RESUMO
This paper presents the converter design of a single-phase non-isolated step-down controlled rectifier for power factor improvement and output voltage regulation. The converter consists of a full-bridge diode rectifier and a DC-DC interleaved buck converter of two or more switching cells that has an LC filter in its input. It is proposed that the interleaved switching cells operate in discontinuous conduction mode and the current through the input LC filter be continuous, avoiding switching frequency components to be injected into the grid. The controller, which has a simple structure and a small number of sensors, allows the system to achieve a high power factor. It also regulates the output voltage to a constant reference. An experimental prototype is built and tested to validate the analysis and proposed design. The closed-loop converter is evaluated both in a steady state and in transient conditions. At steady state, the converter achieves a power factor above 0.9 with a maximum of 45.4% THD at 110.1W. The main contributions of this paper are guidelines for the design of the converter, open-loop analysis, and converter control.
RESUMO
Due to the characteristic of narrow band conversion around a central radio frequency, the Sigma Delta Modulator (ΣΔM) based on LC resonators is a suitable option for use in Software-Defined Radio (SDR). However, some aspects of the topologies described in the state-of-the-art, such as noise and nonlinear sources, affect the performance of ΣΔM. This paper presents the design methodology of three high-order LC-Based single-block Sigma Delta Modulators. The method is based on the equivalence between continuous time and discrete time loop gain using a Finite Impulse Response Digital-to-Analog Converter (FIRDAC) through a numerical approach to defining the coefficients. The continuous bandpass LC ΣΔM simulations are performed at a center frequency of 432 MHz and a sampling frequency of 1.72 GHz. To the proposed modulators a maximum Signal-to-Noise Ratio (SNR) of 51.39 dB, 48.48 dB, and 46.50 dB in a 4 MHz bandwidth was achieved to respectively 4th Order Gm-LC ΣΔM, 4th Order Magnetically Coupled ΣΔM and 4th Order Capacitively Coupled ΣΔM.