Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Antioxidants (Basel) ; 13(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38929168

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) affects approximately one-third of the global population. MASLD and its advanced-stage liver fibrosis and cirrhosis are the leading causes of liver failure and liver-related death worldwide. Mitochondria are crucial organelles in liver cells for energy generation and the oxidative metabolism of fatty acids and carbohydrates. Recently, mitochondrial dysfunction in liver cells has been shown to play a vital role in the pathogenesis of MASLD and liver fibrosis. Mitophagy, a selective form of autophagy, removes and recycles impaired mitochondria. Although significant advances have been made in understanding mitophagy in liver diseases, adequate summaries concerning the contribution of liver cell mitophagy to MASLD and liver fibrosis are lacking. This review will clarify the mechanism of liver cell mitophagy in the development of MASLD and liver fibrosis, including in hepatocytes, macrophages, hepatic stellate cells, and liver sinusoidal endothelial cells. In addition, therapeutic strategies or compounds related to hepatic mitophagy are also summarized. In conclusion, mitophagy-related therapeutic strategies or compounds might be translational for the clinical treatment of MASLD and liver fibrosis.

2.
Front Genet ; 15: 1302685, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440189

RESUMO

Introduction: Coagulation Factor VIII (FVIII) plays a pivotal role in the coagulation cascade, and deficiencies in its levels, as seen in Hemophilia A, can lead to significant health implications. Liver sinusoidal endothelial cells (LSECs) are the main producers and contributors of FVIII in blood, a fact we have previously elucidated through mRNA expression profiling when comparing these cells to other endothelial cell types. Methods: Our current investigation focuses on small microRNAs, analyzing their distinct expression patterns across various endothelial cells and hepatocytes. Results: The outcome of this exploration underscores the discernible microRNAs expression differences that set LSECs apart from both hepatocytes (193 microRNAs at p < 0.05) and other endothelial cells (72 microRNAs at p < 0.05). Notably, the 134 and 35 overexpressed microRNAs in LSECs compared to hepatocytes and other endothelial cells, respectively, shed light on the unique functions of LSECs in the liver. Discussion: Our investigation identified a panel of 10 microRNAs (miR-429, miR-200b-3p, miR-200a-3p, miR-216b-5p, miR-1185-5p, miR-19b-3p, miR-192-5p, miR-122-5p, miR-30c-2-3p, and miR-30a-5p) that distinctly define LSEC identity. Furthermore, our scrutiny extended to microRNAs implicated in F8 regulation, revealing a subset (miR-122-5p, miR-214-3p, miR-204-3p, and miR-2682-5p) whose expression intricately correlates with F8 expression within LSECs. This microRNA cohort emerges as a crucial modulator of F8, both directly through suppression and indirect effects on established F8-related transcription factors. The above microRNAs emerged as potential targets for innovative therapies in Hemophilia A patients.

3.
Acta Physiol (Oxf) ; 240(5): e14114, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38391060

RESUMO

AIM: Chronic heart failure (CHF) is often linked to liver malfunction and systemic endothelial dysfunction. However, whether cardio-hepatic interactions in heart failure involve dysfunction of liver sinusoidal endothelial cells (LSECs) is not known. Here we characterize LSECs phenotype in early and end stages of chronic heart failure in a murine model. METHODS: Right ventricle (RV) function, features of congestive hepatopathy, and the phenotype of primary LSECs were characterized in Tgαq*44 mice, with cardiomyocyte-specific overexpression of the Gαq protein, at the age of 4- and 12-month representative for early and end-stage phases of CHF, respectively. RESULTS: 4- and 12-month-old Tgαq*44 mice displayed progressive impairment of RV function and alterations in hepatic blood flow velocity resulting in hepatic congestion with elevated GGT and bilirubin plasma levels and decreased albumin concentration without gross liver pathology. LSECs isolated from 4- and 12-month-old Tgαq*44 mice displayed significant loss of fenestrae with impaired functional response to cytochalasin B, significant changes in proteome related to cytoskeleton remodeling, and altered vasoprotective function. However, LSECs barrier function and bioenergetics were largely preserved. In 4- and 12-month-old Tgαq*44 mice, LSECs defenestration was associated with prolonged postprandial hypertriglyceridemia and in 12-month-old Tgαq*44 mice with proteomic changes of hepatocytes indicative of altered lipid metabolism. CONCLUSION: Tgαq*44 mice displayed right-sided HF and altered hepatic blood flow leading to LSECs dysfunction involving defenestration, shift in eicosanoid profile, and proteomic changes. LSECs dysfunction appears as an early and persistent event in CHF, preceding congestive hepatopathy and contributing to alterations in lipoprotein transport and CHF pathophysiology.

