Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.531
Filtrar
1.
Lab Anim ; : 236772241262119, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39364664

RESUMO

Isoflurane anesthesia prior to carbon dioxide euthanasia is recognized as a refinement by many guidelines. Facilities lacking access to a vaporizer can use the "drop" method, whereby liquid anesthetic is introduced into an induction chamber. Knowing the least aversive concentration of isoflurane is critical. Previous work has demonstrated that isoflurane administered with the drop method at a concentration of 5% is aversive to mice. Other work has shown that lower concentrations (1.7% to 3.7%) of isoflurane can be used to anesthetize mice with the drop method, but aversion to these concentrations has not been tested. We assessed aversion to these lower isoflurane concentrations administered with the drop method, using a conditioned place aversion (CPA) paradigm. Female C57BL/6J (OT-1) mice (n = 28) were randomly allocated to one of three isoflurane concentrations: 1.7%, 2.7%, and 3.7%. Mice were acclimated to a light-dark apparatus. Prior to and following dark (+ isoflurane) and light chamber conditioning sessions, mice underwent an initial and final preference assessment; the change in the duration spent within the dark chamber between the initial and final preference tests was used to calculate a CPA score. Aversion increased with increasing isoflurane concentration: from 1.7% to 2.7% to 3.7% isoflurane, mean ± SE CPA score decreased from 19.6 ± 20.1 s to -25.6 ± 23.2 s, to -116.9 ± 30.6 s (F1,54 = 15.4, p < 0.001). Our results suggest that, when using the drop method to administer isoflurane, concentrations between 1.7% and 2.7% can be used to minimize female mouse aversion to induction.

2.
CNS Neurosci Ther ; 30(9): e70033, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39267282

RESUMO

AIMS: Ischemic stroke is a major cause of disability and mortality worldwide. Transcranial direct current stimulation (tDCS) and isoflurane (ISO) preconditioning exhibit neuroprotective properties. However, it remains unclear whether tDCS enhances the protective effect of ISO preconditioning on ischemic stroke, and the underlying mechanisms are yet to be clarified. METHOD: A model of middle cerebral artery occlusion (MCAO), a rat ischemia-reperfusion (I/R) injury model, and an in vitro oxygen-glucose deprivation/re-oxygenation (O/R) model of ischemic injury were developed. ISO preconditioning and tDCS were administered daily for 7 days before MCAO modeling. Triphenyltetrazolium chloride staining, modified neurological severity score, and hanging-wire test were conducted to assess infarct volume and neurological outcomes. Untargeted metabolomic experiments, adeno-associated virus, lentiviral vectors, and small interfering RNA techniques were used to explore the underlying mechanisms. RESULTS: tDCS/DCS enhanced the protective effects of ISO pretreatment on I/R injury-induced brain damage. This was evidenced by reduced infarct volume and improved neurological outcomes in rats with MCAO, as well as decreased cortical neuronal death after O/R injury. Untargeted metabolomic experiments identified oxidative phosphorylation (OXPHOS) as a critical pathological process for ISO-mediated neuroprotection from I/R injury. The combination of tDCS/DCS with ISO preconditioning significantly inhibited I/R injury-induced OXPHOS. Mechanistically, Akirin2, a small nuclear protein that regulates cell proliferation and differentiation, was found to decrease in the cortex of rats with MCAO and in cortical primary neurons subjected to O/R injury. Akirin2 functions upstream of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). tDCS/DCS was able to further upregulate Akirin2 levels and activate the Akirin2/PTEN signaling pathway in vivo and in vitro, compared with ISO pretreatment alone, thereby contributing to the improvement of cerebral I/R injury. CONCLUSION: tDCS treatment enhances the neuroprotective effects of ISO preconditioning on ischemic stroke by inhibiting oxidative stress and activating Akirin2-PTEN signaling pathway, highlighting potential of combination therapy in ischemic stroke.


Assuntos
Infarto da Artéria Cerebral Média , Isoflurano , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Estimulação Transcraniana por Corrente Contínua , Animais , Isoflurano/farmacologia , Masculino , Traumatismo por Reperfusão/prevenção & controle , Ratos , Estimulação Transcraniana por Corrente Contínua/métodos , Precondicionamento Isquêmico/métodos , Isquemia Encefálica/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Anestésicos Inalatórios/farmacologia
3.
Cell Biochem Biophys ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231847

RESUMO

NMDA receptors are considered targets for many anesthetics if they are modulated by the drugs at clinically relevant concentrations. Volatile anesthetics like isoflurane and ketamine interact with NMDA receptors, inhibiting channel activation and thus blocking NMDA neurotransmission at clinically relevant concentrations. The mode of binding of commonly used drugs like ketamine, isoflurane, and fentanyl is poorly understood. We used molecular docking, molecular dynamics simulations, and DFT calculation of these drugs against the NMDA receptor. Using well-defined computational methods, we identified that these drugs have high docking scores and significant interaction with receptors. These drugs bind to the substrate-binding pocket and form a remarkable number of interactions. We have found that these interactions are stable and have low HOMO-LUMO energy gaps. This study provides enough evidences of strong and stable interaction between drugs and NMDA receptor.

4.
Immunopharmacol Immunotoxicol ; : 1-6, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231926

RESUMO

OBJECTIVE: This study aimed to investigate the mechanism of emulsified isoflurane in reducing myocardial ischemia-reperfusion injury (MIRI). MATERIALS AND METHODS: Forty-eight healthy male Sprague-Dawley rats were randomly divided into four groups (n = 12). In the sham group (group S) and ischemia-reperfusion group (group I/R), saline (4 ml/kg/h) was administered intravenously for 30 min. In intralipid group (group L), intralipid (4 ml/kg/h) was administered intravenously. In the emulsified isoflurane group (group EI), emulsified isoflurane (4 ml/kg/h) was administered intravenously. The infusion was then discontinued for 15 min during the washout period. Apart from group S, ischemia was produced by occlusion of the left anterior descending artery (LADA) for 30 min. After 30 min of occlusion, all groups received reperfusion for two hours. RESULTS: Creatine kinase MB (CK-MB), cardiac troponin I (cTnI), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were measured by enzyme-linked immunosorbent assay (ELISA). Myocardial infarct size was measured using triphenyl tetrazolium chloride staining. According to the result, pretreatment with emulsified isoflurane attenuated CK-MB and cTnI concentrations (p < 0.05). And serum TNF-α and IL-6 levels and infarct size in the emulsified isoflurane group obviously decreased. An obvious decrease in the expression of the toll-like receptor-4 (TLR-4) mRNA in group EI was observed compared with group I/R. DISCUSSION AND CONCLUSION: Emulsified isoflurane precondition had a potent cardioprotective effect against myocardial ischemia-reperfusion injury. The mechanisms involved may be related to the decrease in the expression of TLR-4 and the reduced inflammatory response.

6.
NMR Biomed ; : e5260, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254055

RESUMO

Isoflurane is one of the most widely used anesthetic agents in rodent imaging studies. However, the impact of isoflurane on brain metabolism has not been fully characterized to date, primarily due to a scarcity of noninvasive technologies to quantitatively measure the brain's metabolic rate in vivo. In this study, using noncontrast MRI techniques, we dynamically measured cerebral metabolic rate of oxygen (CMRO2) under varying doses of isoflurane anesthesia in mice. Concurrently, systemic parameters of heart and respiration rates were recorded alongside CMRO2. Additionally, electroencephalogram (EEG) recording was used to identify changes in neuronal activities under the same anesthetic regimen employed in the MRI experiments. We found suppression of the CMRO2 by isoflurane in a dose-dependent manner, concomitant with a diminished high-frequency EEG activity. The degree of metabolic suppression by isoflurane was strongly correlated with the respiration rate, which offers a potential approach to calibrate CMRO2 measurements. Furthermore, the metabolic level associated with neural responses of the somatosensory and motor cortices in mice was estimated as 308.2 µmol/100 g/min. These findings may facilitate the integration of metabolic parameters into future studies involving animal disease models and anesthesia usage.

7.
Paediatr Anaesth ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39329243

RESUMO

BACKGROUND: Individuals with mitochondrial defects, especially those in Complex I of the electron transport chain, exhibit behavioral hypersensitivity and toxicity to volatile anesthetics. In Drosophila melanogaster, mutation of ND23 (NDUFS8 in mammals), which encodes a subunit of the matrix arm of Complex I, sensitizes flies to toxicity from isoflurane but not an equipotent dose of sevoflurane. Also, in ND23 flies, both anesthetics activate expression of stress response genes, but to different extents. Here, we investigated the generality of these findings by examining flies mutant for ND2 (ND2 in mammals), which encodes a subunit of the membrane arm of Complex I. METHODS: The serial anesthesia array was used to expose ND2del1 and ND2360114 flies to precise doses of isoflurane, sevoflurane, and oxygen. Behavioral sensitivity was assessed by a climbing assay and toxicity by percent mortality within 24 h of exposure. Changes in expression were determined by qRT-PCR of RNA isolated from heads at 0.5 h after anesthetic exposure. RESULTS: Unlike ND2360114, ND2del1 did not affect behavioral sensitivity to isoflurane or sevoflurane. Furthermore, sevoflurane in hyperoxia as well as anoxia caused mortality of ND2del1 but not ND2360114 flies. Finally, the mutations had different effects on induction of stress response gene expression by the anesthetics. CONCLUSION: Mutations in different arms of Complex I resulted in different behavioral sensitivities and toxicities to isoflurane and sevoflurane, indicating that (i) the anesthetics have mechanisms of action that involve arms of Complex I to different extents and (ii) the lack of behavioral hypersensitivity does not preclude susceptibility to anesthetic toxicity.

8.
Vet Med Sci ; 10(6): e70050, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39321206

RESUMO

BACKGROUND: Cardiac troponin I, a particular biomarker, is released into the bloodstream in response to myocardial injury. OBJECTIVES: To evaluate perioperative changes in high-sensitivity cardiac troponin I (hs-cTnI) concentration during ovariohysterectomy in cats undergoing three different anaesthesia protocols. METHODS:  Twenty-one female mixed-breed cats owned by clients aged (2.2 ± 0.7 years) and weight (3.2 ± 0.5 kg) were included in our study. The cats were divided into three groups: propofol-isoflurane (PI) group (n = 7), xylazine-ketamine (XK) group (n = 7) and xylazine-isoflurane (XI) group (n = 7). After pre-anaesthetic propofol (6 mg/kg IV) was administered to cats in Group PI, a mask was placed, and anaesthesia was maintained with 3.0% isoflurane in oxygen. Cats in Group XK underwent general anesthetization with xylazine hydrochloride (2 mg/kg IM) and, 10 min later, ketamine hydrochloride (10 mg/kg IM). Cats in Group XI were administered xylazine hydrochloride (2 mg/kg IM), and then anaesthesia (3.0% isoflurane and oxygen) was continued with a mask. Blood samples were collected from all cats; preoperatively and postoperatively at 0 and 12 h (Pre-, Post-0 h and Post-12 h, respectively). Serum hs-cTnI concentrations were measured with the Advia Centaur TnI-Ultra. RESULTS: In all 21 cats, hs-cTnI concentration increased at Post-0 h and 12 h measurement points compared to Pre-. In the XK group, hs-cTnI concentrations exhibited a significant increase at the Post-0 h (51.30 ng/L) and Post-12 h (157.70 ng/L) time points compared to Pre- (6.70 ng/L) (p < 0.05). CONCLUSIONS: The XK group increased the concentration of hs-cTnI more than other protocols. In the PI group, the increase in hs-cTnI concentrations at Post-0 and 12 h increased less than the other two groups (p < 0.05). The PI group was found to induce less myocardial damage.


Assuntos
Isoflurano , Ketamina , Propofol , Troponina I , Xilazina , Animais , Gatos/cirurgia , Troponina I/sangue , Feminino , Xilazina/administração & dosagem , Ketamina/administração & dosagem , Propofol/administração & dosagem , Isoflurano/administração & dosagem , Histerectomia/veterinária , Ovariectomia/veterinária , Período Perioperatório/veterinária , Anestésicos Inalatórios/administração & dosagem , Anestesia/veterinária , Anestésicos Intravenosos/administração & dosagem , Anestésicos Intravenosos/farmacologia , Anestesia Geral/veterinária
9.
Neuroimage ; 300: 120854, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278381

RESUMO

The common marmoset is an essential model for understanding social cognition and neurodegenerative diseases. This study explored the structural and functional brain connectivity in a marmoset under isoflurane anesthesia, aiming to statistically overcome the effects of high inter-individual variability and noise-related confounds such as physiological noise, ensuring robust and reliable data. Similarities and differences in individual subject data, including assessments of functional and structural brain connectivities derived from resting-state functional MRI and diffusion tensor imaging were meticulously captured. The findings highlighted the high consistency of structural neural connections within the species, indicating a stable neural architecture, while functional connectivity under anesthesia displayed considerable variability. Through independent component and dual regression analyses, several distinct brain connectivities were identified, elucidating their characteristics under anesthesia. Insights into the structural and functional features of the marmoset brain from this study affirm its value as a neuroscience research model, promising advancements in the field through fundamental and translational studies.


Assuntos
Anestésicos Inalatórios , Encéfalo , Callithrix , Imagem de Tensor de Difusão , Isoflurano , Imageamento por Ressonância Magnética , Animais , Isoflurano/farmacologia , Anestésicos Inalatórios/farmacologia , Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Masculino , Conectoma/métodos , Feminino , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia
10.
Vet Anaesth Analg ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39289085

RESUMO

OBJECTIVE: To evaluate induced hypothermia and rewarming times in Hispaniolan Amazon parrots (HAP; Amazona ventralis) anesthetized using isoflurane, sevoflurane or desflurane, and to describe selected cardiovascular and respiratory effects. STUDY DESIGN: Randomized, balanced, crossover experimental study. ANIMALS: A group of 12 adult HAP. METHODS: Parrots were premedicated with intramuscular butorphanol (0.5 mg kg-1) and anesthetized with the three inhalants with a 7 day washout period between events. Anesthesia was induced using isoflurane at 4 vol%, sevoflurane at 6 vol% or desflurane 12 vol% carried in oxygen, delivered via face mask. After orotracheal intubation, anesthesia maintenance was with end-tidal concentrations of 1.4-2% (Fe'Iso), 2.4-3% (Fe'Sevo) and 8.5-9.2% (Fe'Des). Hypothermia was defined as an esophageal temperature (BT) below 37.8 °C. External heat support was provided when BT dropped to 37.5 °C. Time for temperature decrease from 38.9 °C to 37.5 °C (T1), time to first increase in BT above 37.5 °C (T2) and time from external heat support to achieving 38.9 °C (T3) were recorded and compared via Friedman tests with post hoc Dunn's test. Heart rate, respiratory rate and end-tidal carbon dioxide, amongst other variables, were evaluated. RESULTS: All inhalants caused hypothermia (T1): isoflurane, 12 (2-37) minutes [median (range)]; sevoflurane, 12 (4-18) minutes; desflurane, 11.5 (6-24) minutes, with no significant differences between treatments (p > 0.05). T2 was significantly (p = 0.042) longer for sevoflurane than for desflurane but not isoflurane. Transient apnea was observed with all inhalants, including 25% of birds anesthetized with sevoflurane. Second-degree atrioventricular block and ventricular escape beats occurred with all inhalants with hypothermia potentially exacerbating cardiac arrhythmias. CONCLUSIONS AND CLINICAL RELEVANCE: Hypothermia rapidly developed in butorphanol-sedated HAP anesthetized using isoflurane, sevoflurane or desflurane. Sevoflurane prolonged warming time. Hypothermia may be associated with an increased likelihood of bradyarrhythmia in parrots anesthetized with inhalants.

11.
Neurochem Res ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312079

RESUMO

The zona incerta (ZI) predominantly consists of gamma-aminobutyric acid (GABAergic) neurons, located adjacent to the lateral hypothalamus. GABA, acting on GABAA receptors, serves as a crucial neuromodulator in the initiation and maintenance of general anesthesia. In this study, we aimed to investigate the involvement of ZI GABAergic neurons in the general anesthesia process. Utilizing in-vivo calcium signal optical fiber recording, we observed a decrease in the activity of ZI GABAergic neurons during isoflurane anesthesia, followed by a significant increase during the recovery phase. Subsequently, we selectively ablated ZI GABAergic neurons to explore their role in general anesthesia, revealing no impact on the induction of isoflurane anesthesia but a prolonged recovery time, accompanied by a reduction in delta-band power in mice under isoflurane anesthesia. Finally, through optogenetic activation/inhibition of ZI GABAergic neurons during isoflurane anesthesia, we discovered that activation of these neurons facilitated emergence without affecting the induction process, while inhibition delayed emergence, leading to fluctuations in delta band activity. In summary, these findings highlight the involvement of ZI GABAergic neurons in modulating the emergence of isoflurane anesthesia.

12.
Biochim Biophys Acta Bioenerg ; 1866(1): 149511, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326543

RESUMO

The mechanism of volatile general anaesthetics has long been a mystery. Anaesthetics have no structural motifs in common, beyond lipid solubility, yet all exert a similar effect. The fact that the inert gas xenon is an anaesthetic suggests their common mechanism might relate to physical rather than chemical properties. Electron transfer through chiral proteins can induce spin polarization. Recent work suggests that anaesthetics dissipate spin polarization during electron transfer to oxygen, slowing respiration. Here we show that the volatile anaesthetics isoflurane and sevoflurane specifically disrupt complex I-linked respiration in the thoraces of Drosophila melanogaster, with less effect on maximal respiration. Suppression of complex I-linked respiration was greatest with isoflurane. Using high-resolution tissue fluorespirometry, we show that these anaesthetics simultaneously increase mitochondrial membrane potential, implying reversal of the ATP synthase. Inhibition of ATP synthase with oligomycin prevented respiration and increased membrane potential back to the maximal (LEAK state) potential. Magnesium-green fluorescence predicted a collapse in ATP availability following a single anaesthetic dose, consistent with ATP hydrolysis through reversal of the ATP synthase. Raised membrane potential corresponded to a rise in ROS flux, especially with isoflurane. Anaesthetic doses causing respiratory suppression were in the same range as those that induce anaesthesia, although we could not establish tissue concentrations. Our findings show that anaesthetics suppress complex I-linked respiration with concerted downstream effects. But we cannot explain why only mutations in complex I, and not elsewhere in the electron-transfer system, confer hypersensitivity to anaesthetics.

13.
Front Neurol ; 15: 1406463, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39211813

RESUMO

Introduction: Anesthetic conditioning has been shown to provide neuroprotection in several neurological disorders. Whether anesthetic conditioning provides protection against peripheral nerve injuries remains unknown. The aim of our current study is to investigate the impact of isoflurane conditioning on the functional outcomes after peripheral nerve injury (PNI) in a rodent sciatic nerve injury model. Methods: Adult male Lewis rats underwent sciatic nerve cut and repair and exposed to none (Group 1, sham), single isoflurane exposure (Group 2), three-time isoflurane exposure (Group 3), and six-time isoflurane exposure (Group 4). Isoflurane conditioning was established by administration of 2% isoflurane for 1 hour, beginning 1-hour post sciatic nerve cut and repair. Groups 3 and 4 were exposed to isoflurane for 1 hour, 3 and 6 consecutive days respectively. Functional outcomes assessed included compound muscle action potential (CMAP), evoked muscle force (tetanic and specific tetanic force), wet muscle mass, and axonal counting. Results: We observed an increase in axons, myelin width and a decrease in G-ratio in the isoflurane conditioning groups (3- and 6-days). This correlated with a significant improvement in tetanic and specific tetanic forces, observed in both groups 3 and 4. Discussion: Isoflurane conditioning (3- and 6-day groups) resulted in improvement in functional outcomes at 12 weeks post peripheral nerve injury and repair in a murine model. Future experiments should be focused on identifying the therapeutic window of isoflurane conditioning and exploring the underlying molecular mechanisms responsible for isoflurane conditioning induced neuroprotection in PNI.

14.
Neurotoxicology ; 105: 82-93, 2024 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216603

RESUMO

General anesthetics exposure, particularly prolonged or repeated exposure, is a crucial cause of neurological injuries. Notably, isoflurane (ISO), used in pediatric anesthesia practice, is toxic to the developing brain. The relatively weak antioxidant system at early ages needs antioxidant support to protect the brain against anesthesia. Cerium oxide nanoparticles (CeO2-NPs, nanoceria) are nano-antioxidants and stand out due to their unique surface chemistry, high stability, and biocompatibility. Although CeO2-NPs have been shown to exhibit neuroprotective and cognitive function-facilitating effects, there are no reports on their protective effects against anesthesia-induced neurotoxicity and cognitive impairments. Herein, Wistar albino rat pups were exposed to ISO (1.5 %, 3-h) at postnatal day (P)7+P9+P11, and the protective properties of CeO2-NP pretreatment (0.5 mg/kg, intraperitoneal route) were investigated for the first time. The control group at P7+9+11 received 50 % O2 (3-h) instead of ISO. Exposure to nanoceria one-hour before ISO protected hippocampal neurons of the developing rat brain against apoptosis [determined by hematoxylin-eosin (HE) staining, immunohistochemistry (IHC) analysis with caspase-3, and immunoblotting with Bax/Bcl2, cleaved caspase-3 and PARP1] oxidative stress, and inflammation [determined by immunoblotting with 4-hydroxynonenal (4HNE), nuclear factor kappa-B (NF-κB), and tumor necrosis factor-alpha (TNF-α)]. CeO2-NP pretreatment also reduced ISO-induced learning (at P28-32) and memory (at P33) deficits evaluated by Morris Water Maze. However, memory deficits and thigmotactic behaviors were detected in the agent-control group; elimination of these harmful effects will be possible with dose studies, thus providing evidence supporting safer use. Overall, our findings support pretreatment with nanoceria application as a simple strategy that might be used for pediatric anesthesia practice to protect infants and children from ISO-induced cell death and learning and memory deficits.

15.
Exp Anim ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39111850

RESUMO

In veterinary clinical medicine, evaluating the balance between nociception and antinociception presents a great challenge for anesthesiologists during canine surgeries. Heart rate (HR) and mean arterial pressure (MAP) are suitable indexes for monitoring noxious stimuli during anesthesia. Frontal electroencephalography (EEG) records, including processed parameters, are recommended for evaluating nociceptive balance in anesthetized unconscious human patients, which is unexplored in veterinary medicine. Therefore, the objective is to explore the response of processed EEG parameters to noxious stimulation and elucidate the impact of noxious stimulation on frontal cortical activity in dogs anesthetized with 1.5% isoflurane. Fourteen dogs were included and underwent frontal EEG monitoring, measuring the patient state index (PSI) and spectral edge frequency (SEF) before and after administering noxious stimulation using the towel clamp method on the tail of each 1.5% isoflurane-anesthetized dog. As the noxious stimulation was applied, there was a simultaneous increase in PSI, HR, and MAP, with PSI exhibiting a drastic response. SEF, especially on the left side, also increased with noxious stimulation. In EEG power spectral analysis, the delta band was decreased, and the alpha and beta bands showed an increase following noxious stimulation, with a more profound elevation of beta bands on the left side. This study suggests that noxious stimulation brings asymmetric frontal cortical arousal, changing brain activity by suppressing delta waves and augmenting alpha and beta waves. Consequently, PSI seems to be a potential indicator for detecting stimuli in canine isoflurane anesthesia.

16.
Front Cell Neurosci ; 18: 1392498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104439

RESUMO

General anesthesia can impact a patient's memory and cognition by influencing hippocampal function. The CA1 and dentate gyrus (DG), serving as the primary efferent and gateway of the hippocampal trisynaptic circuit facilitating cognitive learning and memory functions, exhibit significant differences in cellular composition, molecular makeup, and responses to various stimuli. However, the effects of isoflurane-induced general anesthesia on CA1 and DG neuronal activity in mice are not well understood. In this study, utilizing electrophysiological recordings, we examined neuronal population dynamics and single-unit activity (SUA) of CA1 and DG in freely behaving mice during natural sleep and general anesthesia. Our findings reveal that isoflurane anesthesia shifts local field potential (LFP) to delta frequency and reduces the firing rate of SUA in both CA1 and DG, compared to wakefulness. Additionally, the firing rates of DG neurons are significantly lower than CA1 neurons during isoflurane anesthesia, and the recovery of theta power is slower in DG than in CA1 during the transition from anesthesia to wakefulness, indicating a stronger and more prolonged impact of isoflurane anesthesia on DG. This work presents a suitable approach for studying brain activities during general anesthesia and provides evidence for distinct effects of isoflurane anesthesia on hippocampal subregions.

17.
Exp Ther Med ; 28(4): 399, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39171147

RESUMO

Anxiety after surgery can be a major factor leading to postoperative cognitive dysfunction, particularly in elderly patients. The role of inhibitory neurons in the basolateral amygdala (BLA) in anxiety-like behaviors in aged mice following isoflurane anesthesia remains unclear. Therefore, the present study aimed to investigate the role of inhibitory neurons in isoflurane-treated mice. A total of 30 C57BL/6 mice (age, 13 months) were allocated into the control and isoflurane anesthesia groups (15 mice/group) and were then subjected to several neurological assessments. Behavioral testing using an elevated plus maze test showed that aged mice in the isoflurane anesthesia group displayed significant anxiety-like behavior, since they spent more time in the closed arm, exhibited more wall climbing behavior and covered more distance. In addition, whole-cell patch-clamp recording revealed that the excitability of the BLA excitatory neurons was notably increased following mice anesthesia with isoflurane, while that of inhibitory neurons was markedly reduced. Following mice treatment with diazepam, the excitability of the BLA inhibitory neurons was notably increased compared with that of the excitatory neurons, which was significantly attenuated. Overall, the results of the current study indicated that anxiety-like behavior could occur in aged mice after isoflurane anesthesia, which could be caused by a reduced excitability of the inhibitory neurons in the BLA area. This process could enhance excitatory neuronal activity in aged mice, thus ultimately promoting the onset of anxiety-like behaviors.

18.
Vet Anaesth Analg ; 51(5): 449-457, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39142984

RESUMO

OBJECTIVE: To compare the effects of propofol, ketamine-propofol and isoflurane, at similar anesthetic depth, on cardiopulmonary variables in unpremedictated chickens. STUDY DESIGN: Prospective, randomized, crossover experimental trial. ANIMALS: A total of 10 male Leghorn domestic chickens, aged 3 months and body mass 1.4-2.0 kg. METHODS: Birds were randomly assigned to each of three anesthetic protocols, 7 days apart: intravenous propofol, intravenous ketamine-propofol or isoflurane. Anesthesia was induced (indicated by loss of righting reflex and tracheal intubation) and maintained with propofol (10 mg kg-1 minute-1, then 1.1 mg kg-1 minute-1), ketamine-propofol (5 mg mL-1 ketamine and 5 mg mL-1 propofol combined; 10 mg kg-1 minute-1, then 1.1 mg kg-1 minute-1) or isoflurane [5% vaporizer setting initially, then end-tidal concentration (Fe'Iso) of 2%] for 65 minutes. Anesthesia was maintained at a similar anesthetic depth based upon positive or negative responses to toe pinch. Heart rate (HR), respiratory rate (fR), noninvasive arterial blood pressure and arterial blood gases were measured during anesthesia. Propofol or ketamine-propofol infusion rates and Fe'Iso required to prevent movement in response to a noxious stimulus and recovery times were recorded. RESULTS: Anesthesia induction dose was 9.0 ± 0.8 (mean ± SD) and 12.2 ± 0.3 mg kg-1 for propofol and ketamine-propofol, respectively. Propofol and ketamine-propofol infusion rates and Fe'Iso required to prevent movement in response to the noxious stimulus were 0.88 ± 0.14 mg kg-1 minute-1, 0.92 ± 0.14 mg kg-1 minute-1 and 1.45 ± 0.28%, respectively. Cardiopulmonary variables remained clinically acceptable, but ketamine-propofol was associated with a significantly higher HR (p = 0.0001) and lower fR (p = 0.0001). Time to extubation did not differ among treatments. CONCLUSIONS AND CLINICAL RELEVANCE: Cardiovascular and respiratory variables were maintained within normal ranges in all treatments. Coadministration of ketamine with propofol significantly reduced the induction and maintenance dose of propofol.


Assuntos
Anestésicos Intravenosos , Galinhas , Frequência Cardíaca , Isoflurano , Ketamina , Propofol , Animais , Propofol/farmacologia , Propofol/administração & dosagem , Ketamina/administração & dosagem , Ketamina/farmacologia , Isoflurano/administração & dosagem , Isoflurano/farmacologia , Masculino , Frequência Cardíaca/efeitos dos fármacos , Anestésicos Intravenosos/farmacologia , Anestésicos Intravenosos/administração & dosagem , Estudos Cross-Over , Anestésicos Inalatórios/administração & dosagem , Anestésicos Inalatórios/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Taxa Respiratória/efeitos dos fármacos
19.
Front Physiol ; 15: 1437890, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148744

RESUMO

In neuroscience, numerous experimental procedures in animal models require surgical interventions, such as the implantation of recording electrodes or cannulas before main experiments. These surgeries can take several hours and should rely on principles that are common in the field of research and medicine. Considering the characteristics of the avian respiratory physiology, the development of a safe and replicable protocol for birds is necessary to minimize side effects of anesthetic agents, circumvent technical limitations due to the insufficient availability of patient monitoring, and to maintain stable intraoperative anesthesia. Through the consistent and responsible implementation of the three R principle of animal welfare in science ("Replace, Reduce, Refine"), we aimed to optimize experimental methods to minimize the burden on pigeons (Columba livia) during surgical procedures. Here, surgeries were conducted under balanced anesthesia and perioperative monitoring of heart rate, oxygen saturation, body temperature, and the reflex state. The protocol we developed is based on the combination of injectable and inhalative anesthetic drugs [ketamine, xylazine, and isoflurane, supported by the application of an opiate for analgesia (e.g., butorphanol, buprenorphine)]. The combination of ketamine and xylazine with a pain killer is established in veterinary medicine across a vast variety of species. Practicability was verified by survival of the animals, fast and smooth recovery quantified by clinical examination, sufficiency, and stability of anesthesia. Independent of painful stimuli like incision or drilling, or duration of surgery, vital parameters were within known physiological ranges for pigeons. Our approach provides a safe and conservative protocol for surgeries of extended duration for scientific applications as well as for veterinary medicine in pigeons which can be adapted to other bird species.

20.
J Cereb Blood Flow Metab ; : 271678X241275351, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39157941

RESUMO

Cerebral perfusion is functionally regulated by neural mechanisms in addition to the systemic hemodynamic variation, vascular reactivity and cerebral metabolism. Although anesthesia is generally esteemed to suppress the overall brain neural activity and metabolism, a few inhalation anesthetics, such as isoflurane, can increase cerebral perfusion, thus heightening the risks of higher intracranial pressure, bleeding, and brain edema during surgery. With the aid of laser speckle contrast imaging, we observed a transient yet limited effect of cerebral perfusion enhancement in mice from awake to anesthetized conditions with different concentration of isoflurane. Retrograde and antegrade tracing revealed a higher proportion of parasympathetic control more than sympathetic innervation for the blood vessels. Surprisingly, isoflurane directly activated pterygopalatine ganglion (PPG) explants and induced FOS expression in the cholinergic neurons. Chemogenetic activation of cholinergic PPG neurons reduced isoflurane-related cerebral perfusion. On the contrary, ablation of the cholinergic PPG neurons resulted in further enhancement of cerebral perfusion induced by isoflurane. While blocking muscarinic cholinergic receptors resulted in the overall reduction upon isoflurane stimulation, the blockage of nicotinic cholinergic receptors enhanced the isoflurane-induced cerebral perfusion only when PPG neurons exist. Collectively, these results suggest that PPG play important roles in regulating cerebral perfusion under isoflurane inhalation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA