Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.184
Filtrar
1.
J Nanobiotechnology ; 22(1): 409, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992688

RESUMO

OBJECTIVE: This study aimed to investigate the critical role of MDSCs in CRC immune suppression, focusing on the CSF1R and JAK/STAT3 signaling axis. Additionally, it assessed the therapeutic efficacy of LNCs@CSF1R siRNA and anti-PD-1 in combination. METHODS: Single-cell transcriptome sequencing data from CRC and adjacent normal tissues identified MDSC-related differentially expressed genes. RNA-seq analysis comprehensively profiled MDSC gene expression in murine CRC tumors. LNCs@CSF1R siRNA nanocarriers effectively targeted and inhibited CSF1R. Flow cytometry quantified changes in MDSC surface markers post-CSF1R inhibition. RNA-seq and pathway enrichment analyses revealed the impact of CSF1R on MDSC metabolism and signaling. The effect of CSF1R inhibition on the JAK/STAT3 signaling axis was validated using Colivelin and metabolic assessments. Glucose and fatty acid uptake were measured via fluorescence-based flow cytometry. The efficacy of LNCs@CSF1R siRNA and anti-PD-1, alone and in combination, was evaluated in a murine CRC model with extensive tumor section analyses. RESULTS: CSF1R played a significant role in MDSC-mediated immune suppression. LNCs@CSF1R siRNA nanocarriers effectively targeted MDSCs and inhibited CSF1R. CSF1R regulated MDSC fatty acid metabolism and immune suppression through the JAK/STAT3 signaling axis. Inhibition of CSF1R reduced STAT3 activation and target gene expression, which was rescued by Colivelin. Combined treatment with LNCs@CSF1R siRNA and anti-PD-1 significantly slowed tumor growth and reduced MDSC abundance within CRC tumors. CONCLUSION: CSF1R via the JAK/STAT3 axis critically regulates MDSCs, particularly in fatty acid metabolism and immune suppression. Combined therapy with LNCs@CSF1R siRNA and anti-PD-1 enhances therapeutic efficacy in a murine CRC model, providing a strong foundation for future clinical applications.


Assuntos
Neoplasias Colorretais , Células Supressoras Mieloides , RNA Interferente Pequeno , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Fator de Transcrição STAT3 , Animais , Células Supressoras Mieloides/metabolismo , Camundongos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/imunologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral , Humanos , Transdução de Sinais/efeitos dos fármacos , Receptor de Morte Celular Programada 1/metabolismo , Feminino , Camundongos Endogâmicos BALB C , Janus Quinases/metabolismo , Imunomodulação/efeitos dos fármacos , Receptor de Fator Estimulador de Colônias de Macrófagos
2.
Yale J Biol Med ; 97(2): 165-177, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38947108

RESUMO

Background: Chronic rhinosinusitis (CRS) is an inflammatory condition classified into chronic rhinosinusitis with nasal polyps (CRSwNP) and chronic rhinosinusitis without nasal polyps (CRSsNP). Th cells manage inflammatory cells in CRS. Suppressor of Cytokine Signaling (SOCS) proteins regulate Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway in Th cells by polarizing toward Th1, Th2, and Th17 cells. This study evaluated the levels of SOCS1,3,5 in CRS patients to find associations with Th cells. Methods: In this cross-sectional study, 20 CRSwNP patients, 12 CRSsNP patients, and 12 controls participated. The infiltration of CD4+ T cells was determined using immunohistochemistry. The expression of specific transcription factors and SOCS proteins was assessed using real-time PCR. Cytokine levels were evaluated using ELISA. SOCS protein levels were investigated using western blot analysis. Results: The expression of SOCS3 increased in the CRSwNP group compared to CRSsNP and control groups (p <0.001). SOCS3 protein levels increased in the CRSwNP group compared to CRSsNP (p <0.05) and control (p <0.001) groups. Although there was a significant difference in SOCS5 expression between CRSsNP and control groups, SOCS5 protein levels were significantly different between CRSsNP and control (p <0.001) and CRSwNP (p <0.05) groups. Conclusions: Targeted therapies may be suggested for CRS by modulating SOCS3 and SOCS5 proteins that are responsible for polarization of Th cells toward Th2 or Th1 cells, respectively. JAK-STAT pathway targeting, which encompasses numerous cells, can be limited to SOCS proteins to more effectively orchestrate Th cell differentiation.


Assuntos
Rinite , Sinusite , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina , Humanos , Sinusite/metabolismo , Sinusite/imunologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Doença Crônica , Masculino , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Rinite/metabolismo , Rinite/imunologia , Feminino , Adulto , Pessoa de Meia-Idade , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Estudos Transversais , Pólipos Nasais/metabolismo , Citocinas/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/genética , Transdução de Sinais , Rinossinusite
3.
Front Immunol ; 15: 1419951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947335

RESUMO

The Suppressor of Cytokine Signaling (SOCS) family proteins are important negative regulators of cytokine signaling. SOCS1 is the prototypical member of the SOCS family and functions in a classic negative-feedback loop to inhibit signaling in response to interferon, interleukin-12 and interleukin-2 family cytokines. These cytokines have a critical role in orchestrating our immune defence against viral pathogens and cancer. The ability of SOCS1 to limit cytokine signaling positions it as an important immune checkpoint, as evidenced by the detection of detrimental SOCS1 variants in patients with cytokine-driven inflammatory and autoimmune disease. SOCS1 has also emerged as a key checkpoint that restricts anti-tumor immunity, playing both a tumor intrinsic role and impacting the ability of various immune cells to mount an effective anti-tumor response. In this review, we describe the mechanism of SOCS1 action, focusing on the role of SOCS1 in autoimmunity and cancer, and discuss the potential for new SOCS1-directed cancer therapies that could be used to enhance adoptive immunotherapy and immune checkpoint blockade.


Assuntos
Homeostase , Inflamação , Neoplasias , Proteína 1 Supressora da Sinalização de Citocina , Humanos , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/genética , Neoplasias/imunologia , Neoplasias/terapia , Homeostase/imunologia , Inflamação/imunologia , Animais , Transdução de Sinais , Autoimunidade , Citocinas/metabolismo , Citocinas/imunologia
4.
Heliyon ; 10(11): e32015, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38947456

RESUMO

Background: Non-small cell lung Cancer (NSCLC) persists as a lethal neoplastic manifestation, exhibiting a diminished 5-year survival rate, partially attributable to chemotherapeutic resistance. This investigative endeavor aimed to elucidate the synergistic antineoplastic effects and underlying mechanisms of the SMYD2 inhibitor BAY-598 and the chemotherapeutic agent doxorubicin (DOX) in NSCLC. Methods: The human non-small cell lung cancer cell lines A549 and H460 were subjected to treatment regimens involving BAY-598 and/or DOX. Cellular viability, apoptotic events, invasive capacity, and migratory potential were evaluated through the implementation of CCK-8 assays, flow cytometric analyses, and Transwell assays, respectively. Protein expression levels were quantified via Western blot analyses. An in vivo xenograft murine model was established to assess therapeutic efficacy. Results: BAY-598 and DOX synergistically suppressed the viability, invasiveness, and migratory capabilities of NSCLC cells. Co-treatment Promoting cell apoptosis and cell cycle arrest. Additionally, Furthermore, co-administration significantly inhibited cell migration and invasion. Mechanistic studies revealed coordinately inhibited JAK-STAT signaling upon combination treatment. In vivo study further validated the synergistic antitumor efficacy of BAY-598 and DOX against NSCLC xenografts. Conclusions: Our findings demonstrate that BAY-598 potentiates the anti-cancer effects of DOX in non-small cell lung cancer cells by modulating the JAK/STAT signaling pathway as a synergistic strategy. The combination holds promise as an emerging therapeutic strategy for NSCLC. Further optimization and validation are warranted to promote its translational potential.

5.
Front Microbiol ; 15: 1417404, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962129

RESUMO

Introduction: Porcine reproductive and respiratory syndrome virus (PRRSV) causes substantial economic losses in the global swine industry. The current vaccine options offer limited protection against PRRSV transmission, and there are no effective commercial antivirals available. Therefore, there is an urgent need to develop new antiviral strategies that slow global PRRSV transmission. Methods: In this study, we synthesized a dicoumarol-graphene oxide quantum dot (DIC-GQD) polymer with excellent biocompatibility. This polymer was synthesized via an electrostatic adsorption method using the natural drug DIC and GQDs as raw materials. Results: Our findings demonstrated that DIC exhibits high anti-PRRSV activity by inhibiting the PRRSV replication stage. The transcriptome sequencing analysis revealed that DIC treatment stimulates genes associated with the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway. In porcine alveolar macrophages (PAMs), DIC-GQDs induce TYK2, JAK1, STAT1, and STAT2 phosphorylation, leading to the upregulation of JAK1, STAT1, STAT2, interferon-ß (IFN-ß) and interferon-stimulated genes (ISGs). Animal challenge experiments further confirmed that DIC-GQDs effectively alleviated clinical symptoms and pathological reactions in the lungs, spleen, and lymph nodes of PRRSV-infected pigs. Discussion: These findings suggest that DIC-GQDs significantly inhibits PRRSV proliferation by activating the JAK/STAT signalling pathway. Therefore, DIC-GQDs hold promise as an alternative treatment for PRRSV infection.

6.
Phytomedicine ; 132: 155853, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38968792

RESUMO

BACKGROUND: Heat stroke (HS) generated liver injury is a lethal emergency that occurs when the body is exposed to temperatures up to 40 °C for a few hours. PURPOSE: This study aimed to evaluate the therapeutic prospects of Catalpol (CA) from the blood-cooling herb Rehamanniae Radix on liver injury by HS. STUDY DESIGN AND METHODS: A murine HS model (41 ± 0.5 °C, 60 ± 5 % relative humidity) and two cell lines (lipopolysaccharide + 42 °C) were used to assess the protective effects of CA on physiological, pathological, and biochemical features in silico, in vivo, and in vitro. RESULTS: CA treatment significantly improved survival rates in vivo and cell viability in vitro over those of the untreated group. Additionally, CA treatment reduced core body temperature, enhanced survival time, and mitigated liver tissue damage. Furthermore, CA treatment also reduced the activities of AST and ALT enzymes in the serum samples of HS mice. Molecular docking analysis of the 28 overlapping targets between HS and CA revealed that CA has strong binding affinities for the top 15 targets. These targets are primarily involved in nine major signaling pathways, with the JAK-STAT pathway being highly associated with the other eight pathways. Our findings also indicate that CA treatment significantly downregulated the expression of proinflammatory cytokines both in vivo and in vitro while upregulating the expression of anti-inflammatory cytokines. Moreover, CA treatment reduced the levels of JAK2, phospho-STAT5, and phospho-STAT3 both in vivo and in vitro, which is consistent with its inhibition of the apoptotic markers p53, Bcl2, and Bax. CONCLUSIONS: Heat stroke-induced liver injury was inhibited by CA through the downregulation of JAK/STAT signaling.

8.
Insect Sci ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956988

RESUMO

Entomopathogenic fungi may interact with insects' symbiotic bacteria during infection. We hypothesized that topical infection with Beauveria bassiana may alter the microbiota of the Colorado potato beetle (CPB) and that these modifications may alter the course of mycoses. We used a model with two concentrations of conidia: (1) high concentration that causes rapid (acute) pathogenesis with fast mortality followed by bacterial decomposition of insects; (2) lower concentration that leads to prolonged pathogenesis ending in conidiation on cadavers. The fungal infections increased loads of enterobacteria and bacilli on the cuticle surface and in hemolymph and midgut, and the greatest increase was detected during the acute mycosis. By contrast, stronger activation of IMD and JAK-STAT signaling pathways in integuments and fat body was observed during the prolonged mycosis. Relatively stable (nonpathogenic) conditions remained in the midgut during both scenarios of mycosis with slight changes in bacterial communities, the absence of mesh and stat expression, a decrease in reactive oxygen species production, and slight induction of Toll and IMD pathways. Oral administration of antibiotic and predominant CPB bacteria (Enterobacteriaceae, Lactococcus, Pseudomonas) led to minor and mainly antagonistic effects in survival of larvae infected with B. bassiana. We believe that prolonged mycosis is necessary for successful development of the fungus because such pathogenesis allows the host to activate antibacterial reactions. Conversely, after infection with high concentrations of the fungus, the host's resources are insufficient to fully activate antibacterial defenses, and this situation makes successful development of the fungus impossible.

9.
Allergy Asthma Clin Immunol ; 20(1): 38, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951930

RESUMO

OBJECTIVE: The aim of this study was to investigate the role and mechanisms of miR-155 in chronic spontaneous urticaria (CSU). METHODS: The expression level of miR-155 in the skin tissues of patients with CSU and experimental rats were detected by RT-qPCR, followed by the measurement of the histamine release rate in the serum through the histamine release test. Besides, hematoxylin & eosin staining was used to observe the pathological changes of the skin tissues; Corresponding detection kits and flow cytometry to measure the changes of immunoglobulins, inflammatory cytokines and T cell subsets in the serum of rats in each group; and western blot to check the expression level of proteins related to JAK/STAT signaling pathway in the skin tissues. RESULTS: Knockdown of miR-155 reduced the number and duration of pruritus, alleviated the skin damage, and decreased the number of eosinophils in CSU rats. Moreover, knockdown of miR-155 elevated the serum levels of IgG and IgM, decreased the levels of IgA and inflammatory cytokines, and reduced the proportion of CD4 + and CD4 + CD25 + T cells, as well as the CD4+/CD8 + ratio in CSU rats. However, Tyr705 intervention could reverse the effects of knockdown of miR-155 on CSU model rats. Furthermore, we found that knockdown of miR-155 significantly reduced the protein expression of IRF-9, as well as the P-JAK2/JAK2 and P-STAT3/STAT3 ratios in the skin tissues of CSU rats. CONCLUSION: Knockdown of miR-155 can alleviate skin damage and inflammatory responses and relieve autoimmunity in CSU rats by inhibiting the JAK/STAT3 signaling pathway.

10.
Front Immunol ; 15: 1406886, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983855

RESUMO

Protein-protein interactions (PPIs) play critical roles in a wide range of biological processes including the dysregulation of cellular pathways leading to the loss of cell function, which in turn leads to diseases. The dysfunction of several signaling pathways is linked to the insurgence of pathological processes such as inflammation, cancer development and neurodegeneration. Thus, there is an urgent need for novel chemical modulators of dysregulated PPIs to drive progress in targeted therapies. Several PPIs have been targeted by bioactive compounds, and, often, to properly cover interacting protein regions and improve the biological activities of modulators, a particular focus concerns the employment of macrocycles as proteomimetics. Indeed, for their physicochemical properties, they occupy an intermediate space between small organic molecules and macromolecular proteins and are prominent in the drug discovery process. Peptide macrocycles can modulate fundamental biological mechanisms and here we will focus on peptidomimetics active on the Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathways.


Assuntos
Janus Quinases , Peptidomiméticos , Fatores de Transcrição STAT , Transdução de Sinais , Peptidomiméticos/farmacologia , Humanos , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Descoberta de Drogas
11.
Biol Trace Elem Res ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995434

RESUMO

The integrity of colonic gland cells is a prerequisite for normal colonic function and maintenance. To evaluate the underlying injury mechanisms in colonic gland cells induced by excessive fluoride (F), forty-eight female Kunming mice were randomly allocated into four groups and treated with different concentrations of NaF (0, 25, 50, and 100 mg F-/L) for 70 days. As a result, the integrity of the colonic mucosa and the cell layer was seriously damaged after F treatment, as manifested by atrophy of the colonic glands, colonic cell surface collapse, breakage of microvilli, and mitochondrial vacuolization. Alcian blue and periodic acid Schiff staining revealed that F decreased the number of goblet cells and glycoprotein secretion. Furthermore, F increased the protein expression of TLR4, NF-κB, and ERK1/2 and decreased IL-6, interfered with NF-κB signaling, following induced colonic gland cells inflammation. The accumulation of F inhibited proliferation via the JAK/STAT signaling pathway, as characterized by decreased mRNA and protein expression of JAK, STAT3, STAT5, PCNA, and Ki67 in colon tissue. Additionally, the expression of CDK4 was up-regulated by increased F concentration. In conclusion, excessive F triggered colonic inflammation and inhibited colonic gland cell proliferation via regulation of the NF-κB and JAK/STAT signaling pathways, leading to histopathology and barrier damage in the colon. The results explain the damaging effect of the F-induced inflammatory response on the colon from the perspective of cell proliferation and provide a new idea for explaining the potential mechanism of F-induced intestinal damage.

12.
Int J Biol Sci ; 20(9): 3530-3543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993551

RESUMO

During muscle regeneration, interferon-gamma (IFN-γ) coordinates inflammatory responses critical for activation of quiescent muscle stem cells upon injury via the Janus kinase (JAK) - signal transducer and activator of transcription 1 (STAT1) pathway. Dysregulation of JAK-STAT1 signaling results in impaired muscle regeneration, leading to muscle dysfunction or muscle atrophy. Until now, the underlying molecular mechanism of how JAK-STAT1 signaling resolves during muscle regeneration remains largely elusive. Here, we demonstrate that epithelial-stromal interaction 1 (Epsti1), an interferon response gene, has a crucial role in regulating the IFN-γ-JAK-STAT1 signaling at early stage of muscle regeneration. Epsti1-deficient mice exhibit impaired muscle regeneration with elevated inflammation response. In addition, Epsti1-deficient myoblasts display aberrant interferon responses. Epsti1 interacts with valosin-containing protein (VCP) and mediates the proteasomal degradation of IFN-γ-activated STAT1, likely contributing to dampening STAT1-mediated inflammation. In line with the notion, mice lacking Epsti1 exhibit exacerbated muscle atrophy accompanied by increased inflammatory response in cancer cachexia model. Our study suggests a crucial function of Epsti1 in the resolution of IFN-γ-JAK-STAT1 signaling through interaction with VCP which provides insights into the unexplored mechanism of crosstalk between inflammatory response and muscle regeneration.


Assuntos
Interferon gama , Regeneração , Fator de Transcrição STAT1 , Fator de Transcrição STAT1/metabolismo , Animais , Camundongos , Regeneração/fisiologia , Interferon gama/metabolismo , Transdução de Sinais , Inflamação/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
Chin Med ; 19(1): 81, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38858762

RESUMO

BACKGROUND: Psoriasis is a long-term inflammatory skin disease. A novel herbal formula containing nine Chinese herbal medicines, named Inflammation Skin Disease Formula (ISDF), has been prescribed in clinics for decades. AIMS: To investigate the efficacy and action mechanisms of ISDF on psoriasis using imiquimod (IMQ) and Interleukin-23 (IL-23)-induced models in mice and reveal the pharmacokinetics profile of ISDF in rats. METHODS: Topical administration of IMQ and intradermal injection with IL-23 respectively induced skin lesions like psoriasis on the dorsal area of Balb/c and C57 mice. The mice's body weight, skin thickness, and psoriasis area and severity index (PASI) were assessed weekly. SD rats were used in the pharmacokinetics study and the contents of berberine and baicalin were determined. RESULTS: The PASI scores and epidermal thickness of mice were markedly decreased after ISDF treatment in both models. ISDF treatment significantly decreased the contents of IL-17A and IL-22 in the serum of IMQ- and IL-23-treated mice. Importantly, ISDF markedly downregulated IL-4, IL-6, IL-1ß, and tumor necrosis factor α (TNF-α) gene expression, and the phosphorylation of NF-κB p65, JNK, ERKs and MAPK p38 in IMQ-treated mice. The protein phosphorylation of Jak1, Jak2, Tyk2 and Stat3 was significantly mitigated in the ISDF-treated groups. The absorption of baicalin and berberine of ISDF through the gastrointestinal tract of rats was limited, and their distribution and metabolism in rats were also very slow, which suggested ISDF could be used in the long-term application. CONCLUSIONS: ISDF has a strong anti-psoriatic therapeutic effect on mouse models induced with psoriasis through IMQ and IL-23, which is achieved by inhibiting the activation of the Jak/Stat3-activated IL-23/Th17 axis and the downstream NF-κB signalling and MAPK signalling pathways. ISDF holds great potential to be a therapy for psoriasis and should be further developed for this purpose.

15.
Acta Pharmacol Sin ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862817

RESUMO

Suppression of neuroinflammation using small molecule compounds targeting the key pathways in microglial inflammation has attracted great interest. Recently, increasing attention has been gained to the role of the second bromodomain (BD2) of the bromodomain and extra-terminal (BET) proteins, while its effect and molecular mechanism on microglial inflammation has not yet been explored. In this study, we evaluated the therapeutic effects of ABBV-744, a BD2 high selective BET inhibitor, on lipopolysaccharide (LPS)-induced microglial inflammation in vitro and in vivo, and explored the key pathways by which ABBV-744 regulated microglia-mediated neuroinflammation. We found that pretreatment of ABBV-744 concentration-dependently inhibited the expression of LPS-induced inflammatory mediators/enzymes including NO, TNF-α, IL-1ß, IL-6, iNOS, and COX-2 in BV-2 microglial cells. These effects were validated in LPS-treated primary microglial cells. Furthermore, we observed that administration of ABBV-744 significantly alleviated LPS-induced activation of microglia and transcriptional levels of pro-inflammatory factors TNF-α and IL-1ß in mouse hippocampus and cortex. RNA-Sequencing (RNA-seq) analysis revealed that ABBV-744 induced 508 differentially expressed genes (DEGs) in LPS-stimulated BV-2 cells, and gene enrichment and gene expression network analysis verified its regulation on activated microglial genes and inflammatory pathways. We demonstrated that pretreatment of ABBV-744 significantly reduced the expression levels of basic leucine zipper ATF-like transcription factor 2 (BATF2) and interferon regulatory factor 4 (IRF4), and suppressed JAK-STAT signaling pathway in LPS-stimulated BV-2 cells and mice, suggesting that the anti-neuroinflammatory effect of ABBV-744 might be associated with regulation of BATF2-IRF4-STAT1/3/5 pathway, which was confirmed by gene knockdown experiments. This study demonstrates the effect of a BD2 high selective BET inhibitor, ABBV-744, against microglial inflammation, and reveals a BATF2-IRF4-STAT1/3/5 pathway in regulation of microglial inflammation, which might provide new clues for discovery of effective therapeutic strategy against neuroinflammation.

16.
Expert Rev Clin Immunol ; 20(7): 695-702, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38879876

RESUMO

INTRODUCTION: Vitiligo is a chronic, autoimmune condition characterized by skin depigmentation caused by inflammatory-mediated melanocyte degradation. Treatment of vitiligo is challenging due to the chronic nature of the condition. Ruxolitinib cream 1.5% was recently approved by the Food and Drug Administration (FDA) as a Janus kinase 1 and 2 inhibitor for use in nonsegmental vitiligo for those 12 years and older. AREAS COVERED: The purpose of this review is to describe the role of ruxolitinib in treating nonsegmental vitiligo.We searched PubMed using search terms nonsegmental vitiligo, jak inhibitor, and ruxolitinib. Clinicaltrials.gov was used to identify clinical trial data including efficacy, pharmacodynamics, pharmacokinetics, safety, and tolerability. EXPERT OPINION: In both phase II and phase III (TRuE-V1 and TRuE-V2) trials, ruxolitinib cream 1.5% improved repigmentation with minimal adverse effects. Topical ruxolitinib is a much needed new vitiligo treatment option.  Real life efficacy may not match that seen in clinical trials if the hurdle of poor adherence to topical treatment is not surmounted.


Assuntos
Nitrilas , Pirazóis , Pirimidinas , Vitiligo , Humanos , Vitiligo/tratamento farmacológico , Pirimidinas/uso terapêutico , Pirazóis/uso terapêutico , Pigmentação da Pele/efeitos dos fármacos , Janus Quinase 1/antagonistas & inibidores , Creme para a Pele/uso terapêutico , Janus Quinase 2/antagonistas & inibidores , Inibidores de Janus Quinases/uso terapêutico
17.
Mol Med ; 30(1): 81, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862942

RESUMO

BACKGROUND: Studies have highlighted a possible crosstalk between the pathogeneses of COVID-19 and systemic lupus erythematosus (SLE); however, the interactive mechanisms remain unclear. We aimed to elucidate the impact of COVID-19 on SLE using clinical information and the underlying mechanisms of both diseases. METHODS: RNA-seq datasets were used to identify shared hub gene signatures between COVID-19 and SLE, while genome-wide association study datasets were used to delineate the interaction mechanisms of the key signaling pathways. Finally, single-cell RNA-seq datasets were used to determine the primary target cells expressing the shared hub genes and key signaling pathways. RESULTS: COVID-19 may affect patients with SLE through hematologic involvement and exacerbated inflammatory responses. We identified 14 shared hub genes between COVID-19 and SLE that were significantly associated with interferon (IFN)-I/II. We also screened and obtained four core transcription factors related to these hub genes, confirming the regulatory role of the IFN-I/II-mediated Janus kinase/signal transducers and activators of transcription (JAK-STAT) signaling pathway on these hub genes. Further, SLE and COVID-19 can interact via IFN-I/II and IFN-I/II receptors, promoting the levels of monokines, including interleukin (IL)-6/10, tumor necrosis factor-α, and IFN-γ, and elevating the incidence rate and risk of cytokine release syndrome. Therefore, in SLE and COVID-19, both hub genes and core TFs are enriched within monocytes/macrophages. CONCLUSIONS: The interaction between SLE and COVID-19 promotes the activation of the IFN-I/II-triggered JAK-STAT signaling pathway in monocytes/macrophages. These findings provide a new direction and rationale for diagnosing and treating patients with SLE-COVID-19 comorbidity.


Assuntos
COVID-19 , Estudo de Associação Genômica Ampla , Lúpus Eritematoso Sistêmico , SARS-CoV-2 , Transdução de Sinais , Humanos , COVID-19/genética , Lúpus Eritematoso Sistêmico/genética , SARS-CoV-2/fisiologia , Feminino , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/genética , Masculino , Transcriptoma , Perfilação da Expressão Gênica , Multiômica
18.
Int Immunopharmacol ; 136: 112409, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38850789

RESUMO

BACKGROUND: Iguratimod (IGU) is widely used in clinical practice due to its stable anti-inflammatory effects. Our previous studies have confirmed that the proportion of Th17/Treg balance in patients taking IGU altered significantly. This study aims to explore the role of IGU in antibody-mediated rejection (ABMR) and its potential mechanisms. METHODS: We conducted bioinformatics analysis of sequencing data from the GEO database to analyze the abundance of immune cell infiltration in transplanted kidney tissues. In vivo, IGU was intervened in a mice secondary skin transplantation model and a mice kidney transplantation ABMR model, and histological morphology of the grafts were examined by pathological staining, while relevant indicators were determined through qRT-PCR, immunohistochemistry, and enzyme-linked immunosorbent assay, observed T cell differentiation by flow cytometry, and preliminarily assessed the immunosuppressive effect of IGU. In vitro, we established Th17 and Treg cell induction and stimulation differentiation culture systems and added IGU for intervention to explore its effects on their differentiation. RESULTS: Through bioinformatics analysis, we found that Th17 and Treg may play important roles in the occurrence and development of ABMR. In vivo, we found that IGU could effectively reduce the damage caused by ABMR to the grafts, alleviate the infiltration of inflammatory cells in the graft tissues, and reduce the deposition of C4d in the grafts. Moreover, it is also found that IGU regulated the differentiation of Th17 and Treg cells in the spleen and peripheral blood and reduced the expression of IL-17A in the grafts and serum. In addition, same changes were observed in the induction and differentiation culture system of Th17 and Treg cells in vitro after the addition of IGU. CONCLUSION: IGU can inhibit the progression of ABMR by regulating the differentiation of Th17 and Treg cells, providing novel insights for optimizing clinical immunosuppressive treatment regimens.


Assuntos
Cromonas , Rejeição de Enxerto , Transplante de Rim , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Células Th17 , Animais , Células Th17/imunologia , Linfócitos T Reguladores/imunologia , Rejeição de Enxerto/imunologia , Camundongos , Cromonas/farmacologia , Masculino , Imunossupressores/uso terapêutico , Humanos , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Células Cultivadas , Sulfonamidas
19.
Phytomedicine ; 132: 155832, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38924928

RESUMO

BACKGROUND: Lung cancer has been considered as a serious problem for the public health system. NSCLC is the main type of lung cancer, and finding improved treatments for NSCLC is a pressing concern. In this study, we have explored the efficacy of isotoosendanin (ITSN) for the treatment of NSCLC, and also explored the potential underlying mechanisms. METHODS: NSCLC cells were cultured, and colony formation, cell cycle as well as apoptosis assays have been conducted for investigating the biological functions of ITSN on NSCLC cells. Furthermore, target genes of ITSN have been predicted via PharmMapper and SuperPred database, subsequently validated using the drug affinity responsive target stability (DARTS) approach, a cellular thermal shift assay (CETSA) as well as surface plasmon resonance (SPR) analysis. Additionally, ubiquitination experiments have been conducted for the level of ubiquitination of the NSCLC cells. Finally, a nude mouse xenograft model has been established for evaluating the anti-tumor effects of ITSN in vivo. RESULTS: ITSN has shown anti-NSCLC activities both in vitro and in vivo. Mechanistically, ITSN interacts with SHP-2 through enhancing its stability and decreases the level of ubiquitination. Notably, ITSN may regulate the behaviors of NSCLC cells via affecting the JAK/STAT3 signaling, and finally, the anti-tumor effects of ITSN was partially reversed by the application of SHP-2 inhibitor or siRNA of SHP-2. CONCLUSIONS: ITSN may exert its anti-tumor effects by directly targeting SHP-2, increasing its stability and minimizing its ubiquitination. These results imply that ITSN could be a revolutionary component for treating NSCLC.

20.
Curr Issues Mol Biol ; 46(6): 5668-5681, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38921010

RESUMO

Based on the analgesic and anti-inflammatory effects of clonidine in previous studies, we hypothesized that clonidine could accelerate wound healing in rats by regulating the expression of related cytokines. In this study, the wound healing effect of clonidine was evaluated using an excision wound model in diabetic rats and a HaCaT cell model. The wounds were treated daily with topical clonidine. The results analyzed by ImageJ2 software show that the wounds of the rats that were treated with 15 ng/mL clonidine recovered faster, and the wound size was also significantly reduced compared to the control group. Western blot assays determined that clonidine induced an increase in the expression of vascular growth factors, namely, Ang-1, Ang-2, and VEGF. Moreover, clonidine demonstrated a rescuing effect on JAK2 within the JAK/STAT pathway by inhibiting SOCS3 expression, leading to decreased SOCS3 levels and increased expression of JAK2 and phospho-STAT3. Histopathological analysis revealed that clonidine promoted complete epithelial repair and minimized inflammation in skin tissue. Additionally, clonidine stimulated HaCaT cell proliferation in vitro and enhanced cellular energy levels in the presence of AGEs. In conclusion, clonidine promoted vascular growth and wound healing by stimulating the expression of cytokines that are beneficial for wound healing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...