand the roles of prokaryotes and fungi in iron oxidation processes. Additionally, we investigate the ecological relationships between bacteria and fungi using co-occurrence and network analysis. Our findings reveal a diverse bacterial community in the river and terraces, including uncultured species affiliated with Acidimicrobiia, part of an uncharacterised universal microbial acidic diversity. Acidophiles such as Acidithiobacillus ferrivorans, the main iron oxidiser of the system, and Acidiphilium, which is unable to catalyse Fe(II) oxidation but has a great metabolic flexibility,, are part of the core of the microbial community, showing significant involvement in intraspecies interactions. Alicyclobacillus, which is the main Fe(II) oxidiser in the enrichment culture at 30 °C and is detected all over the system, highlights its flexibility towards the iron cycle. The prevalence of key microorganisms in both rivers and terraces implies their enduring contribution to the iron cycle as well as in shaping the iconic yellow landscape of the Amarillo River. In conclusion, this study enhances our understanding of microbial involvement in iron mineral precipitation, emphasising the collaborative efforts of bacteria and fungi as fundamental geological agents in the Amarillo River.
RESUMO
Heme oxygenase-1 (HO-1), which catalyzes heme degradation releasing iron, regulates several processes related to breast cancer. Iron metabolism deregulation is also connected with several tumor processes. However the regulatory relationship between HO-1 and iron proteins in breast cancer remains unclear. Using human breast cancer biopsies, we found that high HO-1 levels significantly correlated with low DMT1 levels. Contrariwise, high HO-1 levels significantly correlated with high ZIP14 and prohepcidin expression, as well as hemosiderin storage. At mRNA level, we found that high HO-1 expression significantly correlated with low DMT1 expression but high ZIP14, L-ferritin and hepcidin expression. In in vivo experiments in mice with genetic overexpression or pharmacological activation of HO-1, we detected the same expression pattern observed in human biopsies. In in vitro experiments, HO-1 activation induced changes in iron proteins expression leading to an increase of hemosiderin, ROS levels, lipid peroxidation and a decrease of the growth rate. Such low growth rate induced by HO-1 activation was reversed when iron levels or ROS levels were reduced. Our findings demonstrate an important role of HO-1 on iron homeostasis in breast cancer. The changes in iron proteins expression when HO-1 is modulated led to the iron accumulation deregulating the iron cell cycle, and consequently, generating oxidative stress and low viability, all contributing to impair breast cancer progression.
Assuntos
Neoplasias da Mama , Ferro , Camundongos , Animais , Humanos , Feminino , Ferro/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Neoplasias da Mama/patologia , Espécies Reativas de Oxigênio/metabolismo , Hemossiderina , Sobrevivência CelularRESUMO
Availability of fixed nitrogen is a pivotal driver on primary productivity in the oceans, thus the identification of key processes triggering nitrogen losses from these ecosystems is of major importance as they affect ecosystems function and consequently global biogeochemical cycles. Denitrification and anaerobic ammonium oxidation coupled to nitrite reduction (Anammox) are the only identified marine sinks for fixed nitrogen. The present study provides evidence indicating that anaerobic ammonium oxidation coupled to the reduction of sulfate, the most abundant electron acceptor present in the oceans, prevails in marine sediments. Tracer analysis with 15N-ammonium revealed that this microbial process, here introduced as Sulfammox, accounts for up to 5 µg 15N2 produced g-1 day-1 in sediments collected from the eastern tropical North Pacific coast. Raman and X-ray diffraction spectroscopies revealed that elemental sulfur and sphalerite (ZnFeS) were produced, besides free sulfide, during the course of Sulfammox. Anaerobic ammonium oxidation linked to Fe(III) reduction (Feammox) was also observed in the same marine sediments accounting for up to 2 µg 15N2 produced g-1 day-1. Taxonomic characterization, based on 16S rRNA gene sequencing, of marine sediments performing the Sulfammox and Feammox processes revealed the microbial members potentially involved. These novel nitrogen sinks may significantly fuel nitrogen loss in marine environments. These findings suggest that the interconnections among the oceanic biogeochemical cycles of N, S and Fe are much more complex than previously considered.