Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 327: 124812, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33578353

RESUMO

Anaerobic co-digestion is a promising solution for nutrients balance and improvement of methane production in anaerobic digestion (AD) processes. However, the knowledge about the effects of different co-substrates in manure-based AD, and different feeding strategies, on the process performance and the methanogenic microbiome pathway, are still missing. Therefore, under harsh and slow stepwise increase of organic loading rate (OLR), by addition of lipids and carbohydrates as co-substrates in continuous reactors, this study elucidated their effect on methane production and methanogenic microbiome. The results showed that, when OLR increased by adding lipids, a severe inhibition due to accumulated long-chain fatty acids (LCFA) was observed, while no significant inhibition was obtained by addition of glucose. Additionally, the LCFA inhibition in the reactor fed with lipid was alleviated by slow stepwise feeding strategy that enriched aceticlastic Methanosarcina thermophile and Methanosaeta concilii, and hydrogenotrophic Methanobacterium methanogens.


Assuntos
Reatores Biológicos , Metano , Anaerobiose , Glucose , Lipídeos
2.
Water Res ; 98: 138-46, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27088248

RESUMO

Anaerobic co-digestion is an emerging practice at wastewater treatment plants (WWTPs) to improve the energy balance and integrate waste management. Modelling of co-digestion in a plant-wide WWTP model is a powerful tool to assess the impact of co-substrate selection and dose strategy on digester performance and plant-wide effects. A feasible procedure to characterise and fractionate co-substrates COD for the Benchmark Simulation Model No. 2 (BSM2) was developed. This procedure is also applicable for the Anaerobic Digestion Model No. 1 (ADM1). Long chain fatty acid inhibition was included in the ADM1 model to allow for realistic modelling of lipid rich co-substrates. Sensitivity analysis revealed that, apart from the biodegradable fraction of COD, protein and lipid fractions are the most important fractions for methane production and digester stability, with at least two major failure modes identified through principal component analysis (PCA). The model and procedure were tested on bio-methane potential (BMP) tests on three substrates, each rich on carbohydrates, proteins or lipids with good predictive capability in all three cases. This model was then applied to a plant-wide simulation study which confirmed the positive effects of co-digestion on methane production and total operational cost. Simulations also revealed the importance of limiting the protein load to the anaerobic digester to avoid ammonia inhibition in the digester and overloading of the nitrogen removal processes in the water train. In contrast, the digester can treat relatively high loads of lipid rich substrates without prolonged disturbances.


Assuntos
Benchmarking , Modelos Teóricos , Anaerobiose , Reatores Biológicos , Metano , Nitrogênio , Águas Residuárias
3.
Biotechnol Biofuels ; 8: 141, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379773

RESUMO

BACKGROUND: Oleaginous microalgae contain a high level of lipids, which can be extracted and converted to biofuel. The lipid-extracted residue can then be further utilized through anaerobic digestion to produce biogas. However, long-chain fatty acids (LCFAs) have been identified as the main inhibitory factor on microbial activity of anaerobic consortium. In this study, the mechanism of LCFA inhibition on anaerobic digestion of whole and lipid-extracted algal biomass was investigated with a range of calcium concentrations against various inoculum to substrate ratios as a means to alleviate the LCFA inhibition. RESULTS: Whole algal biomass of Nannochloropsis salina represents high lipid content algal biomass while lipid-extracted residue represents its low lipid counterpart. The anaerobic digestion experiments were conducted in a series of serum bottles at 35 °C for 20 days. A kinetic model, considering LCFA inhibition on hydrolysis, acidogenesis as well as methanogenesis steps, was developed from the observed phenomenon of inhibition factors as a function of the LCFA concentration and specific biomass content or calcium concentration. The results showed that inoculum to substrate ratio had a stronger effect on biogas production than calcium, and calcium had no effect on biogas production when inoculum concentration was extremely low. The microbial community analysis by high-throughput Illumina Miseq sequencing indicated that diversity of both bacterial and methanogenic communities decreased with elevation of lipid concentration. Hydrolytic bacteria and aceticlastic methanogens dominated bacterial and archaea communities, respectively, in both high and low LCFA concentration digesters. CONCLUSIONS: This study demonstrated that inoculum concentration has a more significant effect on alleviating LCFA inhibition than calcium concentration, while calcium only played a role when inoculum concentration met a threshold level. The model revealed that each functional microbial group was subject to different levels of LCFA inhibition. Although methanogens were the most susceptible microbes to LCFA inhibition, the inhibition factor for hydrolytic bacteria was more highly affected by inoculum concentration. The microbial community analysis indicated that the bacterial community was affected more than the methanogenic community by high LCFAs concentration. Syntrophic acetogens were sensitive to high LCFA concentrations and thus showed a decreased abundance in such an environment. Graphical abstractProposed mechanism of calcium mitigated LCFA inhibition.

4.
Bioresour Technol ; 169: 421-427, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25079207

RESUMO

Anaerobic co-digestion has been widely investigated, but there is limited analysis of interaction between substrates. The objective of this work was to assess the role of carbohydrates, protein and lipids in co-digestion behaviour separately, and together. Two sets of batch tests were done, each set consisting of the mono-digestion of three substrates, and the co-digestion of seven mixtures. The first was done with pure substrates--cellulose, casein and olive oil--while in the second slaughterhouse waste--paunch, blood and fat--were used as carbohydrate, protein and lipid sources, respectively. Synergistic effects were mainly improvement of process kinetics without a significant change in biodegradability. Kinetics improvement was linked to the mitigation of inhibitory compounds, particularly fats dilution. The exception was co-digestion of paunch with lipids, which resulted in an improved final yield with model based analysis indicating the presence of paunch improved degradability of the fatty feed.


Assuntos
Compostos Orgânicos/isolamento & purificação , Eliminação de Resíduos/métodos , Resíduos/análise , Matadouros , Anaerobiose , Animais , Biodegradação Ambiental , Bovinos , Lipídeos/análise , Metano
5.
Bioresour Technol ; 166: 168-77, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24907576

RESUMO

Lipid and protein rich solid slaughterhouse wastes are attractive co-substrates to increase volumetric biogas production in co-digestion with dairy manure. Addition of decanter sludge (DS), containing 42.2% of lipids and 35.8% of proteins (total solids basis), up to 5% of feed mixture resulted in a stable process without any indication of long chain fatty acids (LCFA) or free ammonia (NH3) inhibition and in 3.5-fold increase of volumetric biogas production. Contrary, only lipids addition as technical fat (TF) at over 2% of feed mixture resulted in formation of floating granules (FG) and process efficiency decrease. Formed FG had low biodegradability and its organic part was composed of lipids and calcium salts of LCFAs. Anaerobic digestion process intentionally directed to FG formation, could be a viable option for mitigation and control of lipids overload and derived LCFA inhibition.


Assuntos
Matadouros , Bactérias Anaeróbias/metabolismo , Biocombustíveis , Metabolismo dos Lipídeos/fisiologia , Esterco/análise , Metano/biossíntese , Resíduos/análise , Agricultura/métodos , Animais , Cálcio/metabolismo , Bovinos , Cromatografia Gasosa , Ácidos Graxos/metabolismo , Feminino , Espectrometria por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA