Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39273144

RESUMO

Type 2 diabetes mellitus (T2DM) is a complex chronic disease characterized by decreased insulin secretion and the development of insulin resistance. Previous genome-wide association studies demonstrated that single-nucleotide polymorphisms (SNPs) present in genes coding for ion channels involved in insulin secretion increase the risk of developing this disease. We determined the association of 16 SNPs found in CACNA1D, KCNQ1, KCNJ11, and CACNA1E genes and the increased probability of developing T2DM. In this work, we performed a case-control study in 301 Mexican adults, including 201 cases with diabetes and 100 controls without diabetes. Our findings indicate a moderate association between T2DM and the C allele, and the C/C genotype of rs312480 within CACNA1D. The CAG haplotype surprisingly showed a protective effect, whereas the CAC and CGG haplotypes have a strong association with T2DM. The C allele and C/C genotype of rs5219 were significantly associated with diabetes. Also, an association was observed between diabetes and the A allele and the A/A genotype of rs3753737 and rs175338 in CACNA1E. The TGG and CGA haplotypes were also found to be significantly associated. The findings of this study indicate that the SNPs examined could serve as a potential diagnostic tool and contribute to the susceptibility of the Mexican population to this disease.


Assuntos
Canais de Cálcio Tipo L , Diabetes Mellitus Tipo 2 , Predisposição Genética para Doença , Canal de Potássio KCNQ1 , Polimorfismo de Nucleotídeo Único , Canais de Potássio Corretores do Fluxo de Internalização , Humanos , Diabetes Mellitus Tipo 2/genética , Canais de Cálcio Tipo L/genética , Canal de Potássio KCNQ1/genética , Feminino , Masculino , Canais de Potássio Corretores do Fluxo de Internalização/genética , Pessoa de Meia-Idade , Estudos de Casos e Controles , Adulto , Haplótipos , Canais de Cálcio Tipo R/genética , Alelos , México , Idoso , Estudos de Associação Genética , Genótipo , Frequência do Gene , Proteínas de Transporte de Cátions
2.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256028

RESUMO

Genetic testing is crucial in inherited arrhythmogenic channelopathies; however, the clinical interpretation of genetic variants remains challenging. Incomplete penetrance, oligogenic, polygenic or multifactorial forms of channelopathies further complicate variant interpretation. We identified the KCNQ1/p.D446E variant in 2/63 patients with long QT syndrome, 30-fold more frequent than in public databases. We thus characterized the biophysical phenotypes of wildtype and mutant IKs co-expressing these alleles with the ß-subunit minK in HEK293 cells. KCNQ1 p.446E homozygosity significantly shifted IKs voltage dependence to hyperpolarizing potentials in basal conditions (gain of function) but failed to shift voltage dependence to hyperpolarizing potentials (loss of function) in the presence of 8Br-cAMP, a protein kinase A activator. Basal IKs activation kinetics did not differ among genotypes, but in response to 8Br-cAMP, IKs 446 E/E (homozygous) activation kinetics were slower at the most positive potentials. Protein modeling predicted a slower transition of the 446E Kv7.1 tetrameric channel to the stabilized open state. In conclusion, biophysical and modelling evidence shows that the KCNQ1 p.D446E variant has complex functional consequences including both gain and loss of function, suggesting a contribution to the pathogenesis of arrhythmogenic phenotypes as a functional risk allele.


Assuntos
Arritmias Cardíacas , Canalopatias , Canal de Potássio KCNQ1 , Humanos , Alelos , Arritmias Cardíacas/genética , Proteínas Quinases Dependentes de AMP Cíclico , Células HEK293 , Canal de Potássio KCNQ1/genética , Fenótipo
3.
Biochim Biophys Acta Proteins Proteom ; 1871(4): 140906, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36918120

RESUMO

Potassium channels play a key role in regulating many physiological processes, thus, alterations in their proper functioning can lead to the development of several diseases. Hence, the search for compounds capable of regulating the activity of these channels constitutes an intense field of investigation. Potassium scorpion toxins are grouped into six subfamilies (α, ß, γ, κ, δ, and λ). However, experimental structures and functional analyses of the long chain ß-KTx subfamily are lacking. In this study, we recombinantly produced the toxins TcoKIK and beta-KTx14.3 present in the venom of Tityus costatus and Lychas mucronatus scorpions, respectively. The 3D structures of these ß-KTx toxins were determined by nuclear magnetic resonance. In both toxins, the N-terminal region is unstructured, while the C-terminal possesses the classic CSα/ß motif. TcoKIK did not show any clear activity against frog Shaker and human KCNQ1 potassium channels; however, beta-KTx14.3 was able to block the KCNQ1 channel. The toxin-channel interaction mode was investigated using molecular dynamics simulations. The results showed that this toxin could form a stable network of polar-to-polar and hydrophobic interactions with KCNQ1, involving key conserved residues in both molecular partners. The discovery and characterization of a toxin capable of inhibiting KCNQ1 pave the way for the future development of novel drugs for the treatment of human diseases caused by the malfunction of this potassium channel. STATEMENT OF SIGNIFICANCE: Scorpion toxins have been shown to rarely block human KCNQ1 channels, which participate in the regulation of cardiac processes. In this study, we obtained recombinant beta-KTx14.3 and TcoKIK toxins and determined their 3D structures by nuclear magnetic resonance. Electrophysiological studies and molecular dynamics models were employed to examine the interactions between these two toxins and the human KCNQ1, which is the major driver channel of cardiac repolarization; beta-KTx14.3 was found to block effectively this channel. Our findings provide insights for the development of novel toxin-based drugs for the treatment of cardiac channelopathies involving KCNQ1-like channels.


Assuntos
Canais de Potássio , Venenos de Escorpião , Humanos , Canais de Potássio/metabolismo , Venenos de Escorpião/farmacologia , Venenos de Escorpião/química , Sequência de Aminoácidos , Canal de Potássio KCNQ1/genética , Simulação de Dinâmica Molecular
4.
Int J Mol Sci ; 22(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34884666

RESUMO

Congenital long QT syndrome (LQTS) is a cardiac channelopathy characterized by a prolongation of the QT interval and T-wave abnormalities, caused, in most cases, by mutations in KCNQ1, KCNH2, and SCN5A. Although the predominant pattern of LQTS inheritance is autosomal dominant, compound heterozygous mutations in genes encoding potassium channels have been reported, often with early disease onset and more severe phenotypes. Since the molecular mechanisms underlying severe phenotypes in carriers of compound heterozygous mutations are unknown, it is possible that these compound mutations lead to synergistic or additive alterations to channel structure and function. In this study, all-atom molecular dynamic simulations of KCNQ1 and hERG channels were carried out, including wild-type and channels with compound mutations found in two patients with severe LQTS phenotypes and limited family history of the disease. Because channels can likely incorporate different subunit combinations from different alleles, there are multiple possible configurations of ion channels in LQTS patients. This analysis allowed us to establish the structural impact of different configurations of mutant channels in the activated/open state. Our data suggest that channels with these mutations show moderate changes in folding energy (in most cases of stabilizing character) and changes in channel mobility and volume, differentiating them from each other and from WT. This would indicate possible alterations in K+ ion flow. Hetero-tetrameric mutant channels showed intermediate structural and volume alterations vis-à-vis homo-tetrameric channels. These findings support the hypothesis that hetero-tetrameric channels in patients with compound heterozygous mutations do not necessarily lead to synergistic structural alterations.


Assuntos
Canalopatias/genética , Canal de Potássio ERG1/metabolismo , Canal de Potássio KCNQ1/metabolismo , Síndrome do QT Longo/genética , Simulação de Dinâmica Molecular , Criança , Pré-Escolar , Canal de Potássio ERG1/genética , Humanos , Canal de Potássio KCNQ1/genética , Masculino
5.
Front Cardiovasc Med ; 8: 625449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33693037

RESUMO

Next Generation Sequencing has identified many KCNQ1 genetic variants associated with type 1 long QT or Romano-Ward syndrome, most frequently inherited in an autosomal dominant fashion, although recessive forms have been reported. Particularly in the case of missense variants, functional studies of mutants are of aid to establish variant pathogenicity and to understand the mechanistic basis of disease. Two compound heterozygous KCNQ1 mutations (p.A300T and p.P535T) were previously found in a child who suffered sudden death. To provide further insight into the clinical significance and basis for pathogenicity of these variants, different combinations of wildtype, A300T and P535T alleles were co-expressed with the accessory ß-subunit minK in HEK293 cells, to analyze colocalization with the plasma membrane and some biophysical phenotypes of homo and heterotetrameric channels using the patch-clamp technique. A300T homotetrameric channels showed left-shifted activation V1/2 as previously observed in Xenopus oocytes, decreased maximum conductance density, slow rise-time300ms, and a characteristic use-dependent response. A300T slow rise-time300ms and use-dependent response behaved as dominant biophysical traits for all allele combinations. The P535T variant significantly decreased maximum conductance density and Kv7.1-minK-plasma membrane colocalization. P535T/A300T heterotetrameric channels showed decreased colocalization with plasma membrane, slow rise-time300ms and the A300T characteristic use-dependent response. While A300T left shifted activation voltage dependence behaved as a recessive trait when co-expressed with WT alleles, it was dominant when co-expressed with P535T alleles. Conclusions: The combination of P535T/A300T channel biophysical properties is compatible with recessive Romano Ward syndrome. Further analysis of other biophysical traits may identify other mechanisms involved in the pathophysiology of this disease.

6.
Adv Rheumatol ; 61: 31, 2021. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1284973

RESUMO

Abstract Background: Osteoarthritis (OA) is defined as a degenerative disease. Pivotal roles of long non-coding RNA (lncRNAs) in OA are widely elucidated. Herein, we intend to explore the function and molecular mechanism of lncRNA KCNQ1OT1 in CHON-001 cells. Methods: Relative expression of KCNQ1OT1, miR-126-5p and TRPS1 was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability was examined by MTT assay. The migratory ability of chondrocytes was assessed by transwell assay. Western blot was used to determine relative protein expression of collagen II, MMP13 and TRPS1. Dual-luciferase reporter (DLR) assay was applied to test the target of lncRNA KCNQ1OT1 or miR-126-5p. Results: Relative expression of KCNQ1OT1 and TRPS1 was reduced, whereas miR-126-5p was augmented in cartilage tissues of post-traumatic OA patients compared to those of subjects without post-traumatic OA. Increased KCNQ1OT1 or decreased miR-126-5p enhanced cell viability and migration, and repressed extracellular matrix (ECM) degradation in CHON-001 cells. MiR-126-5p was the downstream target of KCNQ1OT1, and it could directly target TRPS1. There was an inverse correlation between KCNQ1OT1 and miR-126-5p or between miR-126-5p and TRPS1. Meantime, there was a positive correlation between KCNQ1OT1 and TRPS1. The promoting impacts of KCNQ1OT1 on cell viability and migration as well as the suppressive impact of KCNQ1OT1 on ECM degradation were partially abolished by miR-126-5p overexpression or TRPS1 knockdown in CHON-001 cells. Conclusions: Overexpression of KCNQ1OT1 attenuates the development of OA by sponging miR-126-5p to target TRPS1. Our findings may provide a possible therapeutic strategy for human OA in clinic.

7.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;54(7): e10213, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1249312

RESUMO

Sevoflurane (SEVO) is widely applied as an anesthetic, which exerts antitumor capacity in various cancers, including hepatocellular carcinoma (HCC). Previous studies indicated that long non-coding RNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) was upregulated, while microRNA-29a-3p (miR-29a-3p) was downregulated in HCC. Thus, we aimed to explore the roles of KCNQ1OT1 and miR-29a-3p in HCC cells exposed to SEVO. Cell proliferation, apoptosis, migration, and invasion were assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, and transwell assays, respectively. The levels of genes were determined by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Furthermore, the interaction between miR-29a-3p and KCNQ1OT1 or chromebox protein homolog 3 (CBX3) was predicted by Starbase or Targetscan, and then confirmed by dual-luciferase reporter assay. We found that the levels of KCNQ1OT1 and CBX3 were decreased, while miR-29a-3p was increased in SEVO-treated HCC cells. KCNQ1OT1 overexpression weakened the inhibitory effects of SEVO on HCC cell proliferation, apoptosis, migration, and invasion. Interestingly, KCNQ1OT1 bound to miR-29a-3p, and miR-29a-3p targeted CBX3. KCNQ1OT1 upregulated CBX3 level by repressing miR-29a-3p expression. Furthermore, KCNQ1OT1 exerted tumor promotion in HCC cells via suppressing miR-29a-3p to regulate CBX3 expression. Collectively, our findings demonstrated that KCNQ1OT1 regulated the antitumor effects of SEVO on HCC cells through modulating the miR-29a-3p/CBX3 axis, providing a theoretical basis for the treatment of HCC.


Assuntos
Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamento farmacológico , Canais de Potássio de Abertura Dependente da Tensão da Membrana , MicroRNAs/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamento farmacológico , Proteínas Cromossômicas não Histona , RNA Longo não Codificante/genética , Sevoflurano/farmacologia
8.
Clinics ; Clinics;76: e2175, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1249578

RESUMO

OBJECTIVE: The long non-coding RNA (lncRNA) KCNQ1 overlapping transcript 1 (KCNQ1OT1) exerts vital regulatory functions in diverse tumors. However, the biological function of KCNQ1OT1 in esophageal squamous cell carcinoma (ESCC) remains unclear. METHODS: KCNQ1OT1 expression was detected in ESCC tissues using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, apoptosis, migration, and invasion were detected by the CCK-8 assay, EdU assay, flow cytometry analysis, and Transwell experiments, respectively. Bioinformatics analysis, luciferase reporter experiments, and RNA immunoprecipitation assays were used to predict and validate the regulatory relationships between KCNQ1OT1, microRNA-133b (miR-133b) and epidermal growth factor receptor (EGFR). RESULTS: KCNQ1OT1 expression was remarkably upregulated in ESCC tissues and cell lines. Overexpression of KCNQ1OT1 markedly promoted ESCC cell proliferation, migration, and invasion and enhanced the expression of N-cadherin, MMP-2, and MMP-9, but inhibited apoptosis and E-cadherin expression in ESCC cell lines; KCNQ1OT1 knockdown exerted the opposite effects. KCNQ1OT1 could directly bind to miR-133b and suppress its expression, and miR-133b reversed the effects of KCNQ1OT1 overexpression in ESCC cells. MiR-133b reduced the expression of epidermal growth factor receptor (EGFR); further, KCNQ1OT1 activated the phosphatidylinositol 3-kinase/AKT serine/threonine kinase 1 (PI3K/AKT) signaling pathway by repressing miR-133b repression and indirectly upregulating EGFR. KCNQ1OT1 expression was positively correlated with EGFR mRNA expression and negatively correlated with miR-133b expression. CONCLUSION: KCNQ1OT1 facilitates ESCC progression by sponging miR-133b and activating the EGFR/PI3K/AKT pathway.


Assuntos
Humanos , Neoplasias Esofágicas/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Carcinoma de Células Escamosas do Esôfago/genética , Fosfatidilinositol 3-Quinases , Proliferação de Células/genética , Canal de Potássio KCNQ1/genética
9.
Mol Ther Nucleic Acids ; 19: 179-189, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-31841990

RESUMO

Inflammatory mediators play a key role in the pathogenesis of acute respiratory distress syndrome (ARDS). In this study, we aimed to explore the involvement of the Kcnq1 opposite strand/antisense transcript 1 (Kcnq1ot1)/miR-381-3p/E26 transformation-specific proto-oncogene 2 (ETS2) axis in inflammation of lipopolysaccharide (LPS)-induced ARDS. Microarray analysis revealed ETS2 as an upregulated gene in ARDS. Then, a LPS-induced ARDS mouse model was constructed, with a series of gain- or loss-of-function experiments conducted to evaluate the lung function and neutrophil extracellular trap (NET) formation in lung tissue and determine the neutrophil number, myeloperoxidase (MPO) activity, and inflammatory factor levels in bronchoalveolar lavage fluid (BALF). As the results revealed, downregulated expression of ETS2 resulted in improved lung function, decreased NETs, MPO activity, and levels of interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α), as well as increased IL-10 level. Then, the assays of dual-luciferase reporter, RNA-binding protein immunoprecipitation (RIP), and RNA pull-down were performed to validate that Kcnq1ot1 promoted ETS2 expression by competitively binding to miR-381-3p. Meanwhile, it was also found that Kcnq1ot1 silencing reversed the promotive effect of EST2 on ARDS. Our results provide evidence that Kcnq1ot1 silencing may reduce the inflammatory response in LPS-induced ARDS via inhibition of miR-381-30-dependent ETS2, thereby presenting new molecular understanding for the development of ARDS.

10.
Genet. mol. biol ; Genet. mol. biol;40(3): 586-590, July-Sept. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-892421

RESUMO

Abstract Genome-wide association studies have identified several loci associated with an increased risk for cardiovascular disease (CVD) and type 2 diabetes (T2D). Polymorphisms within the KCNQ1 (potassium voltage-gated channel, KQT-like subfamily, member 1) gene are consistently associated with T2D in a number of populations. The current study was undertaken to evaluate the association of 3 polymorphisms of KCNQ1 (rs2237892, rs151290 and rs2237895) with T2D and/or CVD. Patients diagnosed with either T2D (320 patients), CVD (250 patients) or both (60 patients) and 516 healthy controls were genotyped by TaqMan assay run on a real time PCR thermocycler. A statistically significant association was found for SNPs rs151290 (OR = 1.76; 95%CI = 1.02-3.05; p = 0.0435) and rs2237895 (OR = 2.49; 95%CI = 1.72-3.61; p < 0.0001) with CVD. SNP rs151290 (OR = 7.43; 95%CI = 1.00-55.22; p = 0.0499) showed a strong association in patients with both T2D and CVD. None of the SNPs showed any significant association with T2D. Haploview analysis showed that the ACC (rs151290, rs2237892 and rs2237895) haplotype is the most significant risk allele combination for CVD, while CCA is the most significant risk haplotype for co-morbidity with T2D. KCNQ1 polymorphism at SNPs rs151290 and rs2237895 is strongly associated with CVD in this population, but presented no association with T2D.

11.
Gene ; 627: 40-48, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28600177

RESUMO

Sudden death in a child is a devastating event with important medical implications for surviving relatives. Because it may be the first manifestation of unknown inherited cardiac disease, molecular autopsy can be helpful to determine the cause of death and identify at risk family members. The aim of the study was to perform a molecular autopsy in a seven year-old girl with sudden unexplained death, to find evidence supporting the possible pathogenicity of mutations identified in inherited cardiac disease genes, and to clinically and genetically assess first-degree relatives. DNA from the index case was extracted from umbilical cord cells stored at birth, and DNA of first-degree relatives from blood samples. Targeted sequencing was performed using a Haloplex design including 81 cardiogenes. Possible functional consequences of the mutations were analyzed using protein modeling and structural mobility analyses. The child was compound heterozygous for KCNQ1 variants p.Ala300Thr and p.Pro535Thr. Ala300Thr is known to cause long QT syndrome in the homozygous state, while Pro535Thr is novel and of unknown clinical significance. The father and sibling were Ala300Thr heterozygous, and had normal QTc intervals at rest and during exercise. The asymptomatic mother was heterozygous for Pro535Thr, and showed borderline QTc at rest, but prolonged QTc during exercise. Protein modeling predicted that Ala300Thr alters the mobility profile of the Kv7.1 tetramer and Thr535 disrupts a calmodulin-binding site, probably causing co-assembly or trafficking defects of the mutant monomer. Altogether, the evidence strongly suggests that this child was affected with a recessive form of Romano Ward syndrome.


Assuntos
Morte Súbita Cardíaca , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/genética , Síndrome de Romano-Ward/genética , Criança , Análise Mutacional de DNA , Feminino , Heterozigoto , Humanos , Modelos Moleculares , Linhagem , Mutação Puntual , Síndrome de Romano-Ward/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA