Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 273(Pt 1): 132953, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38944566

RESUMO

This study investigates the potential applications of incorporating 2D bacterial cellulose microfibers (BCM) biochar into chitosan/polyethyleneimine beads as a semi-natural sorbent for the efficient removal of tetracycline (TET) and metronidazole (MET) antibiotics. Batch adsorption experiments and characterization techniques evaluate removal performance and synthesized adsorbent properties. The adsorbent eliminated 99.13 % and 90 % of TET and MET at a 10 mg.L-1 concentration with optimal pH values of 8 and 6, respectively, for 90 min. Under optimum conditions and a 400 mg.L-1 concentration, MET and TET have possessed the maximum adsorption capacities of 691.325 and 960.778 mg.g-1, respectively. According to the isothermal analysis, the adsorption of TET fundamentally follows the Temkin (R2 = 0.997), Redlich-Peterson (R2 = 0.996), and Langmuir (R2 = 0.996) models. In contrast, the MET adsorption can be described by the Langmuir (R2 = 0.997), and Toth (R2 = 0.991) models. The pseudo-second-order (R2 = 0.998, 0.992) and Avrami (R2 = 0.999, 0.999) kinetic models were well-fitted with the kinetic results for MET and TET respectively. Diffusion models recommend that pore, liquid-film, and intraparticle diffusion govern the rate of the adsorption process. The developed semi-natural sorbent demonstrated exceptional adsorption capacity over eleven cycles due to its porous bead structure, making it a potential candidate for wastewater remediation.


Assuntos
Celulose , Carvão Vegetal , Quitosana , Metronidazol , Polietilenoimina , Tetraciclina , Poluentes Químicos da Água , Tetraciclina/química , Tetraciclina/isolamento & purificação , Quitosana/química , Adsorção , Carvão Vegetal/química , Celulose/química , Metronidazol/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Cinética , Polietilenoimina/química , Concentração de Íons de Hidrogênio , Purificação da Água/métodos , Antibacterianos/química
2.
Environ Sci Pollut Res Int ; 31(19): 27980-27987, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526713

RESUMO

The adsorption of ammonium from water was studied on an activated carbon obtained using raw oil palm shell and activated with acetic acid. The performance of this adsorbent was tested at different operating conditions including the solution pH, adsorbent dosage, and initial ammonium concentration. Kinetic and equilibrium studies were carried out, and their results were analyzed with different models. For the adsorption kinetics, the pseudo-first order equation was the best model to correlate this system. Calculated adsorption rate constants ranged from 0.071 to 0.074 g/mg min. The ammonium removal was 70-80% at pH 6-8, and it was significantly affected by electrostatic interaction forces. Ammonium removal (%) increased with the adsorbent dosage, and neutral pH condition favored the adsorption of this pollutant. The best ammonium adsorption conditions were identified with a response surface methodology model where the maximum removal was 91.49% with 2.27 g/L of adsorbent at pH 8.11 for an initial ammonium concentration of 36.90 mg/L. The application of a physical monolayer model developed by statistical physics theory indicated that the removal mechanism of ammonium was multi-ionic and involved physical interactions with adsorption energy of 29 kJ/mol. This activated carbon treated with acetic acid is promising to depollute aqueous solutions containing ammonium.


Assuntos
Ácido Acético , Compostos de Amônio , Poluentes Químicos da Água , Adsorção , Ácido Acético/química , Compostos de Amônio/química , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio , Arecaceae/química , Carvão Vegetal/química , Purificação da Água/métodos
3.
Environ Res ; 252(Pt 1): 118454, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387488

RESUMO

The oncogenic and genetic properties of anthracene, a member of the polycyclic aromatic hydrocarbons (PAHs) family, pose a significant health threat to humans. This study aims to investigate the photocatalytic decomposition of anthracene under various conditions, such as different concentrations of PAHs, varying amounts of NiO (nickel oxide) nanoparticles, and different pH levels under ultraviolet light and sunlight. The synthesized NiO nanoparticles showed surface plasma resonance at 230 and 360 nm, while XRD and SEM analysis confirmed the nanoparticles were cubic crystalline in structure with sizes ranging between 37 and 126 nm. NiO nanoparticles exhibited 79% degradation of pyrene at 2 µg/mL of anthracene within 60 min of treatment. NiO at 10 µg/mL concentration showed significant adsorption of 57%, while the adsorption method worked efficiently (72%) at 5 pH. Photocatalytic degradation was confirmed by isotherm and kinetic studies through monolayer adsorption and pseudo-first-order kinetics. Further, the absorption process was confirmed by performing GC-MS analysis of the NiO nanoparticles. On the other hand, NiO nanoparticles showed antimicrobial activity against Gram negative and Gram-positive bacteria. Therefore, the present work is one of its kind proving the dual application of NiO nanoparticles, which makes them suitable candidates for bioremediation by treating PAHs and killing pathogenic bacteria.


Assuntos
Níquel , Hidrocarbonetos Policíclicos Aromáticos , Níquel/química , Hidrocarbonetos Policíclicos Aromáticos/química , Nanopartículas Metálicas/química , Catálise , Fotólise , Raios Ultravioleta , Nanopartículas/química , Concentração de Íons de Hidrogênio , Antracenos/química , Adsorção
4.
Environ Monit Assess ; 195(12): 1530, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38006447

RESUMO

ZSM-5 zeolite was successfully synthesized from bentonite clay sourced from Lam Dong Province, Vietnam, using the hydrothermal method at 170 °C for 18 h. The synthesized ZSM-5 (SiO2/Al2O3 ratio ~ 34) exhibited a single phase with high crystallinity (91.8%), and a clear and uniform shape. In a detailed examination of the synthesized material's Pb(II) adsorptive capacity, various factors were taken into account, including pH, interaction time, ionic strength, and the amount of adsorbent. Isotherms and kinetics were examined to elucidate the uptake behavior. Study results suggested that Pb(II) ion uptake by ZSM-5 was most appropriately described by the Sips isotherm and intraparticle diffusion kinetic models. The calculated maximum monolayer adsorption capacity according to the Langmuir isotherm model was 48.36 mg/g. Furthermore, the adsorption mechanisms of Pb(II) on ZSM-5 involving electrostatic interactions, ion exchange, and diffusion into pores were demonstrated using the analytical techniques before and after Pb(II) adsorption. These findings demonstrate that ZSM-5 synthesized from bentonite clay exhibits an excellent adsorption capacity for Pb(II), resulting in promising applications for treating drinking water or aqueous industrial waste containing Pb(II) ions.


Assuntos
Bentonita , Argila , Poluentes Químicos da Água , Adsorção , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Dióxido de Silício , População do Sudeste Asiático , Vietnã , Água , Poluentes Químicos da Água/análise
5.
Heliyon ; 9(8): e18635, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37554818

RESUMO

In the present study, a new sorbent was fabricated from Palm kernel (PK) by dry thermochemical activation with NaOH and characterized by FTIR, X-ray diffraction, FE-SEM and BET, which was used for the Amoxicillin (AMX) sorption from aqueous solution. The influence of effective parameters such as pH, reaction time, adsorbent dosage, AMX concentration and ionic strength on the sorption efficacy of AMX removal were evaluated. The main functional groups on the surface of the magnetic activated carbon of Palm Kernel (MA-PK) were C-C, C-O, C[bond, double bond]O and hydroxyl groups. The specific surface of char, activated carbon Palm Kernel (AC-PK) and MA-PK were 4.3, 1648.8 and 1852.4 m2/g, respectively. The highest sorption of AMX (400 mg/L) was obtained by using 1 g/L of sorbent at solution pH of 5 after 60 min contact time, which corresponding to 98.77%. Non-linear and linear models of isotherms and kinetics models were studied. The data fitted well with Hill isotherm (R2 = 0.987) and calculated maximum sorption capacity were 719.07 and 512.27 mg/g from Hill and Langmuir, respectively. A study of kinetics shows that the adsorption of AMX follows the Elovich model with R2 = 0.9998. Based on the artificial neural network (ANN) modeling, the MA-PK dosage and contact time showed the most important parameters in the removal of AMX with relative importance of 36.5 and 25.7%, respectively. Lastly, the fabricated MA-PK was successfully used to remove the AMX from hospital wastewater.

6.
Chemosphere ; 312(Pt 1): 137184, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36400191

RESUMO

Tetracycline (TC) as an antibiotic with high consumption causes the spread of contamination in an aqueous solution. In recent decades, antibiotics are the main cause of hindering the growth of microorganisms. Also, they are one of the important groups of pharmaceuticals with extensive usage in human and veterinary medicine. In the first work of its kind, we used a suitable adsorbent of biodegradable hydroxyethylcellulose (HEC) with graphene oxide (GO) by crosslinking ethylene glycol dimethacrylate (EGDMA) and the Fe/Zn with mole ratio 1:1 bimetallic nanoparticles with HEC-GO support. The materials were identified using FTIR, FE-SEM, EDX, TEM, and TG- DSC analyses. The factors affecting the adsorption process (contact time, initial concentration of TC, solution pH, adsorbent dosage, and reaction temperature) were evaluated in a series of batch systems. The adsorption data showed that the high adsorption capacity was obtained on the HEC-GO and HEC-GO/Fe-Zn (mole ratio 1:1) nanocomposites at pH 3. Also, the contact time as the main factor affecting the adsorption process by adsorbents was investigated and the best contact time was 100 and 20 min. The TC removal percentages of both adsorbents were 85% and 95% for HEC-GO and HEC-GO/Fe-Zn, respectively. The maximum adsorption capacity for TC was evaluated by the isotherm models. The experimental data fitted well with the Langmuir model. In addition, pseudo-first-order, pseudo-second-order, intraparticle diffusion, and the Elovich models were applied to kinetic data. The data indicated that TC adsorption on HEC-GO and HEC-GO/Fe-Zn (mole ratio 1:1) followed the pseudo-second-order kinetic model. The thermodynamic parameters implied that the adsorption process was spontaneous and exothermic. Nano-biocomposite (HEC-GO/Fe-Zn) can be used as an adsorbent to remove water pollutants.


Assuntos
Grafite , Nanopartículas , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/análise , Grafite/química , Adsorção , Tetraciclina/química , Antibacterianos/química , Água , Cinética , Zinco , Concentração de Íons de Hidrogênio
7.
Environ Monit Assess ; 195(1): 91, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36352328

RESUMO

One of the most hazardous environmental pollutants is the pollution risen by heavy metal ions in effluents, which is increasing due to the increasing human activity and the development of urbanization. Notwithstanding the economic challenges to control the pollution of effluent treatment processes, it seems necessary to provide effective approaches. The sorption method is widely used due to low-cost, flexibility in design and operation, repeatability, and significant performance. Hence, the need for more environmentally friendly sorbents to eliminate metal ions is greater than ever. Due to the unique features such as the presence of chitin and chitosan in the cell wall, high absorption capacity, environmental friendliness, availability, and cheapness, the use of fungi as adsorbent has received much attention. Therefore, this work tries to address the use of fungi as biosorbents to remove these metals, the dangers of heavy metals, and their sources. Moreover, equilibrium, kinetic, and thermodynamic behaviors of the heavy metal ion adsorption process in the literature are briefly studied.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Águas Residuárias , Monitoramento Ambiental , Metais Pesados/análise , Adsorção , Fungos , Cinética , Íons , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise
8.
Chemosphere ; 307(Pt 4): 135983, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35998733

RESUMO

In this study, nano pumice (NP) and a cationic surfactant (hexadecyltrimethylammonium-chloride (HDTMA.Cl)) treated nano pumice (HMNP) were used for humic acid (HA) adsorption from an aqueous solution. The adsorption process was modeled and optimized using Response surface methodology-central composite design (RSM-CCD) and Artificial neural networks- Genetic algorithm (ANN-GA). The results show that the ANN model outperforms the RSM-CCD model in terms of response prediction. Optimization results based on the RSM-CCD approach proposed pH 3, adsorbent dose 3 g L-1, reaction time 60 min, and initial HA concentration 5 mg L-1 as optimal points of the variables, to reach the maximum adsorption efficiency of 100% and 65.4% by HMNP and NP adsorbents. The maximal adsorption capacity of NP was 1.21 mg g-1, while that of HMNP was 27.34 mg g-1. The optimal points of process parameters by the ANN-GA method are in accordance with the values suggested by the RSM-CCD method. In isotherm studies, Langmuir model was found to be the best-fitted model for both adsorbent with R2 = 0.97 for NP and 0.992 for HMNP, and also among three different kinetic models which were assessed, Pseudo-second-order model with R2 = 0.9989 for HMNP and R2 = 0.9957 for NP were the best-fitted models for HA removal. Thermodynamic studies indicated that the HA adsorption process by both of the adsorbents is endothermic and the nature of HMNP was found spontaneous while for NP was non-spontaneous. The value of ΔH for both adsorbents was in the range of 34-36.8 kJ mol-1 so the process is clarified as chemical-physical adsorption. The reusability test revealed that the adsorption effectiveness of HMNP drops from 100% to 82.4% after 10 consecutive recycles. The influence of interfacing anions indicated that the adsorption efficiency drops from 100% to 95.4% when the anions were added to the reaction solution.


Assuntos
Substâncias Húmicas , Poluentes Químicos da Água , Adsorção , Cloretos , Concentração de Íons de Hidrogênio , Cinética , Silicatos , Tensoativos , Termodinâmica , Água , Poluentes Químicos da Água/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-35880484

RESUMO

A simple and efficient pH-mediated dispersive solid phase extraction (dSPE) based on terbium doped titanium dioxide nanoparticles (TiO2-Tb NPs) combined with high performance liquid chromatography (HPLC) has been firstly developed for the determination of quinolones (QNs) in various biological samples. The adsorption kinetics and isotherms were investigated to indicate that the kinetic and equilibrium adsorption were well-described by pseudo-second order kinetic and Henry, Langmuir isotherm model, respectively. The parameters influencing the extraction performance were systematically investigated. The QNs are transferred into TiO2-Tb NPs in the first step at pH = 6.0 and eluted into acidic aqueous phase at pH = 2.5 in the second step. Under the optimum extraction and determination conditions, a linearity range with the coefficient of determination (R2) from 0.9977 to 0.9991 were obtained in a range of 10-10,000 ng mL-1. The limits of detection (LODs) based on a signal-to-noise ratio of 3 were 3.3 ng mL-1. The recoveries of the three QNs in human urine, rabbit plasma and serum samples ranged from 69.3% to 117.6%, with standard deviations ranging from 2.4% to 9.9%. Therefore, this pH-mediated dSPE-HPLC method exhibited the advantages of remarkable sensitivity, ease of operation, rapidity, low cost and environmental friendliness.


Assuntos
Nanopartículas , Quinolonas , Adsorção , Animais , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/química , Quinolonas/análise , Coelhos , Extração em Fase Sólida/métodos , Titânio
10.
J Environ Manage ; 312: 114948, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35344875

RESUMO

The purpose of this research was to investigate the adsorption of arsenic (As) from aqueous solutions using MPAC-500 and MPAC-600 (magnetic-activated carbons synthesized from the peel of Pisum sativum (pea) pyrolyzed at 500 °C and 600 °C temperatures, respectively). The potential of both biosorbents for As adsorption was determined in batch and column mode. The characterization of both biosorbents was performed by energy dispersive spectroscopy, scanning electron microscope, pHZPC, particle size distribution, X-ray diffraction, zeta potential and Fourier-transform infrared spectroscopy. It was found that the efficiency of MPAC-600 was better than MPAC-500 for the adsorption of As(III) and As(V) ions. The adsorption capacities of MPAC-500 and MPAC-600 in removing As(III) were 0.7297 mg/g and 1.3335 mg/g, respectively, while the values of Qmax for As(V) on MPAC-500 and MPAC-600 were 0.4930 mg/g and 0.9451 mg/g, respectively. The Langmuir isotherm model was found to be the best fit for adsorption of As(III) by MPAC-500 and MPAC-600, as well as adsorption of As(V) by MPAC-500. The Freundlich isotherm model, on the other hand, was optimal for As(V) removal with MPAC-600. With R2 values close to unity, the pseudo-second-order kinetics were best fitted to the adsorption process of both As species. The Thomas model was used to estimate the breakthrough curves. The effects of coexisting oxyanions and regeneration studies were also carried out to examine the influence of oxyanions on As adsorption and reusability of biosorbents.


Assuntos
Arsênio , Poluentes Químicos da Água , Adsorção , Arsênio/química , Biomassa , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Pisum sativum , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Água , Poluentes Químicos da Água/química
11.
Int J Phytoremediation ; 24(10): 1081-1099, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34784826

RESUMO

Amaranth dye (AD) is trisodium (4E)-3-oxo-4-[(4-sulfonato-1- naphthyl) hydrazono] naphthalene-2, 7-disulfonate and anionic in nature. In the present investigation, waste biomasses such as Terminalia chebula shell (TCS), Peltophorum pterocarpum leaf (PPL) and Psidium guajava bark (PGB) are explored as biosorbents for the first time toward the removal of AD from aqueous solution in a batch method. Influence of biosorption parameters such as pH, initial concentration of AD, biosorbents (TCS, PPL, PGB) dosage, temperature and contact time was studied. Biosorption equilibrium data was analyzed using two parameter isotherms. The kinetics of the biosorption process was analyzed using different models to understand the rate-determining step. The results of the biosorption experiment and modeling investigation illustrated that the pseudo-second-order rate equation fits the experimental data and further the experimental results showed Langmuir isotherm fitted well the biosorption equilibrium data. TCS showed more efficiency toward the removal of AD than PPL and PGB. The value of enthalpy for TCS is 1.527 kJ/mol suggests that the AD removal process is endothermic. The positive value of entropy is 6.429 J/mol K indicates that the particle is randomly disordered and negative values of standard Gibbs free energy (ΔG°) suggested that the biosorption process is spontaneous.Novelty statementBiomasses of Terminalia chebula shell (TCS), Peltophorum pterocarpum leaf (PPL) and Psidium guajava bark (PGB) reported as first time explored biosorbent for amaranth dye (AD) removal from aqueous solution.Optimal biosorption parameter for AD removal determined.Experimental data examined using isotherm, kinetic and thermodynamic analysis.


Assuntos
Psidium , Terminalia , Poluentes Químicos da Água , Adsorção , Corante Amaranto , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Cinética , Casca de Planta , Folhas de Planta , Termodinâmica , Água
12.
Biotechnol Rep (Amst) ; 30: e00614, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33912404

RESUMO

The aim of this study was to evaluate the removal of Pb (II) and Ni (II) from untreated waste water using sugarcane bagasse and possible desorption of the metal ions from the adsorbent for effective re-use. The effects of pH (4-6), temperature (30-70 °C), contact time (30-150 min) and adsorbent dosage (0.3-0.7 g) were examined. Optimum conditions for the removal efficiencies of Pb (89.31 %) and Ni (96.33 %) were pH, 6.0; temperature, 30 °C; contact time, 90 min. and adsorbent dosage, 0.5 g. The maximum monolayer adsorption capacities of Pb (II) and Ni (II) were 1.61 mg/g and 123.46 mg/g respectively, by fitting the equilibrium data to the Langmuir isotherm model. Freundlich isotherm and pseudo second order kinetic models were best fitted for Pb (II) and Ni (II) uptake. Desorption of the metal ions from the metal-loaded bagasse was best performed by HNO3 with removal efficiency of 85.2 %. Therefore, sugarcane bagasse has a high potential for removal of heavy metals from waste water and can be re-used at any time after desorption without losing its efficiency.

13.
J Environ Health Sci Eng ; 18(2): 515-529, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33312580

RESUMO

BACKGROUND: The aim of this study was to investigate the removal of Cr (VI) using Green-Graphene Nanosheets (GGN) synthesized from rice straw. METHODS: Synthesis of the GGN was optimized using response surface methodology and central composite design (CCD). The effect of two independent variables including KOH-to-raw rice ash (KOH/RRA) ratio and temperature on the specific surface area of the GGN was determined. To have better removal of Cr (VI), GGN was modified using the grafting amine group method. In the Cr (VI) removal process, the effects of four independent variables including initial Cr (VI) concentration, adsorbent dosage, contact time, and initial solution pH were studied. RESULTS: The results of this study showed that the optimum values of the KOH/RRA ratio and temperature for the preparation of GGN were 10.85 and 749.61 °C, respectively. The maximum amount of SSA obtained at optimum conditions for GGN was 551.14 ± 3.83 m 2 /g. The optimum conditions for Cr (VI) removal were 48.35 mg/L, 1.46 g/L, 44.30 min, and 6.87 for Cr (VI) concentration, adsorbent dosage, contact time, and pH, respectively. Based on variance analysis, the adsorbent dose was the most sensitive factor for Cr (VI) removal. Langmuir isotherm (R2 = 0.991) and Pseudo-second-order kinetic models (R2 = 0.999) were the best fit for the study results and the Q max was 138.89 mg/g. CONCLUSIONS: It can be concluded that the predicted conditions from the GGN synthesis model and the optimum conditions from the Cr (VI) removal model both agreed with the experimental findings.

14.
Environ Sci Pollut Res Int ; 27(35): 43999-44021, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32748352

RESUMO

In this paper, folic acid-coated graphene oxide nanocomposite (FA-GO) is used as an adsorbent for the treatment of heavy metals including cadmium (Cd2+) and copper (Cu2+) ions. As such, graphene oxide (GO) is modified by folic acid (FA) to synthesize FA-GO nanocomposite and characterized by the atomic force microscopy (AFM), Fourier transform-infrared (FT-IR) spectrophotometry, scanning electron microscopy (SEM), and C/H/N elemental analyses. Also, computational intelligence tests are used to study the mechanism of the interaction of FA molecules with GO. Based on the results, FA molecules formed a strong π-π stacking, chemical, and hydrogen bond interactions with functional groups of GO. Main parameters including pH of the sample solution, amounts of adsorbent, and contact time are studied and optimized by the Response Surface Methodology Based on Central Composite Design (RSM-CCD). In this study, the equilibrium of adsorption is appraised by two (Langmuir and Freundlich and Temkin and D-R models) and three parameter (Sips, Toth, and Khan models) isotherms. Based on the two parameter evaluations, Langmuir and Freundlich models have high accuracy according to the R2 coefficient (more than 0.9) in experimental curve fittings of each pollutant adsorption. But, multilayer adsorption of each contaminant onto the FA-GO adsorbent (Freundlich equation) is demonstrated by three parameter isotherm analysis. Also, isotherm calculations express maximum computational adsorption capacities of 103.1 and 116.3 mg g-1 for Cd2+ and Cu2+ ions, correspondingly. Kinetic models are scrutinized and the outcomes depict the adsorption of both Cd2+ and Cu2+ followed by the pseudo-second-order equation. Meanwhile, the results of the geometric model illustrate that the variation of adsorption and desorption rates do not have any interfering during the adsorption process. Finally, thermodynamic studies show that the adsorption of Cu2+ and Cd2+ onto the FA-GO nanocomposite is an endothermic and spontaneous process.


Assuntos
Metais Pesados , Nanocompostos , Poluentes Químicos da Água , Adsorção , Inteligência Artificial , Cádmio , Cobre , Ácido Fólico , Grafite , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Poluentes Químicos da Água/análise , Recursos Hídricos
15.
J Hazard Mater ; 384: 121252, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31581010

RESUMO

Nanoparticles film of copper metal hexacyanoferrates (CuHCF) was fabricated to electrochemically separate Co2+ in aqueous solutions under various conditions such as applied potential, solution pHs, initial concentrations, contact time and coexisting ions. Results showed that the removal efficiency conducted in reduction potential was obviously higher than that in oxidation potential. The optimal pH for Co2+ adsorption occurred at 8.0. Coexisting ions studies revealed that Co2+ could be removed from aqueous solutions containing Li+, Cu2+ and Al3+. Considering that cobalt and lithium are the main metallic elements in LiCoO2, the effect of different ionic strengths (IS) of LiNO3 (0.5, 1, 2, 5, 10) on adsorption was further investigated. Results showed that IS of LiNO3 had little impact on the removal efficiency of Co2+, which indicated the potential of selective recovery of cobalt from LiCoO2 in spent lithium-ion batteries. X-ray energy-dispersion spectroscopy (EDS) confirmed that the Co2+ could be adsorbed effectively onto CuHCF film. The adsorption was well described by Langmuir isotherm and the maximum sorption capacity is 218.82 mg/g. The kinetic rate of Co2+ adsorption was rapid initially and attained equilibrium within 60 min, and the data well fitted the Redlich-Peterson and the Elovich model, implying a chemisorption dominated process.

16.
Ultrason Sonochem ; 54: 290-301, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30712853

RESUMO

The fabrication of novel functionalized composite materials as adsorbent is considered to be the core research area in adsorption technology for environmental applications. Indiscriminate disposal of industrial effluents containing toxic dyes has become a serious environmental issue across the globe since last few decades. In view of above, this study focused on the performance evaluation of ZnO/polyaniline nanocomposite (ZnO-PANI-NC) for quick ultrasonic assisted adsorptive remediation of methyl orange dye from aqua matrix. ZnO nanoparticles were fabricated by a simple co-precipitation method and ZnO-PANI-NC was synthesized by in situ oxidative polymerization of aniline monomer in presence of ZnO nanoparticles. The nanocomposite was extensively characterized for its crystalline nature, morphological characteristics, surface chemical bonding, specific surface area and pore volume by employing XRD, SEM, TEM, FTIR, and BET analysis. The ZnO-PANI-NC has shown superior adsorptive performance as compared to pure PANI as well as ZnO nanoparticles and the maximum monolayer adsorption capacity of 240.84 mg/g was obtained for the ZnO-PANI-NC. Under ultrasonic environment the adsorption reaction reached to equilibrium (more than 98% MO dye removal) within 15 min of reaction. Adsorption process followed Langmuir isotherm model and second order kinetic model strictly and contribution of intra-particle diffusion was also observed. The ZnO-PANI-NC has shown its high regeneration ability (more than 86%) even after 5th consecutive cycles of adsorption-desorption. Response surface methodology based optimization was used to optimize the adsorption experimental data and maximum MO removal of 99.12% was observed at optimum sonication time 13 min, adsorbent dose 0.38 g/L and initial MO concentration at 28 mg/L.

17.
J Environ Health Sci Eng ; 17(2): 873-888, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32030160

RESUMO

BACKGROUND: Due to the high toxicity of chromium, particularly as Hexavalent chromium Cr (VI), it is removed from industrial effluents before their discharge into the environment by a variety of methods, including loading catalysts onto the polymeric supports. This study focused on the removal of Cr(VI) from aqueous solutions using Amberlite XAD7 resin loaded titanium dioxide (Ti-XAD7). METHODS: Ti-XAD7 was synthesized using Amberlite XAD-7 impregnated with titanium tetraethoxide. The prepared Ti-XAD7 was characterized by using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Isotherms and kinetic studies were carried out to describe the adsorption behavior of adsorbent for the removal of Cr(VI) ions. Quadratic models considering independent variables, i.e. the initial Cr(VI) concentration, adsorbent dosage, time, and pH, were evaluated and optimized to describe the behavior of Cr(VI) adsorption onto the Ti-XAD7 using RSM based on a Five-level-four-factor CCD approach. RESULTS: The accuracy and the fitting of the model were evaluated by ANOVA with R2 > 0.725 and P value = 5.221 × 10-5. The optimum conditions for the adsorption process were an initial Cr(VI) concentration 2750 ppb, contact time of 51.53 min, pH of 8.7, and Ti-XAD7 dosage of 5.05 g/L. The results revealed that the Langmuir and Sips isotherm models with R2 = 0.998 and 0.999 were the best models fitting the experimental data. The adsorption capacity of Ti-XAD7 and RL constant were 2.73 mg/g and 0.063-0.076 based on the Langmuir isotherm, respectively. Kinetic studies also indicated that the adsorption behavior of Cr(VI) was acceptably explained by the Elovich kinetic model with a good fitting (R2 = 0.97). CONCLUSIONS: Comparison of the Ti-XAD7 and XAD7 yield in chromium adsorption showed that modified XAD7 had higher removal efficiency (about 98%) compared to XAD7 alone.

18.
J Environ Health Sci Eng ; 17(2): 989-999, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32030169

RESUMO

BACKGROUND: Removal of pentachlorophenol (PCP) from wastewater containing chlorophenols, due to its toxicity, mutagenic and carcinogenic properties, has been attracted much interests of researchers. METHODS: In this research, K10 montmorillonite was modified by silane and imidazole (Im) for increasing the removal percentage of PCP from aqueous solutions. It was characterized by FTIR, XRF, FESEM, EDS, and BET techniques. The influence of different parameters such as initial concentration, contact time, adsorbent dosage, pH, temperature and agitating speed was investigated. RESULTS: The maximum removal percentage (95%) were obtained for PCP at pH = 4. The isotherm experimental data for pentachlorophenol was best fitted using the Langmuir model and the kinetic studies were better described by the pseudo-second-order kinetic model. The thermodynamic study indicated that the adsorption of PCP by the adsorbent was feasible, spontaneous and exothermic. CONCLUSION: In this study, the modified montmorillonite by silane and imidazole is appropriate and low cost adsorbent for increasing of the removal percentage of PCP from aqueous solutions.

19.
Chemosphere ; 216: 124-130, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30366266

RESUMO

The present study aimed to analyze simultaneous biosorption of Cd+2 and Ni+2 by living Phanerochaete chrysosporium as low-cost and eco-friendly biosorbent following optimization by applying a central composite design. The effect of operating parameters such as solution pH (4.0-8.0), temperature (20-40 °C), contact time (3-15 h), initial Cd+2 and Ni+2 concentrations (15-35, 5-25 mg L-1, respectively) was evaluated by response surface methodology (RSM) for optimizing biosorption process. The Cd+2 and Ni+2 ions at 25 and 16 mg L-1 were accumulated in P. chrysosporium with the efficiency of 96.23% and 89.48%, respectively, at pH of 6 and 36 °C after around 9 h under well mixing. The equilibrium data were fitted well with Langmuir isotherm model with maximum biosorption capacity of 71.43 and 46.50 mg g-1 for Cd+2 and Ni+2, respectively. In addition, the pseudo-second order kinetic model could describe the kinetic data adequately. Further, possible interaction pathway among metals and P. chrysosporium functional groups were studied by Fourier transform infrared (FT-IR) spectroscopy. Furthermore, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) techniques were applied for morphology investigation and semi elemental analysis.


Assuntos
Cádmio/metabolismo , Níquel/metabolismo , Phanerochaete/metabolismo , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Fatores de Tempo
20.
Environ Sci Pollut Res Int ; 25(27): 27122-27132, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30022389

RESUMO

This work presents the synthesis of the novel silica-cyanopropyl functionalized magnetic graphene oxide (MGO/SiO2-CN) hybrid nanomaterial derived by sol-gel method as a cheap efficient magnetic sorbent for the removal of extremely hazardous lead ions from aqueous media. The integration of the magnetic property, the carbon substrate, and the nitrile (-C ≡ N) containing organic grafted silica matrix promoted the adsorption capability against lead ions along with its simple synthesis recovery and low cost. The prepared nanocomposite was comprehensively characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Adsorption of lead was found to be pH dependent because of the charged nature of both analyte and adsorbent surface. Adsorption experiments were conducted under the optimum conditions, and the obtained experimental data from atomic absorption spectroscopy were analyzed using the popular isothermal models namely Langmuir, Freundlich, and Dubinin-Radushkevich isotherms as well as kinetically studied and evaluated for adsorption standard free energy (E). The experimental results have demonstrated the enhanced adsorption capability of the proposed sorbent nanocomposite for lead ion removal with the maximum adsorption capacity of 111.11 mg/g at pH 5.0. The proposed mechanism of lead adsorption was mainly attributed to the complexation of lead positive ions with the grafted -C ≡ N bond. The synergistic effect of the combination of three components (i.e., the magnetic graphene oxide matrix, the triple bond containing organic moiety, and the inorganic porous silica framework) excelled the adsorption capability and proved to be a good candidate as adsorbent for the removal of lead ions.


Assuntos
Grafite/química , Chumbo/isolamento & purificação , Nanocompostos/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Concentração de Íons de Hidrogênio , Íons , Cinética , Magnetismo , Microscopia Eletrônica de Varredura , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA