Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35563606

RESUMO

Fish are an interesting taxon comprising species adapted to a wide range of environments. In this work, we analyzed the transcriptional contribution of transposable elements (TEs) in the gill transcriptomes of three fish species exposed to different salinity conditions. We considered the giant marbled eel Anguilla marmorata and the chum salmon Oncorhynchus keta, both diadromous, and the marine medaka Oryzias melastigma, an euryhaline organism sensu stricto. Our analyses revealed an interesting activity of TEs in the case of juvenile eels, commonly adapted to salty water, when exposed to brackish and freshwater conditions. Moreover, the expression assessment of genes involved in TE silencing mechanisms (six in heterochromatin formation, fourteen known to be part of the nucleosome remodeling deacetylase (NuRD) complex, and four of the Argonaute subfamily) unveiled that they are active. Finally, our results evidenced for the first time a krüppel-associated box (KRAB)-like domain specific to actinopterygians that, together with TRIM33, might allow the functioning of NuRD complex also in fish species. The possible interaction between these two proteins was supported by structural prediction analyses.


Assuntos
Oncorhynchus keta , Oryzias , Animais , Elementos de DNA Transponíveis/genética , Água Doce , Brânquias/metabolismo , Oncorhynchus keta/genética , Oryzias/genética , Salinidade
2.
Biochim Biophys Acta Rev Cancer ; 1877(3): 188731, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35483489

RESUMO

Kruppel-associated box (KRAB) zinc-finger proteins (KRAB-ZFPs) are the largest transcriptional/transcription-regulatory factor family in mammalian cells. The amino-terminal KRAB domain, which recruits other transcription-regulating proteins, and the carboxyl-terminal C2H2 zinc-finger motifs, which bind to specific DNA sequences, are the typical structural characteristics of KRAB-ZFPs. Many KRAB-ZFPs are abnormally expressed in several cancer types and involved in many cancer-related signaling pathways and bioprocesses, including cell proliferation, apoptosis, migration, invasion, and metastasis. In this review, we summarize the protein structure and mechanisms involved in transcriptional regulation, and focus on multiple key signaling pathways regulated by KRAB-ZFPs, including the p53, Wnt/ß-catenin, and NF-κB pathways, highlighting the oncogenic and tumor-suppressive roles of KRAB-ZFPs in different cancers. We also discuss the mechanisms regulating KRAB-ZFP expression. The further elucidation of the oncogenic and tumor-suppressive roles of KRAB-ZFPs and their targeting for multiple synergistic signaling pathways may be valuable for effective cancer therapy.


Assuntos
Neoplasias , Dedos de Zinco , Animais , Humanos , Mamíferos/metabolismo , Neoplasias/genética , Neoplasias/patologia , Proteínas Repressoras/genética , Transdução de Sinais , Fatores de Transcrição/genética , Zinco , Dedos de Zinco/genética
3.
Cancer Genomics Proteomics ; 19(3): 305-327, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35430565

RESUMO

BACKGROUND/AIM: Clear-cell renal cell carcinoma (ccRCC) is the most common and aggressive form of all urological cancers, with poor prognosis and high mortality. Despite growing evidence of involvement in carcinogenesis, the role of KRAB-ZFP in ccRCC has not been fully explored. KRAB Zinc finger proteins (KRAB-ZFPs) are the largest family of mammalian transcription regulators. They are differentially expressed in various tissues during cellular development and phenotypic differentiation. MATERIALS AND METHODS: In this study, the levels of transcripts of ccRCC from The Cancer Genome Atlas (TCGA) dataset were used to identify prognostic biomarkers in this disease. RESULTS: Using bioinformatics techniques, we demonstrate that approximately 60% of KRAB zinc finger proteins located on chromosome 19p13.2 are differentially expressed, with all but two being down-regulated in ccRCC. Moreover, ZNF844, a paralog of ZNF433, was the most down-regulated across all histological grades and pathological stages (p<0.001). In addition, the decrease in ZNF844 expression was associated with poor patient survival (HR=0.41; 95% CI=0.3-0.56; p<0.0001). Gene Set Enrichment Analysis of genes inversely co-expressed with ZNF844 revealed that enriched pathways were consistently related to immune and translation processes (p<0.05, FDR <0.05). Lastly, ZNF844 expression showed moderate, inverse correlation to Helper T-cell (CD4 or Th1) subtype 1 (R=-0.558, p=5.15×10-39) infiltration and with the exhausted T-cell phenotype (R=-0.37; p=4.1×10-21). CONCLUSION: Down-regulation of KRAB-ZFPs at 19p13.2 may represent a signature for ccRCC. Moreover, ZNF844 is a prognostic marker for ccRCC and may serve as a putative immune-related tumor suppressor gene.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Feminino , Humanos , Neoplasias Renais/patologia , Masculino , Mamíferos/metabolismo , Prognóstico , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/fisiologia
4.
Proc Natl Acad Sci U S A ; 119(11): e2119415119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35259018

RESUMO

SignificanceHosts often target the relatively conserved regions in rapidly mutating retroviruses to inhibit their replication. One of these regions is called a primer binding site (PBS), which has to be complementary to the host tRNA to initiate reverse transcription. By analyzing endogenous retroviral elements, we found that host cells use this sequence as a target in efforts to block the expression of viral elements. A specific type of zinc finger protein targets the PBS in a host genome, which not only inhibits the transcription of endogenous viruses but also inhibits the replication of exogenous retroviruses with the same PBS. Thus, our study sheds light on a strategy for searching for host restriction factors targeting retroviruses.


Assuntos
Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Repressoras/metabolismo , Retroviridae/fisiologia , Dedos de Zinco , Sequência de Bases , Sítios de Ligação , Mapeamento Cromossômico , Retrovirus Endógenos , Estudo de Associação Genômica Ampla , Humanos , Motivos de Nucleotídeos , Retroviridae/classificação , Transcrição Gênica , Replicação Viral
5.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672287

RESUMO

Krüppel-associated box zinc finger proteins (KRAB-ZFPs) constitute the largest family of transcriptional factors exerting co-repressor functions in mammalian cells. In general, KRAB-ZFPs have a dual structure. They may bind to specific DNA sequences via zinc finger motifs and recruit a repressive complex through the KRAB domain. Such a complex mediates histone deacetylation, trimethylation of histone 3 at lysine 9 (H3K9me3), and subsequent heterochromatization. Nevertheless, apart from their repressive role, KRAB-ZFPs may also co-activate gene transcription, likely through interaction with other factors implicated in transcriptional control. KRAB-ZFPs play essential roles in various biological processes, including development, imprinting, retroelement silencing, and carcinogenesis. Cancer cells possess multiple genomic, epigenomic, and transcriptomic aberrations. A growing number of data indicates that the expression of many KRAB-ZFPs is altered in several tumor types, in which they may act as oncogenes or tumor suppressors. Hereby, we review the available literature describing the oncogenic and suppressive roles of various KRAB-ZFPs in cancer. We focused on their association with the clinicopathological features and treatment response, as well as their influence on the cancer cell phenotype. Moreover, we summarized the identified upstream and downstream molecular mechanisms that may govern the functioning of KRAB-ZFPs in a cancer setting.


Assuntos
Genes Supressores de Tumor , Neoplasias/genética , Oncogenes , Fatores de Transcrição/química , Fatores de Transcrição/genética , Elementos de DNA Transponíveis , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Família Multigênica , Neoplasias/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Dedos de Zinco
6.
Clin Chim Acta ; 500: 220-225, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31678273

RESUMO

Zinc finger protein 382 (ZNF382), a member of the Krüppel-associated box zinc finger proteins (KRAB-ZFPs) family, plays critical roles in regulating certain downstream genes expression as a transcription inhibitor. ZNF382 is downregulated in multiple tumors due to hypermethylation of its promoter, to be more specific, methylation of promoter CpG island may contributes to inhibition of gene expression as found in many studies. With application of DNA methyltransferase inhibitors (DNMTi) 5-azacytidine and 5-aza-2'-deoxycytidine, hypomethylation of ZNF382 gene may contribute to anti-tumor effects. This review summerized the structure, biological functions, expression and the roles of ZNF382 in multiple cancers, and, expression of ZNF382 regulated by promoter methylation was further discussed to show the possibilities of DNA hypomethylation treatment as a potential treatment in clinical applications.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/genética , Regulação para Baixo/genética , Neoplasias/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Ilhas de CpG/genética , Proteínas de Ligação a DNA/química , Humanos , Fatores de Transcrição/química
7.
Annu Rev Genet ; 53: 393-416, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31518518

RESUMO

Nearly half of the human genome consists of endogenous retroelements (EREs) and their genetic remnants, a small fraction of which carry the potential to propagate in the host genome, posing a threat to genome integrity and cell/organismal survival. The largest family of transcription factors in tetrapods, the Krüppel-associated box domain zinc finger proteins (KRAB-ZFPs), binds to specific EREs and represses their transcription. Since their first appearance over 400 million years ago, KRAB-ZFPs have undergone dramatic expansion and diversification in mammals, correlating with the invasions of new EREs. In this article we review our current understanding of the structure, function, and evolution of KRAB-ZFPs and discuss growing evidence that the arms race between KRAB-ZFPs and the EREs they target is a major driving force for the evolution of new traits in mammals, often accompanied by domestication of EREs themselves.


Assuntos
Imunidade Celular/fisiologia , Mamíferos/genética , Retroelementos , Dedos de Zinco/fisiologia , Animais , Regulação da Expressão Gênica , Impressão Genômica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Meiose , Família Multigênica , Domínios Proteicos
8.
Brain Res ; 1705: 43-47, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29522722

RESUMO

TRIM28 is an epigenetic co-repressor protein that mediates transcriptional silencing. TRIM28 participates, together with the large family of Kruppel-associated box domain zinc finger proteins (KRAB-ZFP) transcription factors, in the repression of transposable elements (TE). Recent advances indicate that TRIM28-based repression of TEs occurs in the mammalian brain and may provide beneficial effects through the regulation of transcriptional networks. Here, we provide an overview of TRIM28-related functions, highlighting the role of controlling TEs in neural progenitor cells and discuss how this mechanism may have contributed to the evolution of the complex human brain. Finally, we outline future considerations for the field.


Assuntos
Encéfalo/metabolismo , Elementos de DNA Transponíveis/genética , Proteína 28 com Motivo Tripartido/genética , Animais , Epigênese Genética/genética , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes , Humanos , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Proteína 28 com Motivo Tripartido/fisiologia
9.
Trends Genet ; 33(11): 871-881, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28935117

RESUMO

Kruppel-associated box zinc-finger proteins (KRAB-ZFPs) make up the largest family of transcription factors in humans. These proteins emerged in the last common ancestor of coelacanth and tetrapods, and have expanded and diversified in the mammalian lineage. Although their mechanism of transcriptional repression has been well studied for over a decade, the DNA-binding activities and the biological functions of these proteins have been largely unexplored. Recent large-scale ChIP-seq studies and loss-of-function experiments have revealed that KRAB-ZFPs play a major role in the recognition and transcriptional silencing of transposable elements (TEs), consistent with an 'arms race model' of KRAB-ZFP evolution against invading TEs. However, this model is insufficient to explain the evolution of many KRAB-ZFPs that appear to domesticate TEs for novel host functions. We highlight some of the mammalian regulatory innovations driven by specific KRAB-ZFPs, including genomic imprinting, meiotic recombination hotspot choice, and placental growth.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Mamíferos/genética , Proteínas Repressoras/fisiologia , Animais , Humanos , Dedos de Zinco
10.
Biochem Biophys Res Commun ; 471(4): 533-8, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26879141

RESUMO

Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remains unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Inativação Gênica , Dedos de Zinco , Animais , Linhagem Celular Tumoral , Lentivirus , Camundongos , Vírus da Leucemia Murina de Moloney/genética , Mutação , Transgenes
11.
Biochem Biophys Res Commun ; 469(3): 490-4, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26692479

RESUMO

Members of the kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family mediate a number of cellular processes through binding to target DNA sequences via zinc fingers. Generally, zinc fingers recognize three-nucleotide sequences; however, this rule is not universally applicable. Zinc finger protein 809 (ZFP809) belongs to the KRAB-ZFP family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV) via sequence-specific binding to the primer-binding site (PBS) located downstream of the MoMLV-long terminal repeat (LTR) and the induction of epigenetic modifications at LTR, such as repressive histone modifications and de novo DNA methylation. Previously, we demonstrated the role of the first to fifth zinc fingers of ZFP809 in binding to MLV PBS, indicating these zinc fingers do not recognize MLV PBS as a three-nucleotide sequence. Therefore, in the present study, we constructed truncated and mutated zinc fingers and examined their ability to bind to MLV PBS. The third to fifth zinc fingers of ZFP809 were found to be essential for binding to MLV PBS. Furthermore, the results of the present study indicate that other zinc fingers, which were not directly involved in binding to MLV PBS, may function in potentiating binding and stable protein expression. Further characterization of the amino acid sequences of zinc fingers will help further elucidate the functions and features of KRAB-ZFP and other zinc finger proteins.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Vírus da Leucemia Murina de Moloney/química , Vírus da Leucemia Murina de Moloney/genética , Dedos de Zinco/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Relação Estrutura-Atividade
12.
Mob Genet Elements ; 5(1): 1-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442176

RESUMO

Endogenous retroelements (EREs) are essential motors of evolution yet require careful control to prevent genomic catastrophes, notably during the vulnerable phases of epigenetic reprogramming that occur immediately after fertilization and in germ cells. Accordingly, a variety of mechanisms restrict these mobile genetic units. Previous studies have revealed the importance of KRAB-containing zinc finger proteins (KRAB-ZFPs) and their cofactor, KAP1, in the early embryonic silencing of endogenous retroviruses and so-called SVAs, but the implication of this transcriptional repression system in the control of LINE-1, the only known active autonomous retrotransposon in the human genome, was thought to be marginal. Two recent studies straighten the record by revealing that the KRAB/KAP system is key to the control of L1 in embryonic stem (ES) cells, and go further in demonstrating that DNA methylation and KRAB/KAP1-induced repression contribute to this process in an evolutionally dynamic fashion. These results shed light on the delicate equilibrium between higher vertebrates and endogenous retroelements, which are not just genetic invaders calling for strict control but rather a constantly renewed and nicely exploitable source of evolutionary potential.

13.
Genes Dev ; 28(13): 1397-409, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24939876

RESUMO

Mobile elements are important evolutionary forces that challenge genomic integrity. Long interspersed element-1 (L1, also known as LINE-1) is the only autonomous transposon still active in the human genome. It displays an unusual pattern of evolution, with, at any given time, a single active L1 lineage amplifying to thousands of copies before getting replaced by a new lineage, likely under pressure of host restriction factors, which act notably by silencing L1 expression during early embryogenesis. Here, we demonstrate that in human embryonic stem (hES) cells, KAP1 (KRAB [Krüppel-associated box domain]-associated protein 1), the master cofactor of KRAB-containing zinc finger proteins (KRAB-ZFPs) previously implicated in the restriction of endogenous retroviruses, represses a discrete subset of L1 lineages predicted to have entered the ancestral genome between 26.8 million and 7.6 million years ago. In mice, we documented a similar chronologically conditioned pattern, albeit with a much contracted time scale. We could further identify an L1-binding KRAB-ZFP, suggesting that this rapidly evolving protein family is more globally responsible for L1 recognition. KAP1 knockdown in hES cells induced the expression of KAP1-bound L1 elements, but their younger, human-specific counterparts (L1Hs) were unaffected. Instead, they were stimulated by depleting DNA methyltransferases, consistent with recent evidence demonstrating that the PIWI-piRNA (PIWI-interacting RNA) pathway regulates L1Hs in hES cells. Altogether, these data indicate that the early embryonic control of L1 is an evolutionarily dynamic process and support a model in which newly emerged lineages are first suppressed by DNA methylation-inducing small RNA-based mechanisms before KAP1-recruiting protein repressors are selected.


Assuntos
Regulação da Expressão Gênica , Elementos Nucleotídeos Longos e Dispersos/genética , Animais , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Células-Tronco Embrionárias , Evolução Molecular , Humanos , Camundongos , Proteínas Repressoras/genética , Proteína 28 com Motivo Tripartido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA