Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352471

RESUMO

Electrophoretic microfluidic paper-based analytical devices (e-µPADs) are promising for low-cost and portable technologies, but quantitative detection remains challenging. In this study, we develop a paper-based isotachophoretic preconcentration and separation method for the herbicide glyphosate as a model analyte. The device, consisting of two electrode chambers filled with leading and terminating electrolytes and a nitrocellulose strip as the separation carrier, was illuminated by a flat light source and operated with a voltage supply of 400 V. Detection was accomplished using a simple camera. Colorimetric detection was optimized through competitive complexation between glyphosate, copper ions, and pyrocatechol violet as a dye. The buffer system was optimized using simulations, (i) ensuring the pH was optimal for the demetallation of the blue pyrocatechol violet-copper complex [PV] to the yellow free dye and (ii) ensuring the electrophoretic migration of glyphosate into the slower [PV] for the colorimetric reaction. A new data evaluation method is presented, analyzing the RGB channel intensities. The linear range was between 0.8 and 25 µM, with a LOD of approximately 0.8 µM. The ITP separation preconcentrated glyphosate by a factor of 820 in numerical simulations. The method may be applied to control glyphosate formulations, especially in developing countries where herbicide sales and applications are poorly regulated.

2.
Electrophoresis ; 41(7-8): 562-569, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31677285

RESUMO

Microfluidic paper-based analytical devices (µPADs) allow user-friendly and portable chemical determinations, although they provide limited applicability due to insufficient sensitivity. Several approaches have been proposed to address poor sensitivity in µPADs, but they frequently require bulky equipment for power and/or read-outs. Universal serial buses (USB) are an attractive alternative to less portable power sources and are currently available in many common electronic devices. Here, USB-powered µPADs (USB µPADs) are proposed as a fusion of both technologies to improve performance without adding instrumental complexity. Two ITP USB µPADs were developed, both powered by a 5 V potential provided through standard USB ports. The first device was fabricated using the origami approach. Its operation was analyzed experimentally and numerically, yielding a two-order-of-magnitude sample focusing in 15 min. The second ITP USB µPAD is a novel design, which was numerically prototyped with the aim of handling larger sample volumes. The reservoirs were moved away from the ITP channel and capillary action was used to drive the sample and electrolytes to the separation zone, predicting 25-fold sample focusing in 10 min. USB µPADs are expected to be adopted by minimally-trained personnel in sensitive areas like resource-limited settings, the point-of-care and in emergencies.


Assuntos
Isotacoforese/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Papel , Fontes de Energia Elétrica , Eletrólitos/química , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA