Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Neurochem Res ; 49(8): 2249-2270, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837092

RESUMO

Morphine (Mor) has exhibited efficacy in safeguarding neurons against ischemic injuries by simulating ischemic/hypoxic preconditioning (I/HPC). Concurrently, autophagy plays a pivotal role in neuronal survival during IPC against ischemic stroke. However, the involvement of autophagy in Mor-induced neuroprotection and the potential mechanisms remain elusive. Our experiments further confirmed the effect of Mor in cellular and animal models of ischemic stroke and explored its potential mechanism. The findings revealed that Mor enhanced cell viability in a dose-dependent manner by augmenting autophagy levels and autophagic flux in neurons subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). Pretreatment of Mor improved neurological outcome and reduced infarct size in mice with middle cerebral artery occlusion/reperfusion (MCAO/R) at 1, 7 and 14 days. Moreover, the use of autophagy inhibitors nullified the protective effects of Mor, leading to reactive oxygen species (ROS) accumulation, increased loss of mitochondrial membrane potential (MMP) and neuronal apoptosis in OGD/R neurons. Results further demonstrated that Mor-induced autophagy activation was regulated by mTOR-independent activation of the c-Jun NH2- terminal kinase (JNK)1/2 Pathway, both in vitro and in vivo. Overall, these findings suggested Mor-induced neuroprotection by activating autophagy, which were regulated by JNK1/2 pathway in ischemic stroke.


Assuntos
Autofagia , AVC Isquêmico , Morfina , Fármacos Neuroprotetores , Serina-Treonina Quinases TOR , Animais , Autofagia/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Masculino , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Morfina/farmacologia , Morfina/uso terapêutico , Camundongos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos Endogâmicos C57BL , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Neuroproteção/efeitos dos fármacos , Neuroproteção/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Espécies Reativas de Oxigênio/metabolismo
2.
Cell Commun Signal ; 22(1): 148, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38395872

RESUMO

BACKGROUND: Tubulointerstitial kidney disease associated microenvironmental dysregulation, like acidification, inflammation and fibrosis, affects tubule cells and fibroblasts. Micromilieu homeostasis influences intracellular signaling and intercellular crosstalk. Cell-cell communication in turn modulates the interstitial microenvironment. We assessed the impact of acidosis on inflammatory and fibrotic responses in proximal tubule cells and fibroblasts as a function of cellular crosstalk. Furthermore, cellular signaling pathways involved were identified. METHODS: HK-2 (human proximal tubule) and CCD-1092Sk (human fibroblasts), in mono and coculture, were exposed to acidic or control media for 3 or 48 h. Protein expression of inflammation markers (TNF, TGF-ß and COX-2), dedifferentiation markers (N-cadherin, vinculin, ß-catenin and vimentin), fibrosis markers (collagen III and fibronectin) and phospho- as well as total MAPK levels were determined by western blot. Secreted collagen III and fibronectin were measured by ELISA. The impact of MAPK activation was assessed by pharmacological intervention. In addition, necrosis, apoptosis and epithelial permeability were determined. RESULTS: Independent of culture conditions, acidosis caused a decrease of COX-2, vimentin and fibronectin expression in proximal tubule cells. Only in monoculture, ß-Catenin expression decreased and collagen III expression increased in tubule cells during acidosis. By contrast, in coculture collagen III protein expression of tubule cells was reduced. In fibroblasts acidosis led to an increase of TNF, COX-2, vimentin, vinculin, N-cadherin protein expression and a decrease of TGF-ß expression exclusively in coculture. In monoculture, expression of COX-2 and fibronectin was reduced. Collagen III expression of fibroblasts was reduced by acidosis independent of culture conditions. In coculture, acidosis enhanced phosphorylation of ERK1/2, JNK1/2 and p38 transiently in proximal tubule cells. In fibroblasts, acidosis enhanced phosphorylation of p38 in a sustained and very strong manner. ERK1/2 and JNK1/2 were not affected in fibroblasts. Inhibition of JNK1/2 and p38 under coculture conditions reduced acidosis-induced changes in fibroblasts significantly. CONCLUSIONS: Our data show that the crosstalk between proximal tubule cells and fibroblasts is crucial for acidosis-induced dedifferentiation of fibroblasts into an inflammatory phenotype. This dedifferentiation is at least in part mediated by p38 and JNK1/2. Thus, cell-cell communication is essential for the pathophysiological impact of tubulointerstitial acidosis.


Assuntos
Acidose , Fibronectinas , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Acidose/metabolismo , Caderinas/metabolismo , Cateninas/metabolismo , Colágeno/metabolismo , Ciclo-Oxigenase 2/metabolismo , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Fibrose , Inflamação/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Vimentina/metabolismo , Vinculina/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo
3.
Life Sci ; 334: 122210, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37883863

RESUMO

AIM: Sepsis is a serious inflammatory response to infection with an annual incidence rate of >48 million cases and 11 million fatalities worldwide. Furthermore, sepsis remains the world's fifth-greatest cause of death. For the first time, the current study aims to evaluate the possible hepatoprotective benefits of LCZ696, a combination of an angiotensin receptor blocker (valsartan) and a neprilysin inhibitor prodrug (sacubitril), on cecal ligation and puncture (CLP)-induced sepsis in rats. MAIN METHODS: CLP was employed to induce sepsis. Hepatic malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), interleukin-6 (IL-6), IL-1ß, tumor necrosis factor-alpha (TNF-α), and caspase 3 were assessed using ELISA. Serum alanine transaminase (ALT) and aspartate transaminase (AST) were also measured. Western blot assay was used to determine the expression of JNK1/2 and P38 proteins. The histology of liver tissues was also examined. KEY FINDINGS: CLP resulted in significant elevation of AST, ALT, MDA, IL-6, IL-1ß, TNF-α, and caspase 3 levels, and up-regulation of p/t JNK1/2, and p/t P38 proteins, as compared to the sham group. However, level of GSH, and SOD activity were reduced in CLP group. LCZ696 significantly improved all the previously mentioned biochemical and histological abnormalities better than using valsartan alone. SIGNIFICANCE: LCZ696 substantially ameliorated CLP-induced liver damage, compared to valsartan, by reducing proinflammatory mediators, inhibiting the JNK1/2 and P38 signaling pathway, and attenuating apoptosis.


Assuntos
Hepatopatias , Sepse , Animais , Ratos , Apoptose , Caspase 3 , Interleucina-6 , Estresse Oxidativo , Sepse/complicações , Sepse/tratamento farmacológico , Transdução de Sinais , Superóxido Dismutase , Fator de Necrose Tumoral alfa , Valsartana/farmacologia , Valsartana/uso terapêutico
4.
Phytomedicine ; 114: 154757, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37011418

RESUMO

BACKGROUND: Breast cancer metastasis is leading cause of cancer death among women worldwide. Tumor-associated macrophages (TAMs) have been considered as potential targets for treating breast cancer metastasis because they promote tumor growth and development. Glycyrrhetinic acid (GA) is one of the most important phytochemicals of licorice which has shown promising anti-cancer efficacies in pre-clinical trials. However, the regulatory effect of GA on the polarization of TAMs remains elusive. PURPOSE: To investigate the role of GA in regulating the polarization of M2 macrophages and inhibiting breast cancer metastasis, and to further explore its underlying mechanisms of action. STUDY DESIGN: IL-4 / IL-13-treated RAW 264.7 and THP-1 cells were used as the M2-polarized macrophages in vitro. A 4T1 mouse breast cancer model and the tail vein breast cancer metastasis model were applied to study the effect of GA on breast cancer growth and metastasis in vivo. RESULTS: In vitro studies showed that GA significantly inhibited IL-4 / IL 13-induced M2-like polarization in RAW 264.7 and THP-1 macrophages without affecting M1-like polarization. GA strongly decreased the expression of M2 macrophage markers CD206 and Arg-1, and reduced the levels of the pro-angiogenic molecules VEGF, MMP9, MMP2 and IL-10 in M2 macrophages. GA also increased the phosphorylation of JNK1/2 in M2 macrophages. Moreover, GA significantly suppressed M2 macrophage-induced cell proliferation and migration in 4T1 cancer cells and HUVECs. Interestingly, the inhibitory effects of GA on M2 macrophages were abolished by a JNK inhibitor. Animal studies showed that GA significantly suppressed tumor growth, angiogenesis, and lung metastasis in BALB/c mice bearing breast tumor. In tumor tissues, GA reduced the number of M2 macrophages but elevated the proportion of M1 macrophages, accompanied by activation of JNK signaling. Similar results were found in the tail vein breast cancer metastasis model. CONCLUSION: This study demonstrated for the first time that GA could effectively suppress breast cancer growth and metastasis by inhibiting macrophage M2 polarization via activating JNK1/2 signaling. These findings indicate that GA could be served as the lead compound for the future development of anti-breast cancer drug.


Assuntos
Interleucina-4 , Neoplasias Pulmonares , Feminino , Animais , Camundongos , Humanos , Interleucina-4/metabolismo , Macrófagos , Transdução de Sinais , Neoplasias Pulmonares/tratamento farmacológico , Células THP-1 , Interleucina-13/metabolismo , Linhagem Celular Tumoral , Melanoma Maligno Cutâneo
5.
J Cell Mol Med ; 27(9): 1250-1260, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36967712

RESUMO

Oral squamous cell carcinoma (OSCC) has a high recurrence rate and poor prognosis. Hispolon, a polyphenolic compound with antiviral, antioxidant, and anticancer activities, is a potential chemotherapy agent. However, few studies have investigated the anti-cancer mechanism of hispolon in oral cancer. This present study used the cell viability assay, clonogenic assay, fluorescent nuclear staining, and flow cytometry assay to analyse the apoptosis-inducing effects of hispolon in OSCC cells. After hispolon treatment, the apoptotic initiators, cleaved caspase-3, -8, and - 9, were upregulated, whereas the cellular inhibitor of apoptosis protein-1 (cIAP1) was downregulated. Furthermore, a proteome profile analysis using a human apoptosis array revealed the overexpression of heme oxygenase-1 (HO-1) by hispolon, which was determined to be involved in caspase-dependent apoptosis. Moreover, cotreatment with hispolon and mitogen-activated protein kinase (MAPK) inhibitors revealed that hispolon induces apoptosis in OSCC cells through activation of the c-Jun N-terminal kinase (JNK) pathway and not the extracellular signal-regulated kinase (ERK) or p38 pathway. These findings indicate that hispolon may exert an anticancer effect on oral cancer cells by upregulating HO-1 and inducing caspase-dependent apoptosis by activating the JNK pathway.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Sistema de Sinalização das MAP Quinases , Heme Oxigenase-1 , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/tratamento farmacológico , Apoptose , Proteínas Quinases JNK Ativadas por Mitógeno , Linhagem Celular Tumoral , Proteínas Quinases p38 Ativadas por Mitógeno
6.
J Biochem Mol Toxicol ; 36(7): e23051, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35315184

RESUMO

Psoralidin (PSO) is a natural coumarin isolated from the seeds of Psoralea corylifolia Linn. Previous studies have reported that PSO exerts numerous pharmacological bioactivities including antitumor. The present study aimed to investigate its anticancer effect using colon cancer cells. Cultured HT-29 and HCT-116 colon cancer cells were treated with different concentrations of PSO, and the cell viability, the intracellular reactive oxygen species (ROS), the protein expression, and the apoptosis were determined by MTT assay, DCFH2 -DA fluorescence probe, Western blotting, and Annexin V/7-AAD staining, respectively. The activities of caspase 3/7 were determined by a commercial kit. Our study found that PSO effectively induces apoptotic cell death mediated by caspase 3/7 in HT-29 and HCT-116 colon cancer cells. PSO treatment rapidly boosts the ROS generation, which is responsible for the PSO-triggered DNA damage, mitochondria membrane potential decrease and caspase 3/7 activation, and c-Jun N-terminal kinase 1/2 activation. Collectively, these results showed that PSO triggered oxidative damage mediated apoptosis in colon cancer cells.


Assuntos
Benzofuranos , Neoplasias do Colo , Cumarínicos , Psoralea , Apoptose , Benzofuranos/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Cumarínicos/farmacologia , Humanos , Estresse Oxidativo , Psoralea/química , Espécies Reativas de Oxigênio/metabolismo
7.
FASEB J ; 36(4): e22243, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35224782

RESUMO

Osteoarthritis (OA) is a prevalent degenerative disease of the joint, featured by articular cartilage destruction and subchondral bone marrow lesions. Articular cartilage and subchondral bone constitute an osteochondral unit that guarantees joint homeostasis. During OA initiation, activated osteoclasts in subchondral bone ultimately result in impaired capacities of the subchondral bone in response to mechanical stress, followed by the degradation of overlying articular cartilage. Thus, targeting osteoclasts could be a potential therapeutic option for treating OA. Here, we observed that farnesoid X receptor (FXR) expression and osteoclast fusion and activity in subchondral bone were concomitantly changed during early-stage OA in the OA mouse model established by anterior cruciate ligament transection (ACLT). Then, we explored the therapeutic effects of FXR agonist GW4064 on the osteochondral pathologies in ACLT mice. We showed that GW4064 obviously ameliorated subchondral bone deterioration, associated with reduction in tartrate-resistant acid phosphatase (TRAP) positive multinuclear osteoclast number, as well as articular cartilage degradation, which were blocked by the treatment with FXR antagonist Guggulsterone. Mechanistically, GW4064 impeded osteoclastogenesis through inhibiting subchondral bone osteoclast fusion via suppressing c-Jun N-terminal kinase (JNK) 1/2/nuclear factor of activated T-cells 1 (NFATc1) pathway. Taken together, our results present evidence for the protective effects of GW4064 against OA by blunting osteoclast-mediated aberrant subchondral bone loss and subsequent cartilage deterioration. Therefore, GW4064 demonstrates the potential as an alternative therapeutic option against OA for further drug development.


Assuntos
Reabsorção Óssea/prevenção & controle , Regulação da Expressão Gênica/efeitos dos fármacos , Isoxazóis/farmacologia , Osteoartrite/prevenção & controle , Osteoclastos/efeitos dos fármacos , Osteogênese , Proteínas de Ligação a RNA/agonistas , Animais , Remodelação Óssea , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/genética , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoartrite/etiologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia
8.
J Cell Mol Med ; 26(8): 2273-2284, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35191177

RESUMO

Human oral squamous cell carcinoma (OSCC) is the common head and neck malignancy in the world. While surgery, radiotherapy and chemotherapy are emerging as the standard treatment for OSCC patients, the outcome is limited to the recurrence and side effects. Therefore, patients with OSCC require alternative strategies for treatment. In this study, we aimed to explore the therapeutic effect and the mode of action of the novel curcumin analog, HO-3867, against human OSCC cells. We analysed the cytotoxicity of HO-3867 using MTT assay. In vitro mechanic studies were performed to determine whether MAPK pathway is involved in HO-3867 induced cell apoptosis. As the results, we found HO-3867 suppressed OSCC cells growth effectively. The flow cytometry data indicate that HO-3867 induce the sub-G1 phase. Moreover, we found that HO-3867 induced cell apoptosis by triggering formation of activated caspase 3, caspase 8, caspase 9 and PARP. After dissecting MAPK pathway, we found HO-3867 induced cell apoptosis via the c-Jun N-terminal kinase (JNK)1/2 pathway. Our results suggest that HO-3867 is an effective anticancer agent as its induction of cell apoptosis through JNK1/2 pathway in human oral cancer cells.


Assuntos
Carcinoma de Células Escamosas , Curcumina , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Apoptose , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Curcumina/uso terapêutico , Humanos , Neoplasias Bucais/patologia , Piperidonas , Carcinoma de Células Escamosas de Cabeça e Pescoço
9.
Cell Biol Int ; 46(1): 148-157, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34694031

RESUMO

Currently, the prevention of ischemic diseases such as myocardial infarction associated with ischemia/reperfusion (I/R) injury remains to be a challenge. Thus, this study was designed to explore the effects of tripartite motif protein 11 (TRIM11) on cardiomyocytes I/R injury and its underlying mechanism. Cardiomyocytes AC16 were used to establish an I/R injury cell model. After TRIM11 downregulation in I/R cells, cell proliferation (0, 12, 24, and 48 h) and apoptosis at 48 h as well as the related molecular changes in oxidative stress-related pathways was detected. Further, after the treatment of TRIM11 overexpression, SP600125, or DUSP1 overexpression, cell proliferation, apoptosis, and related genes were detected again. As per our findings, it was determined that TRIM11 was highly expressed in the cardiomyocytes AC16 after I/R injury. Downregulation of TRIM11 was determined to have significantly reduced I/R-induced proliferation suppression and apoptosis. Besides, I/R-activated c-Jun N-terminal kinase (JNK) signaling and cleaved caspase 3 and Bax expression were significantly inhibited by TRIM11 downregulation. In addition, the overexpression of TRIM11 significantly promoted apoptosis in AC16 cells, and JNK1/2 inhibition and DUSP1 overexpression potently counteracted the induction of TRIM11 overexpression in AC16 cells. These suggested that the downregulation of TRIM11 attenuates apoptosis in AC16 cells after I/R injury probably through the DUSP1-JNK1/2 pathways.


Assuntos
Apoptose , Fosfatase 1 de Especificidade Dupla/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Miócitos Cardíacos/enzimologia , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Hipóxia Celular , Linhagem Celular , Regulação para Baixo , Fosfatase 1 de Especificidade Dupla/genética , Humanos , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/patologia , Transdução de Sinais , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética
10.
Biochim Biophys Acta Gen Subj ; 1866(1): 130043, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710487

RESUMO

BACKGROUND: Paraoxonase 2 (PON2) a known anti-apoptotic protein, has not been explored against Nε-(carboxymethyl)lysine (CML), induced mitochondrial dysfunction and apoptosis in human retinal cells. Hence this present study aims to investigate the potential role of PON2 in mitigating CML-induced mitochondrial dysfunction in these cells. METHODS: PON2 protein was quantified in HRECs (Human retinal endothelial cells), ARPE-19 (Retinal pigment epithelial cells) cells upon CML treatment and also in cadaveric diabetic retina vs respective controls. ROS production, mitochondrial membrane potential (MMP), mitochondrial permeability transition pore (mPTP) opening, the release of Cyt-c, Bax, Caspase-3, Fis1, Mfn1, Mfn2, mitochondrial morphology, and the signaling pathway was assessed using DCFDA, JC-1, CoCl2, immunofluorescence or western blotting analysis in both loss-of-function or gain-of-function experiments. RESULTS: PON2 protein was downregulated in HREC and ARPE-19 cells upon CML treatment as well as in the diabetic retina (p = 0.035). Decrease in PON2 augments Fis1 expression resulting in fragmentation of mitochondria and enhances the ROS production, decreases MMP, facilitates mPTP opening, and induces the release of Cyt-c, which activates the pro-apoptotic pathway. Whereas PON2 overexpression similar to SP600125 (a specific JNK inhibitor) was able to decrease Fis1 (p = 0.036) and reverse the Bcl-2 and Bax ratio, and inhibit the JNK1/2 signaling pathway. CONCLUSION: Our results confirm that PON2 has an anti-apoptotic role against the CML mediated mitochondrial dysfunction and inhibits apoptosis through the JNK-Fis1 axis. GENERAL SIGNIFICANCE: We hypothesis that enhancing PON2 may provide a better therapeutic potential against diabetic vascular disease.


Assuntos
Arildialquilfosfatase/metabolismo , Mitocôndrias/metabolismo , Retina/metabolismo , Apoptose/fisiologia , Arildialquilfosfatase/fisiologia , Caspase 3/metabolismo , Citocromos c/metabolismo , Células Endoteliais/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Potencial da Membrana Mitocondrial/fisiologia , Substâncias Protetoras , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Retina/fisiologia , Transdução de Sinais/fisiologia
11.
Front Pharmacol ; 13: 1080412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686679

RESUMO

Introduction: Venlafaxine is one of the most commonly used anti-depressant and antineoplastic drug. Previous studies have predicted venlafaxine as an anti-cancer compound, but the therapeutic effects of venlafaxine in melanoma have not yet been demonstrated. Nur77 is an orphan nuclear receptor that highly expressed in melanoma cells and can interact with Bcl-2 to convert Bcl-2 from an antiapoptotic to a pro-apoptotic protein. Method: We examined the effects of venlafaxine in MV3 cells in vitro and MV3 xenograft tumor in nude mice. Western-blot, PCR, TUNEL assay and immunofluorescence were used to reveal the growth of melanoma cells. Results: Here, our data revealed that venlafaxine could reduce the growth, and induce apoptosis of melanoma cells through a Nur77-dependent way. Our results also showed that treatment with venlafaxine (20 mg/kg, i.p.) potently inhibited the growth of melanoma cells in nude mice. Mechanistically, venlafaxine activated JNK1/2 signaling, induced Nur77 expressions and mitochondrial localization, thereby promoting apoptosis of melanoma cells. Knockdown of Nur77 and JNK1/2, or inhibition of JNK1/2 signaling with its inhibitor SP600125 attenuated the anti-cancer effects of venlafaxine. Conclusion: In summary, our results suggested venlafaxine as a potential therapy for melanoma.

12.
Biomedicines ; 9(10)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34680412

RESUMO

Magnolol is a natural compound extracted from Chinese herbal medicine and can induce apoptosis in numerous types of cancer cells. However, the molecular mechanisms of magnolol in oral cancer are still unclear. In this study, we investigated the anti-cancer effects and underlying mechanisms of magnolol in human oral cancer cell lines. Our results exhibited that magnolol inhibited the cell proliferation via inducing the sub-G1 phase and cell apoptosis of HSC-3 and SCC-9 cells. The human apoptosis array and Western blot assay showed that magnolol increased the expression of cleaved caspase-3 proteins and heme oxygenase-1 (HO-1). Moreover, we proved that magnolol induces apoptosis in oral cancer cell lines via the c-Jun N-terminal kinase (JNK)1/2 and p38 pathways. Overall, the current study supports the role for magnolol as a therapeutic approach for oral cancer through JNK1/2- and p38-mediated caspase activation.

13.
Cancers (Basel) ; 13(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946554

RESUMO

Phospholipids are crucial materials that are not only required for cell membrane construction but also play significant roles as signaling molecules. LPIN1 is an enzyme that displays phosphatidate phosphatase activity in the triglyceride and phospholipid synthesis pathway. Recent studies have shown that overexpression of LPIN1 is involved in breast tumorigenesis, but the underlying mechanism regulating LPIN1 expression has not been elucidated yet. In the present study, we showed that the IL-33-induced COT-JNK1/2 signaling pathway regulates LPIN1 mRNA and protein expression by recruiting c-Jun to the LPIN1 promoter in breast cancer cells. IL-33 dose-dependently and time-dependently increased LPIN1 mRNA and protein expression. Moreover, IL-33 promoted colony formation and mammary tumorigenesis via induction of LPIN1 expression, while inhibition of LPIN1 disturbed IL-33-induced cell proliferation and mammary tumorigenesis. IL-33-driven LPIN1 expression was mediated by the COT-JNK1/2 signaling pathway, and inhibition of COT or JNK1/2 reduced LPIN1 expression. COT-JNK1/2-mediated IL-33 signaling activated c-Jun and promoted its binding to the promoter region of LPIN1 to induce LPIN1 expression. These findings demonstrated the regulatory mechanism of LPIN1 transcription by the IL-33-induced COT/JNK1/2 pathway for the first time, providing a potential mechanism underlying the upregulation of LPIN1 in cancer.

14.
Integr Cancer Ther ; 20: 1534735421995237, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33660537

RESUMO

PURPOSE: Morphine is often used for the treatment of moderate and severe cancer pain, but long-term use can lead to morphine tolerance. Methods for effectively inhibiting morphine tolerance and the related mechanism of action are of great significance for the treatment of cancer pain. Previous studies have shown that electroacupuncture (EA) can inhibit the occurrence of morphine tolerance, but the mechanism is not yet clear. The aim of the present study was to explore the signaling pathway by which EA attenuates the development of bone cancer pain (BCP)-morphine tolerance (MT). MATERIALS AND METHODS: Changes in the paw withdrawal threshold (PWT) of rats with bone cancer pain-morphine tolerance were observed in a study of EA combined with intrathecal injection of a PI3K inhibitor (LY294002) or agonist (insulin-like growth factor-1 [IGF-1]). We also tested the protein expression of phosphorylated phosphatidylinositol 3-kinase (p-PI3K), phosphorylated protein kinase B (p-Akt), phosphorylated c-Jun NH2-terminal kinase 1/2 (p-JNK1/2), and ß-arrestin2 in the L4-6 spinal dorsal horn of rats. RESULTS: The protein expression of p-PI3K, p-Akt, p-JNK1/2, and ß-arrestin2 was upregulated in the L4-6 spinal dorsal horn of rats with bone cancer pain and bone cancer pain-morphine tolerance. EA delayed the occurrence of morphine tolerance in rats with bone cancer pain and downregulated the protein expression of p-PI3K, p-Akt, p-JNK1/2, and ß-arrestin2 in the L4-6 spinal dorsal horn of rats with bone cancer pain-morphine tolerance. Intrathecal injection of LY294002 attenuated the development of morphine tolerance and downregulated the protein expression of p-Akt, p-JNK1/2, and ß-arrestin2 in the spinal dorsal horn of rats with bone cancer pain-morphine tolerance. In addition, the inhibitory effect of EA on morphine tolerance was reversed by IGF-1. CONCLUSION: The mechanism underlying the ability of EA to attenuate morphine tolerance may be associated with inhibition of the PI3K/Akt/JNK1/2 signaling pathway.


Assuntos
Dor do Câncer , Eletroacupuntura , Neoplasias , Animais , Dor do Câncer/tratamento farmacológico , Morfina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Corno Dorsal da Medula Espinal/metabolismo
15.
Free Radic Biol Med ; 166: 104-115, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33600944

RESUMO

Glioblastoma (GBM) is one of the most prevalent malignant primary tumors in the human brain. Temozolomide (TMZ), the chemotherapeutic drug for GBM treatment, induces apoptosis. Unfortunately, apoptosis-resistance to TMZ results in treatment failure. GBM shows enhanced expression of NAD(P)H: quinone oxidoreductase 1 (NQO1). Recently, noptosis, a type of NQO1-dependent necrosis, was proposed. Here, we identified that tanshindiol B (TSB) inhibits GBM growth by induction of noptosis. TSB triggered significant cell death, which did not fit the criteria of apoptosis but oxidative stress-induced necrosis. Molecular docking, cellular thermal shift assay, and NQO1 activity assay revealed that TSB bind to and promptly activated NQO1 enzyme activity. As the substrate of NQO1, TSB induced oxidative stress, which resulted in dramatic DNA damage, poly (ADP-ribose) polymerase 1 (PARP1) hyperactivation, and NAD+ depletion, leading to necrotic cell death. These effects of TSB were completely abolished by specific NQO1 inhibitor dicoumarol (DIC). Furthermore, the c-Jun N-terminal kinase 1/2 (JNK1/2) plays an essential role in mediating TSB-induced cell death. Besides, TSB significantly suppressed tumor growth in a zebrafish xenograft model mediated by NQO1. In conclusion, these results showed that TSB was an NQO1 substrate and triggered noptosis of GBM. TSB exhibited anti-tumor potentials in GBM both in vitro and in vivo. This study provides a novel strategy for fighting GBM through the induction of noptosis.


Assuntos
Glioblastoma , Animais , Apoptose , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Simulação de Acoplamento Molecular , NAD(P)H Desidrogenase (Quinona)/genética , Necrose , Peixe-Zebra
16.
Cell Biol Int ; 45(7): 1393-1403, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33595160

RESUMO

Farnesyl pyrophosphate synthase (FPPS)-catalyzed isoprenoid intermediates are involved in diabetic cardiomyopathy. This study investigated the specific role of FPPS in the development of diabetic cardiomyopathy. We demonstrated that FPPS expression was elevated in both in vivo and in vitro models of diabetic cardiomyopathy. FPPS inhibition decreased the expression of proteins related to cardiac fibrosis and cardiomyocytic hypertrophy, including collagen I, collagen III, connective tissue growth factor, natriuretic factor, brain natriuretic peptide, and ß-myosin heavy chain. Furthermore, FPPS inhibition and knockdown prevented phosphorylated c-Jun N-terminal kinase 1/2 (JNK1/2) activation in vitro. In addition, a JNK1/2 inhibitor downregulated high-glucose-induced responses to diabetic cardiomyopathy. Finally, immunofluorescence revealed that cardiomyocytic size was elevated by high glucose and was decreased by zoledronate, small-interfering farnesyl pyrophosphate synthase (siFPPS), and a JNK1/2 inhibitor. Taken together, our findings indicate that FPPS and JNK1/2 may be part of a signaling pathway that plays an important role in diabetic cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas/enzimologia , Geraniltranstransferase/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Ratos , Ratos Sprague-Dawley
17.
Mar Drugs ; 18(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271756

RESUMO

Efficacy and mechanism of action of marine alkaloid 3,10-dibromofascaplysin (DBF) were investigated in human prostate cancer (PCa) cells harboring different levels of drug resistance. Anticancer activity was observed across all cell lines examined without signs of cross-resistance to androgen receptor targeting agents (ARTA) or taxane based chemotherapy. Kinome analysis followed by functional investigation identified JNK1/2 to be one of the molecular targets of DBF in 22Rv1 cells. In contrast, no activation of p38 and ERK1/2 MAPKs was observed. Inhibition of the drug-induced JNK1/2 activation or of the basal p38 activity resulted in increased cytotoxicity of DBF, whereas an active ERK1/2 was identified to be important for anticancer activity of the alkaloid. Synergistic effects of DBF were observed in combination with PARP-inhibitor olaparib most likely due to the induction of ROS production by the marine alkaloid. In addition, DBF intensified effects of platinum-based drugs cisplatin and carboplatin, and taxane derivatives docetaxel and cabazitaxel. Finally, DBF inhibited AR-signaling and resensitized AR-V7-positive 22Rv1 prostate cancer cells to enzalutamide, presumably due to AR-V7 down-regulation. These findings propose DBF to be a promising novel drug candidate for the treatment of human PCa regardless of resistance to standard therapy.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Oxindóis/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células PC-3 , Fosforilação , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais
18.
J Cell Mol Med ; 24(22): 13383-13396, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33063955

RESUMO

This study aims to determine the efficacy of Zinc finger protein ZBTB20 in treatment of post-infarction cardiac remodelling. For this purpose, left anterior descending (LAD) ligation was operated on mice to induce myocardial infarction (MI) with sham control group as contrast and adeno-associated virus (AAV9) system was used to deliver ZBTB20 to mouse heart by myocardial injection with vehicle-injected control group as contrast two weeks before MI surgery. Then four weeks after MI, vehicle-treated mice with left ventricular (LV) remodelling underwent deterioration of cardiac function, with symptoms of hypertrophy, interstitial fibrosis, inflammation and apoptosis. The vehicle-injected mice also showed increase of infarct size and decrease of survival rate. Meanwhile, the ZBTB20-overexpressed mice displayed improvement after MI. Moreover, the anti-apoptosis effect of ZBTB20 was further confirmed in H9c2 cells subjected to hypoxia in vitro. Further study suggested that ZBTB20 exerts cardioprotection by inhibiting tumour necrosis factor α/apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase 1/2 (JNK1/2) signalling, which was confirmed by shRNA-JNK adenoviruses transfection or a JNK activator in vitro as well as ASK1 overexpression in vivo. In summary, our data suggest that ZBTB20 could alleviate cardiac remodelling post-MI. Thus, administration of ZBTB20 can be considered as a promising treatment strategy for heart failure post-MI. Significance Statement: ZBTB20 could alleviate cardiac remodelling post-MI via inhibition of ASK1/JNK1/2 signalling.


Assuntos
Regulação da Expressão Gênica , Infarto do Miocárdio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Células Cultivadas , Vasos Coronários/cirurgia , Dependovirus/metabolismo , Fibroblastos/metabolismo , Insuficiência Cardíaca/metabolismo , Hipóxia , MAP Quinase Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Remodelação Ventricular/efeitos dos fármacos
19.
J Affect Disord ; 276: 626-635, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871695

RESUMO

BACKGROUND: Dysregulations of endocannabinoids and/or cannabinoid (CB) receptors have been implicated in the pathophysiology and treatment of major depressive disorder (MDD). METHODS: CB1 and CB2 receptors, neuroprotective mTOR (mechanistic target of rapamycin) and pro-apoptotic JNK1/2 (c-Jun-N-terminal kinases) were quantified by immunoblotting in postmortem prefrontal cortex of MDD and controls, and further compared in antidepressant (AD)-free and AD-treated subjects. Neuroplastic proteins (PSD-95, Arc, spinophilin) were quantified in MDD brains. RESULTS: Total cortical CB1 glycosylated (≈54/64 kDa) receptor was increased in MDD (+20%, n=23, p=0.02) when compared with controls (100%, n=19). This CB1 receptor upregulation was quantified in AD-treated (+23%, n=14, p=0.02) but not in AD-free (+14%, n=9, p=0.34) MDD subjects. In the same MDD cortical samples, CB2 glycosylated (≈45 kDa) receptor was unaltered (all MDD: +11%, n=23, p=0.10; AD-free: +12%, n=9, p=0.31; AD-treated: +10%, n=14, p=0.23). In MDD, mTOR activity (p-Ser2448 TOR/t-TOR) was increased (all MDD: +29%, n=18, p=0.002; AD-free: +33%, n=8, p=0.03; AD-treated: +25%, n=10, p=0.04). In contrast, JNK1/2 activity (p-Thr183/Tyr185/t-JNK) was unaltered in MDD subjects. Cortical PSD-95, Arc, and spinophilin contents were unchanged in MDD. LIMITATIONS: A relative limited sample size. Some MDD subjects had been treated with a variety of ADs. The results must be understood in the context of suicide victims with MDD. CONCLUSIONS: The upregulation of CB1 receptor density, but not that of CB2 receptor, as well as the increased mTOR activity in PFC/BA9 of subjects with MDD (AD-free/treated) support their contributions in the complex pathophysiology of MDD and in the molecular mechanisms of antidepressant drugs.


Assuntos
Canabinoides , Transtorno Depressivo Maior , Transtorno Depressivo Maior/tratamento farmacológico , Humanos , Córtex Pré-Frontal , Receptores de Canabinoides , Serina-Treonina Quinases TOR
20.
Exp Ther Med ; 20(2): 1261-1268, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32742361

RESUMO

Diabetic cardiomyopathy (DCM) is a worldwide public health concern that continues to display rapid growth trends. This study investigated the function of sirtuin 3 (SIRT3), a primary mitochondrial deacetylase with important roles in antioxidant defense and oxidative metabolism, during high glucose-induced cardiomyocyte (AC16 cell) injury. Peroxisome proliferator-activated receptor-α (PPAR-α) is directly related to the occurrence of DCM. Hence, we further examined the relationship between SIRT3 and PPAR-α. AC16 cells were treated with various concentrations of glucose. Relative mRNA expression and protein levels were detected by RT-qPCR and western blot analysis, respectively. Cell proliferation and apoptosis were assessed using CCK8 and Annexin V-FITC apoptosis detection kits, respectively. DCFH-DA assay was used to measure reactive oxygen species (ROS) accumulation. The results indicated that high glucose treatment reduced the expression of mRNA and protein of SIRT3 and PPAR-α in AC16 cells. Moreover, high glucose inhibited cell proliferation, as well as induced apoptosis, intracellular hydrogen peroxide production, and JNK1/2 phosphorylation. These effects were antagonized by SIRT3 overexpression or treatment with the PPAR-α agonist, Wy14643. Conversely, inhibition of SIRT3 via 3-TYP led to similar phenomena as those induced by high glucose treatment in AC16 cells, which were blocked by Wy14643. Lastly, chromatin immunoprecipitation (ChIP) and luciferase assays demonstrated SIRT3 as a direct target of PPAR-α. Taken together, the results provide evidence for an important role of SIRT3 in high glucose-induced cardiomyocyte injury and regulation of JNK1/2 signaling. Further, SIRT3 is a direct downstream target of PPAR-α.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...