RESUMO
Leishmania braziliensis is one of the pathogenic agents of cutaneous and mucocutanoeous leishmaniasis. There are no validated vaccines to prevent the infection and the treatment relies on drugs that often present severe side effects, which justify the efforts to find new potential antileishmanial drugs. An alternative to promote the discovery of new drugs would be the association of different chemical groups of bioactive compounds. Here we describe the synthesis and bioactivity evaluation against L. braziliensis of cinnamic acid derivatives possessing isobenzofuranone and 1,2,3-triazole functionalities. We tested 25 compounds at 10⯵M concentration against extracellular promastigotes and intracellular amastigotes during macrophage infection. Most compounds were more active against amastigotes than to promastigotes. The derivatives (E)-3-oxo-1,3-dihydroisobenzofuran-5-yl-(3,4,5-trimethoxy) cinnamate (5c), (1-(3,4-difluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl cinnamate (9g), and (1-(2-bromobenzyl)-1H-1,2,3-triazol-4-yl)methyl cinnamate (9l) were the most effective presenting over 80% toxicity on L. braziliensis amastigotes. While compound 5c is a cinnamate with an isobenzofuranone portion, 9g and 9l are triazolic cinnamic acid derivatives. The action of these compounds was comparable to amphotericin B used as positive control. Ultrastructural analysis revealed that 5c-treated parasites showed impaired cytokinesis and apoptosis triggering. Taken together, these results highlight the potential of cinnamic acid derivatives in development of novel anti-leishmanial drugs.
Assuntos
Antineoplásicos/farmacologia , Cinamatos/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Cinamatos/síntese química , Cinamatos/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-AtividadeRESUMO
Isobenzofuranones are known for their wide range of biological activities such as fungicide, insecticide, and anticancer. The search for novel bioactive compounds was performed by reaction of epoxide 2 with methanol, ethanol, propan-1-ol, propan-2-ol, and butan-1-ol. The mechanism for the stereoselective and stereospecific epoxide opening with methanol was reasoned by calculating the transition states for the two putative structures (rac)-3a and (rac)-3b. The compound (rac)-3a is the kinetic product as inferred from the lower energies of its transition state (TS1). The 1 H and 13 C nuclear magnetic resonance (NMR) chemical shifts for these two candidate structures were calculated and compared with the experimental data using mean absolute error (MAE) and DP4 analyses. Therefore, the relative stereochemistry of (rac)-3a was established by the mechanism, MAE, and DP4 approaches. The hydroxyl group was acetylated to surpass the problem of signal overlapping of H5 and H6 in the 1 H NMR. The relative stereochemistry of the corresponding ester determined by NMR interpretation was in agreement with the structure of (rac)-3a.