Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(8)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37630038

RESUMO

Compliant amplifying mechanisms are used widely in high-precision instruments driven by piezoelectric actuators, and the dynamic and static characteristics of these mechanisms are closely related to instrument performance. Although the majority of existing research has focused on analysis of their static characteristics, the dynamic characteristics of the mechanisms affect their response speeds directly. Therefore, this paper proposes a comprehensive theoretical model of compliant-amplifying mechanisms based on the multi-body system transfer matrix method to analyze the dynamic and static characteristics of these mechanisms. The effects of the main amplifying mechanism parameters on the displacement amplification ratio and the resonance frequency are analyzed comprehensively using the control variable method. An iterative optimization algorithm is also used to obtain specific parameters that meet the design requirements. Finally, simulation analyses and experimental verification tests are performed. The results indicate the feasibility of using the proposed theoretical compliant-amplifying mechanism model to describe the mechanism's dynamic and static characteristics, which represents a significant contribution to the design and optimization of compliant-amplifying mechanisms.

2.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-910402

RESUMO

Objective:To develope an automatic volumetric modulated arc therapy (VMAT) planning for rectal cancer based on a dose-prediction model for organs at risk(OARs) and an iterative optimization algorithm for objective parameter optimization.Methods:Totally 165 VMAT plans of rectal cancer patients treated in Peking University Cancer Hospital & Institute from June 2018 to January 2021 were selected to establish automatic VMAT planning. Among them, 145 cases were used for training the deep-learning model and 20 for evaluating the feasibility of the model by comparing the automatic planning with manual plans. The deep learning model was used to predict the essential dose-volume histogram (DVH) index as initial objective parameters(IOPs) and the iterative optimization algorithm can automatically modify the objective parameters according to the result of protocol-based automatic iterative optimization(PBAIO). With the predicted IOPs, the automatic planning model based on the iterative optimization algorithm was achieved using a program mable interface.Results:The IOPs of OARs of 20 cases were effectively predicted using the deep learning model, with no significantly statistical difference in the conformity index(CI) for planning target volume(PTV)and planning gross tumor volume(PGTV)between automatic and manual plans( P>0.05). The homogeneity index (HI) of PGTV in automatic and manual plans was 0.06 and 0.05, respectively( t=-6.92, P< 0.05). Compared with manual plans, the automatic plans significantly decreased the V30 for urinary bladder by 2.7% and decreased the V20 for femoral head sand auxiliary structure(avoidance)by 8.37% and 15.95%, respectively ( t=5.65, 11.24, P< 0.05). Meanwhile, the average doses to bladder, femoral heads, and avoidance decreased by 1.91, 4.01, and 3.88 Gy, respectively( t=9.29, 2.80, 10.23, P< 0.05) using the automatic plans. The time of automatic VMAT planning was (71.49±25.48)min in 20 cases. Conclusions:The proposed automatic planning based on dose prediction and an iterative optimization algorithm is feasible and has great potential for sparing OARs and improving the utilization rate of clinical resources.

3.
ISA Trans ; 93: 55-69, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30955834

RESUMO

This paper addresses the problems of robust stability analysis and L1-gain controller synthesis for uncertain impulsive positive systems. First, by employing the idea of impulse interval partitioning, an impulse-time-dependent discretized copositive Lyapunov function is proposed to analyze the robust stability and L1-gain performance of the considered system without control inputs, and several stability conditions and L1-gain criteria are respectively derived. Subsequently, a sufficient condition is formulated for the existence of state-feedback controllers with which not only the positivity and robust uniform asymptotic stability of the resulting closed-loop system are guaranteed, but also a prescribed L1-gain performance is satisfied simultaneously. Furthermore, to make the controller synthesis problem numerically tractable, we propose an iterative convex optimization algorithm to compute the desired controller parameters. Finally, three numerical examples and two realistic examples are presented to show the effectiveness and applicability of the proposed methodology.

4.
ISA Trans ; 88: 199-215, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30578001

RESUMO

Rolling element bearings (REBs) play an essential role in modern machinery and their condition monitoring is significant in predictive maintenance. Due to the harsh operating conditions, multi-fault may co-exist in one bearing and vibration signal always exhibits low signal-to-noise ratio (SNR), which causes difficulties in detecting fault. In the previous studies, maximum correlated kurtosis deconvolution (MCKD) has been validated as an efficient method to extract fault feature in the fault signals. Nonetheless, there are still some challenges when MCKD is applied to fault detection owing to the rigorous requirements of multiple input parameters. To overcome limitation, a multi-objective iterative optimization algorithm (MOIOA) for multi-fault diagnosis is proposed. In this method, correlated kurtosis (CK) is taken as a criterion to select optimal Morlet wavelet filter using the whale optimization algorithm (WOA). Meanwhile, to further eliminate the effect of the inaccurate period on CK, the update process of period is incorporated. After that, the simulated and experimental signals are utilized to testify the validity and superiority of the MOIOA for multiple faults detection by the comparison with MCKD. The results indicate that MOIOA is efficient to extract weak fault features even with heavy noise and harmonic interferences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...