Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 827
Filtrar
1.
Endocrine ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971945

RESUMO

Diabetes is one of the major diseases and concerns of public health systems that affects over 200 million patients worldwide. It is estimated that 90% of these patients suffer from diabetes type 2, while 10% present diabetes type 1. This type of diabetes and certain types of diabetes type 2, are characterized by dysregulation of blood glycemic levels due to the total or partial depletion of insulin-secreting pancreatic ß-cells. Different approaches have been proposed for long-term treatment of insulin-dependent patients; amongst them, cell-based approaches have been the subject of basic and clinical research since they allow blood glucose level sensing and in situ insulin secretion. The current gold standard for insulin-dependent patients is on-demand exogenous insulin application; cell-based therapies aim to remove this burden from the patient and caregivers. In recent years, protocols to isolate and implant pancreatic islets from diseased donors have been developed and tested in clinical trials. Nevertheless, the shortage of donors, along with the need of immunosuppressive companion therapies, have pushed researchers to focus their attention and efforts to overcome these disadvantages and develop alternative strategies. This review discusses current tested clinical approaches and future potential alternatives for diabetes type 1, and some diabetes type 2, insulin-dependent patients. Additionally, advantages and disadvantages of these discussed methods.

2.
Endocr Pract ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871053

RESUMO

OBJECTIVE: This study examined the preoperative and postoperative variables associated with 1 year and long-term insulin independence following total pancreatectomy and islet autotransplantation (TPIAT). METHODS: 46 TPIAT patients from 2010 to 2022 in a single hospital system were retrospectively analyzed. Pre- and postoperative variables were compared between short-term (1 year) and long-term (last follow-up after year 1) insulin-independent versus -dependent patients. RESULTS: Nine (20%) and seven (15%) patients achieved short- and long-term insulin independence, respectively. The patients were followed up for a median of 2.8 years (interquartile range [IQR] 1.0, 4.7). Short-term insulin independence was associated with higher median transplanted islet equivalents (IEQ) per kg (6981 vs 4493, P = .02), lower units of basal insulin on discharge (7 vs 12, P = .009), and lower rates of discharge with an insulin regimen (67% vs 100%, P = .006). Odds of short-term insulin independence increased by 80% for every 1000 increase in IEQ per kg (OR 1.80, CI 1.18-3.12, P = .005) and decreased by 32% for every additional basal unit of insulin on discharge (OR 0.68, CI 0.42-0.91, P = .003) on average. Long-term insulin independence was also associated with transplanted IEQ per kg. No patient on antihyperglycemic medication before surgery achieved insulin independence. CONCLUSION: Short- and long-term insulin independence after TPIAT is associated with higher transplanted IEQ per kg and immediate postoperative variables that can be used to inform the discussions clinicians have with their patients regarding glycemic prognosis following TPIAT.

3.
Surg Endosc ; 38(7): 3948-3956, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844730

RESUMO

INTRODUCTION: Total pancreatectomy with islet autotransplantation (TPIAT) treats refractory pain in chronic pancreatitis, prevents episodes of acute exacerbation, and mitigates postoperative brittle diabetes. The minimally invasive (MIS) approach offers a decreased surgical access trauma and enhanced recovery. Having established a laparoscopic TPIAT program, we adopted a robotic approach (R-TPIAT) and studied patient outcomes compared to open TPIAT. METHODS: Between 2013 and 2021, 61 adult patients underwent TPIAT after a comprehensive evaluation (97% chronic pancreatitis). Pancreatic islets were isolated on-site during the procedure. We analyzed and compared intraoperative surgical and islet characteristics, postoperative morbidity and mortality, and 1-year glycemic outcomes. RESULTS: MIS-TPIAT was performed in 41 patients (67%, 15 robotic and 26 laparoscopic), and was associated with a shorter mean length of intensive care unit stay compared to open TPIAT (2.9 vs 4.5 days, p = 0.002). R-TPIAT replaced laparoscopic TPIAT in 2017 as the MIS approach of choice and demonstrated decreased blood loss compared to open TPIAT (324 vs 843 mL, p = 0.004), similar operative time (609 vs 562 min), 30-day readmission rate (7% vs 15%), and 90-day complication rate (13% vs 20%). The glycemic outcomes including C-peptide detection at 1-year (73% vs 88%) and insulin dependence at 1-year (75% vs 92%) did not differ. The mean length of hospital stay after R-TPIAT was 8.6 days, shorter than for laparoscopic (11.5 days, p = 0.031) and open TPIAT (12.6 days, p = 0.017). Both MIS approaches had a 1-year mortality rate of 0%. CONCLUSIONS: R-TPIAT was associated with a 33% reduction in length of hospital stay (4-day benefit) compared to open TPIAT. R-TPIAT was similar to open TPIAT on measures of feasibility, safety, pain control, and 1-year glycemic outcomes. Our data suggest that robotic technology, a new component in the multidisciplinary therapy of TPIAT, is poised to develop into the primary surgical approach for experienced pancreatic surgeons.


Assuntos
Transplante das Ilhotas Pancreáticas , Pancreatectomia , Pancreatite Crônica , Procedimentos Cirúrgicos Robóticos , Transplante Autólogo , Humanos , Pancreatite Crônica/cirurgia , Procedimentos Cirúrgicos Robóticos/métodos , Transplante das Ilhotas Pancreáticas/métodos , Masculino , Feminino , Pancreatectomia/métodos , Pessoa de Meia-Idade , Adulto , Laparoscopia/métodos , Tempo de Internação/estatística & dados numéricos , Estudos Retrospectivos , Duração da Cirurgia , Resultado do Tratamento , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia
4.
Pediatr Transplant ; 28(5): e14813, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38895780

RESUMO

BACKGROUND: Total pancreatectomy with islet autotransplantation (TPIAT) is a potentially curative treatment for patients with chronic pancreatitis (CP) refractory to medical and endoscopic therapies. Patients often receive the initial follow-up medical care at the surgery-performing center, but then may follow up closer to where they live. We sought to describe the characteristics and outcomes of pediatric patients who underwent TPIAT at a national surgical referral center and were subsequently followed at our regional subspecialty center, the Children's Hospital Colorado. METHODS: We performed a retrospective analysis of baseline and outcomes data for the 10 pediatric patients who underwent TPIAT from 2007 to 2020 and received follow-up care at our institution. RESULTS: All patients had a diagnosis of CP, and nine of 10 patients had an identified underlying genetic risk factor. Insulin usage was common immediately following TPIAT, but at 1 year of follow-up, five of nine patients (55.6%) were insulin-independent and nine of nine had an HbA1c below 6.5%. For the four patients on insulin 1 year after TPIAT, total daily insulin dose ranged from 0.06 to 0.71 units/kg/day. All patients who underwent mixed meal tolerance testing had a robust peak C-peptide response at 1 year. There were significant improvements in nausea, school/work absences, narcotic dependence, and pancreas-related hospital admissions 1 year after TPIAT. CONCLUSIONS: Patients followed at our center had long-term improvements with low-insulin usage, detectable C-peptide, and improved pancreatitis-related outcomes after TPIAT. Pediatric patients who undergo TPIAT can be successfully co-managed in conjunction with the original surgery-performing center.


Assuntos
Transplante das Ilhotas Pancreáticas , Pancreatectomia , Pancreatite Crônica , Qualidade de Vida , Transplante Autólogo , Humanos , Pancreatite Crônica/cirurgia , Transplante das Ilhotas Pancreáticas/métodos , Masculino , Feminino , Estudos Retrospectivos , Criança , Adolescente , Resultado do Tratamento , Glicemia/análise , Glicemia/metabolismo , Estudos Longitudinais
6.
Transplant Rev (Orlando) ; 38(4): 100870, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38917621

RESUMO

BACKGROUND: Pancreatic islet transplantation for type 1 diabetes mellitus (T1DM) is efficacious in supressing severe hypoglycaemic episodes (SHE) and restoring glycaemic regulation, which are both pivotal in increasing health-related quality of life (HRQoL). Therefore, a systematic assessment of reports detailing HRQoL outcomes is warranted to better understand the benefits of islet transplantation. To this end, we performed a systematic review of the literature to assess the impact of islet transplantation on HRQoL in individuals with T1DM, whether as a standalone procedure (ITA) or following renal transplantation (IAK). METHOD: All studies providing a quantitative assessment of HRQoL following ITA or IAK were included. Selected studies had to meet the following criteria: they had to (i) involve adult recipients of islet grafts for T1DM, (ii) use either generic or disease-specific QoL assessment tools, (iii) provide a comparative analysis of QoL metrics between the pre- and post-transplantation state or between the post-transplantation state and other pre-transplant patients or the general population. RESULTS: Seven studies that met the inclusion criteria provided data on 205 subjects. In the included studies, HRQoL was measured using both generic instruments, such as the 36-item Short Form Health Survey (SF-36) and the Health Status Questionnaire (HSQ) 2.0, and disease-specific instruments, such as the Diabetes Distress Scale (DDS), the Diabetes Quality of Life Questionnaire, and the Hypoglycaemia Fear Survey (HFS). These instruments cover physical, mental, social, or functional health dimensions. We found that pancreatic islet transplantation was associated with improvements in all HRQoL dimensions compared with the pre-transplant baseline. CONCLUSIONS: Our systematic review demonstrates that islet transplantation significantly enhances quality of life in individuals with T1DM who are experiencing SHE. To our knowledge, this is the most extensive systematic review conducted to date, evaluating the impact of islet transplantation on HRQoL.

7.
Life Sci ; 351: 122812, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38862063

RESUMO

AIMS: Despite islet transplantation has proved a great potential to become the standard therapy for type 1 diabetes mellitus (T1DM), this approach remains limited by ischemia, hypoxia, and poor revascularization in early post-transplant period as well as inflammation and life-long host immune rejection. Here, we investigate the potential and mechanism of human amniotic mesenchymal stem cells (hAMSCs)-islet organoid to improve the efficiency of islet engraftment in immunocompetent T1DM mice. MAIN METHODS: We generated the hAMSC-islet organoid structure through culturing the mixture of hAMSCs and islets on 3-dimensional-agarose microwells. Flow cytometry, whole-body fluorescent imaging, immunofluorescence, Calcein-AM/PI staining, ELISA, and qPCR were used to assess the potential and mechanism of shielding hAMSCs to improve the efficiency of islet transplantation. KEY FINDINGS: Transplant of hAMSC-islet organoids results in remarkably better glycemic control, an enhanced glucose tolerance, and a higher ß cell mass in vivo compared with control islets. Our results show that hAMSCs shielding provides an immune privileged microenvironment for islets and promotes graft revascularization in vivo. In addition, hAMSC-islet organoids show higher viability and reduced dysfunction after exposure to hypoxia and inflammatory cytokines in vitro. Finally, our results show that shielding with hAMSCs leads to the activation of PKA-CREB-IRS2-PI3K and PKA-PDX1 signaling pathways, up-regulation of SIL1 mRNA levels, and down-regulation of MT1 mRNA levels in ß cells, which ultimately promotes the synthesis, folding and secretion of insulin, respectively. SIGNIFICANCE: hAMSC-islet organoids can evidently increase the efficiency of islet engraftment and might develop into a promising alternative for the clinical treatment of T1DM.


Assuntos
Âmnio , Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Organoides , Animais , Células-Tronco Mesenquimais/citologia , Camundongos , Humanos , Transplante das Ilhotas Pancreáticas/métodos , Diabetes Mellitus Experimental/terapia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/citologia , Âmnio/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Diabetes Mellitus Tipo 1/terapia , Camundongos Endogâmicos C57BL , Masculino
8.
Cells ; 13(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38786050

RESUMO

Allogeneic islet transplantation has become a standard therapy for unstable type 1 diabetes. However, considering the large number of type 1 diabetic patients, the shortage of donors is a serious issue. To address this issue, clinical islet xenotransplantation is conducted. The first clinical islet xenotransplantation was performed by a Swedish team using fetal pancreatic tissue. Thereafter, clinical trials of islet xenotransplantation were conducted in New Zealand, Russia, Mexico, Argentina, and China using neonatal pig islets. In clinical trials, fetal or neonatal pancreata are used because of the established reliable islet isolation methods. These trials demonstrate the method's safety and efficacy. Currently, the limited number of source animal facilities is a problem in terms of promoting islet xenotransplantation. This limitation is due to the high cost of source animal facilities and the uncertain future of xenotransplantation. In the United States, the first xenogeneic heart transplantation has been performed, which could promote xenotransplantation. In Japan, to enhance xenotransplantation, the 'Medical Porcine Development Association' has been established. We hope that xenogeneic transplantation will become a clinical reality, serving to address the shortage of donors.


Assuntos
Transplante das Ilhotas Pancreáticas , Transplante Heterólogo , Transplante das Ilhotas Pancreáticas/métodos , Animais , Humanos , Rejeição de Enxerto , Suínos , Resultado do Tratamento , Diabetes Mellitus Tipo 1/cirurgia , Diabetes Mellitus Tipo 1/terapia , Ensaios Clínicos como Assunto , Ilhotas Pancreáticas
9.
Ann Gastroenterol Surg ; 8(3): 401-412, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38707227

RESUMO

Total pancreatectomy with islet autotransplantation (TPIAT) is an established and effective treatment modality for patients diagnosed with intractable chronic pancreatitis (CP) and recurrent acute pancreatitis (RAP). TPIAT primarily aims to manage debilitating pain leading to impaired quality of life among patients with CP or RAP, which can be successfully managed with medical, endoscopic, or surgical interventions. TPIAT is significantly successful in relieving pain associated with CP and improving health-related quality of life outcomes. Furthermore, the complete loss of pancreatic endocrine function attributed to total pancreatectomy (TP) can be compensated by autologous islet transplantation (IAT). Patients receiving IAT can achieve insulin independence or can be less dependent on exogenous insulin compared with those receiving TP alone. Historically, TPIAT has been mainly used in the United States, and its outcomes have been improving due to technological advancements. Despite some challenges, TPIAT can be a promising treatment for patients with CP-related intractable pain. Thus far, TPIAT is not commonly performed in Japan. Nevertheless, it may improve health-related quality of life in Japanese patients with CP, similar to Western patients. This review article aimed to provide an overview of the indications, related procedures, and outcomes of TPIAT and to discuss future prospects in Japan.

11.
Abdom Radiol (NY) ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806704

RESUMO

Whole-organ pancreas, pancreatic-kidney and islet transplantation are surgical therapeutic options for the treatment of type 1 diabetes. They can enable effective glycemic control, improve quality of life and delay/reduce the secondary complications of type 1 diabetes mellitus. Radiologists are integral members of the multidisciplinary transplantation team involved in these procedures, with multimodality imaging serving as the mainstay for early recognition and management of transplant related complications. This review highlights the transplantation procedures available for patients with type 1 Diabetes Mellitus with a focus on the imaging appearance of transplantation-related complications.

12.
BMC Nephrol ; 25(1): 156, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724923

RESUMO

BACKGROUND: Islet transplantation is an effective treatment for diabetes or even its complications. Aim of this study is to investigate efficacy of biomaterial treated islet transplantation on treating diabetic nephropathy. METHODS: Male rats were randomly divided into 6 groups; Control, diabetic control, diabetic transplanted with untreated islets, with platelet rich plasma treated islets, with pancreatic islets homogenate treated islets, or with these biomaterials combination treated islets. Islets cultured with biomaterials and transplanted to diabetic rats. After 60 days, biochemical, oxidative stress, and stereological parameters were assessed. RESULTS: Serum albumin and BUN concentration, decreased and increased respectively, Oxidative stress of kidney impaired, kidney weight, volume of kidney, cortex, medulla, glomerulus, proximal and distal tubules, collecting ducts, vessels, inflammatory, necrotic and fibrotic tissue in diabetic group increased compared to control group (p < 0.001). In treated groups, especially pancreatic islets homogenate treated islets transplanting animals, there was significant changes in kidney weight, and volume of kidney, proximal and distal tubules, Henle's loop and collecting ducts compared with diabetic group (p = 0.013 to p < 0.001). Combination treated islets animals showed significant increase in vessel volume compared to diabetic group (p < 0.001). Necrotic and fibrotic tissue significantly decreased in islets treated than untreated islet animals, it was higher in pancreatic islets homogenate, and combination treated islets groups (p = 0.001). CONCLUSIONS: Biomaterials treated islets transplanting could improve diabetic nephropathy. Improvement of oxidative stress followed by controlling glucose level, and effects of growth factors presenting in biomaterials can be considered as capable underlying mechanism of ameliorating inflammatory, necrotic and fibrotic tissue volume.


Assuntos
Materiais Biocompatíveis , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Transplante das Ilhotas Pancreáticas , Animais , Masculino , Ratos , Nefropatias Diabéticas/patologia , Transplante das Ilhotas Pancreáticas/métodos , Materiais Biocompatíveis/uso terapêutico , Ilhotas Pancreáticas/patologia , Estresse Oxidativo , Ratos Sprague-Dawley , Resultado do Tratamento
13.
Sci Rep ; 14(1): 11640, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773268

RESUMO

Porcine islet xenotransplantation is a promising therapy for severe diabetes mellitus. Maintenance of the quality and quantity of porcine islets is important for the success of this treatment. Here, we aimed to elucidate the influence of relatively short-term (14 days) culture on adult porcine islets isolated from three micro-minipigs (P111, P112 and P121). Morphological characteristics of islets changed little after 14 days of culture. The viability of cultured islets was also maintained at a high level (> 80%). Furthermore, cultured islets exhibited similar glucose-stimulated insulin secretion and insulin content at Day 14 were preserved comparing with Day 1, while the expressions of Ins, Gcg and Sst were attenuated at Day 14. Xenotransplantation using diabetic nude mice showed no normalization of blood glucose but increased levels of plasma porcine C-peptide after the transplantation of 14 day cultured porcine islets. Histological assessment revealed that relatively short-term cultured porcine islets were successfully engrafted 56 days following transplantation. These data show that relatively short-term culture did not impair the quality of adult porcine islets in regard to function, morphology, and viability. Prevention of impairment of gene correlated with endocrine hormone is warranted for further improvement.


Assuntos
Insulina , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Transplante Heterólogo , Animais , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/citologia , Suínos , Transplante das Ilhotas Pancreáticas/métodos , Insulina/metabolismo , Camundongos , Camundongos Nus , Secreção de Insulina , Diabetes Mellitus Experimental/terapia , Glicemia/metabolismo , Porco Miniatura , Sobrevivência Celular , Peptídeo C/metabolismo , Peptídeo C/sangue
14.
Int J Biol Macromol ; 271(Pt 2): 132376, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750865

RESUMO

Diabetes is a complex metabolic disease and islet transplantation is a promising approach for the treatment of diabetes. Unfortunately, the transplanted islets at the subcutaneous site are also affected by various adverse factors such as poor vascularization and hypoxia. In this study, we utilize biocompatible copolymers l-lactide and D,l-lactide to manufacture a biomaterial scaffold with a mesh-like structure via 3D printing technology, providing a material foundation for encapsulating pancreatic islet cells. The scaffold maintains the sustained release of vascular endothelial growth factor (VEGF) and a slow release of oxygen from calcium peroxide (CPO), thereby regulating the microenvironment for islet survival. This helps to improve insufficient subcutaneous vascularization and reduce islet death due to hypoxia post-transplantation. By pre-implanting VEGF-CPO scaffolds subcutaneously into diabetic rats, a sufficiently vascularized site is formed, thereby ensuring early survival of transplanted islets. In a word, the VEGF-CPO scaffold shows good biocompatibility both in vitro and in vivo, avoids the adverse effects on the implanted islets, and displays promising clinical transformation prospects.


Assuntos
Materiais Biocompatíveis , Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Impressão Tridimensional , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular , Animais , Alicerces Teciduais/química , Ratos , Transplante das Ilhotas Pancreáticas/métodos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Diabetes Mellitus Experimental/terapia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/metabolismo , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Ratos Sprague-Dawley , Peróxidos
15.
Front Immunol ; 15: 1375177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650946

RESUMO

Human allogeneic pancreatic islet transplantation is a life-changing treatment for patients with severe Type 1 Diabetes (T1D) who suffer from hypoglycemia unawareness and high risk of severe hypoglycemia. However, intensive immunosuppression is required to prevent immune rejection of the graft, that may in turn lead to undesirable side effects such as toxicity to the islet cells, kidney toxicity, occurrence of opportunistic infections, and malignancies. The shortage of cadaveric human islet donors further limits islet transplantation as a treatment option for widespread adoption. Alternatively, porcine islets have been considered as another source of insulin-secreting cells for transplantation in T1D patients, though xeno-transplants raise concerns over the risk of endogenous retrovirus transmission and immunological incompatibility. As a result, technological advancements have been made to protect transplanted islets from immune rejection and inflammation, ideally in the absence of chronic immunosuppression, to improve the outcomes and accessibility of allogeneic islet cell replacement therapies. These include the use of microencapsulation or macroencapsulation devices designed to provide an immunoprotective environment using a cell-impermeable layer, preventing immune cell attack of the transplanted cells. Other up and coming advancements are based on the use of stem cells as the starting source material for generating islet cells 'on-demand'. These starting stem cell sources include human induced pluripotent stem cells (hiPSCs) that have been genetically engineered to avoid the host immune response, curated HLA-selected donor hiPSCs that can be matched with recipients within a given population, and multipotent stem cells with natural immune privilege properties. These strategies are developed to provide an immune-evasive cell resource for allogeneic cell therapy. This review will summarize the immunological challenges facing islet transplantation and highlight recent bio-engineering and cell-based approaches aimed at avoiding immune rejection, to improve the accessibility of islet cell therapy and enhance treatment outcomes. Better understanding of the different approaches and their limitations can guide future research endeavors towards developing more comprehensive and targeted strategies for creating a more tolerogenic microenvironment, and improve the effectiveness and sustainability of islet transplantation to benefit more patients.


Assuntos
Diabetes Mellitus Tipo 1 , Rejeição de Enxerto , Transplante das Ilhotas Pancreáticas , Transplante das Ilhotas Pancreáticas/métodos , Humanos , Animais , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Engenharia Biomédica/métodos , Ilhotas Pancreáticas/imunologia
16.
Endocrinol Metab (Seoul) ; 39(2): 191-205, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572534

RESUMO

In the quest to combat insulin-dependent diabetes mellitus (IDDM), allogenic pancreatic islet cell therapy sourced from deceased donors represents a significant therapeutic advance. However, the applicability of this approach is hampered by donor scarcity and the demand for sustained immunosuppression. Human induced pluripotent stem cells are a game-changing resource for generating synthetic functional insulin-producing ß cells. In addition, novel methodologies allow the direct expansion of pancreatic progenitors and mature ß cells, thereby circumventing prolonged differentiation. Nevertheless, achieving practical reproducibility and scalability presents a substantial challenge for this technology. As these innovative approaches become more prominent, it is crucial to thoroughly evaluate existing expansion techniques with an emphasis on their optimization and scalability. This manuscript delineates these cutting-edge advancements, offers a critical analysis of the prevailing strategies, and underscores pivotal challenges, including cost-efficiency and logistical issues. Our insights provide a roadmap, elucidating both the promises and the imperatives in harnessing the potential of these cellular therapies for IDDM.


Assuntos
Diabetes Mellitus Tipo 1 , Células-Tronco Pluripotentes Induzidas , Células Secretoras de Insulina , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/transplante , Células-Tronco Pluripotentes Induzidas/citologia , Diabetes Mellitus Tipo 1/terapia , Transplante das Ilhotas Pancreáticas/métodos , Diferenciação Celular , Insulina/metabolismo , Animais , Técnicas de Cultura de Células/métodos
17.
Cell Transplant ; 33: 9636897241243014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659255

RESUMO

Stress-induced islet graft loss during the peri-transplantation period reduces the efficacy of islet transplantation. In this prospective, randomized, double-blind clinical trial, we evaluated the safety and efficacy of 60 mg/kg human alpha-1 antitrypsin (AAT) or placebo infusion weekly for four doses beginning before surgery in chronic pancreatitis (CP) patients undergoing total pancreatectomy and islet autotransplantation (TP-IAT). Subjects were followed for 12 months post-TP-IAT. The dose of AAT was safe, as there was no difference in the types and severity of adverse events in participants from both groups. There were some biochemical signals of treatment effect with a higher oxygen consumption rate in AAT islets before transplantation and a lower serum C-peptide (an indicator of islet death) in the AAT group at 15 min after islet infusion. Findings per the statistical analysis plan using a modified intention to treat analysis showed no difference in the C-peptide area under the curve (AUC) following a mixed meal tolerance test at 12 months post-TP-IAT. There was no difference in the secondary and exploratory outcomes. Although AAT therapy did not show improvement in C-peptide AUC in this study, AAT therapy is safe in CP patients and there are experiences gained on optimal clinical trial design in this challenging disease.


Assuntos
Transplante das Ilhotas Pancreáticas , Pancreatectomia , Pancreatite Crônica , Transplante Autólogo , alfa 1-Antitripsina , Humanos , Transplante das Ilhotas Pancreáticas/métodos , Pancreatite Crônica/cirurgia , Pancreatite Crônica/terapia , alfa 1-Antitripsina/uso terapêutico , Masculino , Feminino , Pancreatectomia/métodos , Pessoa de Meia-Idade , Transplante Autólogo/métodos , Adulto , Método Duplo-Cego , Peptídeo C/sangue , Peptídeo C/metabolismo , Estudos Prospectivos
18.
Transpl Int ; 37: 12278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601276

RESUMO

A public health emergency such as the COVID-19 pandemic has behavioral, mental and physical implications in patients with type 1 diabetes (T1D). To what extent the presence of a transplant further increases this burden is not known. Therefore, we compared T1D patients with an islet or pancreas transplant (ß-cell Tx; n = 51) to control T1D patients (n = 272). Fear of coronavirus infection was higher in those with ß-cell Tx than without (Visual Analogue Scale 5.0 (3.0-7.0) vs. 3.0 (2.0-5.0), p = 0.004) and social isolation behavior was more stringent (45.8% vs. 14.0% reported not leaving the house, p < 0.001). A previous ß-cell Tx was the most important predictor of at-home isolation. Glycemic control worsened in patients with ß-cell Tx, but improved in control patients (ΔHbA1c +1.67 ± 8.74 vs. -1.72 ± 6.15 mmol/mol, p = 0.006; ΔTime-In-Range during continuous glucose monitoring -4.5% (-6.0%-1.5%) vs. +3.0% (-2.0%-6.0%), p = 0.038). Fewer patients with ß-cell Tx reported easier glycemic control during lockdown (10.4% vs. 22.6%, p = 0.015). All T1D patients, regardless of transplantation status, experienced stress (33.4%), anxiety (27.9%), decreased physical activity (42.0%), weight gain (40.5%), and increased insulin requirements (29.7%). In conclusion, T1D patients with ß-cell Tx are increasingly affected by a viral pandemic lockdown with higher fear of infection, more stringent social isolation behavior and deterioration of glycemic control. This trial has been registered in the clinicaltrials.gov registry under identifying number NCT05977205 (URL: https://clinicaltrials.gov/study/NCT05977205).


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Transplante das Ilhotas Pancreáticas , Feminino , Humanos , Masculino , Ansiedade , Glicemia , Automonitorização da Glicemia , Estudos Transversais , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/cirurgia , Controle Glicêmico , Pandemias , Saúde Pública
19.
Front Immunol ; 15: 1389134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605972

RESUMO

Diabetes mellitus, a prevalent global health challenge, significantly impacts societal and economic well-being. Islet transplantation is increasingly recognized as a viable treatment for type 1 diabetes that aims to restore endogenous insulin production and mitigate complications associated with exogenous insulin dependence. We review the role of mesenchymal stem cells (MSCs) in enhancing the efficacy of islet transplantation. MSCs, characterized by their immunomodulatory properties and differentiation potential, are increasingly seen as valuable in enhancing islet graft survival, reducing immune-mediated rejection, and supporting angiogenesis and tissue repair. The utilization of MSC-derived extracellular vesicles further exemplifies innovative approaches to improve transplantation outcomes. However, challenges such as MSC heterogeneity and the optimization of therapeutic applications persist. Advanced methodologies, including artificial intelligence (AI) and single-cell RNA sequencing (scRNA-seq), are highlighted as potential technologies for addressing these challenges, potentially steering MSC therapy toward more effective, personalized treatment modalities for diabetes. This review revealed that MSCs are important for advancing diabetes treatment strategies, particularly through islet transplantation. This highlights the importance of MSCs in the field of regenerative medicine, acknowledging both their potential and the challenges that must be navigated to fully realize their therapeutic promise.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Transplante das Ilhotas Pancreáticas/métodos , Inteligência Artificial , Diabetes Mellitus Experimental/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Insulina
20.
ACS Biomater Sci Eng ; 10(4): 2486-2497, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38445596

RESUMO

Islet or ß-cell transplantation is currently considered to be the ideal treatment for diabetes, and three-dimensional (3D) bioprinting of a bionic pancreas with physiological stiffness is considered to be promising for the encapsulation and transplantation of ß-cells. In this study, a 5%GelMA/2%AlgMA hybrid hydrogel with pancreatic physiological stiffness was constructed and used for ß-cell encapsulation, 3D bioprinting, and in vivo transplantation to evaluate glycemic control in diabetic mice. The hybrid hydrogel had good cytocompatibility and could induce insulin-producing cells (IPCs) to form pseudoislet structures and improve insulin secretion. Furthermore, we validated the importance of betacellulin (BTC) in IPCs differentiation and confirmed that IPCs self-regulation was achieved by altering the nuclear and cytoplasmic distributions of BTC expression. In vivo transplantation of diabetic mice quickly restored blood glucose levels. In the future, 3D bioprinting of ß-cells using biomimetic hydrogels will provide a promising platform for clinical islet transplantation for the treatment of diabetes.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Camundongos , Animais , Diabetes Mellitus Experimental/terapia , Hidrogéis/farmacologia , Hidrogéis/química , Controle Glicêmico , Biomimética , Células Secretoras de Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...