4.
Mol Ther Nucleic Acids ; 35(1): 102116, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38333675

RESUMO

Liver sinusoidal endothelial cells (LSECs) are specialized endocytic cells that clear the body from blood-borne pathogens and waste macromolecules through scavenger receptors (SRs). Among the various SRs expressed by LSECs is stabilin-2 (STAB2), a class H SR that binds to several ligands, among which endogenous coagulation products. Given the well-established tolerogenic function of LSECs, we asked whether the STAB2 promoter (STAB2p) would enable us to achieve LSEC-specific lentiviral vector (LV)-mediated transgene expression, and whether the expression of this transgene would be maintained over the long term due to tolerance induction. Here, we show that STAB2p ensures LSEC-specific green fluorescent protein (GFP) expression by LV in the absence of a specific cytotoxic CD8+ T cell immune response, even in the presence of GFP-specific CD8+ T cells, confirming the robust tolerogenic function of LSECs. Finally, we show that our delivery system can partially and permanently restore FVIII activity in a mouse model of severe hemophilia A without the formation of anti-FVIII antibodies. Overall, our findings establish the suitability of STAB2p for long-term LSEC-restricted expression of therapeutic proteins, such as FVIII, or to achieve antigen-specific immune tolerance in auto-immune diseases.

5.
Hepatol Int ; 18(1): 273-288, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37330971

RESUMO

BACKGROUND AND AIMS: The important role of extracellular vesicles (EVs) in liver fibrosis has been confirmed. However, EVs derived from liver sinusoidal endothelial cells (LSECs) in the activation of hepatic stellate cells (HSCs) and liver fibrosis is still unclear. Our previous work demonstrated that Aldosterone (Aldo) may have the potential to regulate EVs from LSECs via autophagy pathway. Thus, we aim to investigate the role of Aldo in the regulation of EVs derived from LSECs. APPROACH AND RESULTS: Using an Aldo-continuous pumping rat model, we observed that Aldo-induced liver fibrosis and capillarization of LSECs. In vitro, transmission electron microscopy (TEM) revealed that stimulation of Aldo led to the upregulation of autophagy and degradation of multivesicular bodies (MVBs) in LSECs. Mechanistically, Aldo upregulated ATP6V0A2, which promoted lysosomal acidification and subsequent autophagy in LSECs. Inhibiting autophagy with si-ATG5 adeno-associated virus (AAV) in LSECs effectively mitigated Aldo-induced liver fibrosis in rats. RNA sequencing and nanoparticle tracking (NTA) analyses of EVs derived from LSECs indicated that Aldo result in a decrease in both the quantity and quality of EVs. We also observed a reduction in the protective miRNA-342-5P in EVs derived from Aldo-treated LSECs, which may play a critical role in HSCs activation. Target knockdown of EV secretion with si-RAB27a AAV in LSECs led to the development of liver fibrosis and HSC activation in rats. CONCLUSION: Aldo-induced Autophagic degradation of MVBs in LSECs promotes a decrease in the quantity and quality of EVs derived from LSECs, resulting in the activation of HSCs and liver fibrosis under hyperaldosteronism. Modulating the autophagy level of LSECs and their EV secretion may represent a promising therapeutic approach for treating liver fibrosis.


Assuntos
Aldosterona , Células Endoteliais , Ratos , Animais , Aldosterona/metabolismo , Aldosterona/farmacologia , Células Endoteliais/patologia , Corpos Multivesiculares/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Células Estreladas do Fígado/patologia , Autofagia
6.
Ann Clin Lab Sci ; 53(4): 516-528, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37625828

RESUMO

OBJECTIVE: This study aimed to explore the expression of the C-type lectin domain family 4 member G (CLEC4G) gene in the liver sinusoidal endothelial cells (LSECs) during liver pathogenesis, and to evaluate its correlation with CD34 and clinical significance in hepatocellular carcinoma patients. METHODS: We conducted bioinformatics analysis of the differential expression of CLEC4G in various human organs, carcinomatous and adjacent tissues. Then, mRNA and protein expression levels of CD34 in hepatocellular carcinoma (HCC) samples were detected via real-time quantitative reverse transcription PCR (qRT-PCR) and immunohistochemical (IHC), respectively. ELISA was applied to detect serum levels of CLEC4G in healthy controls, liver fibrosis and HCC patients. RESULTS: The expressions of mRNA and protein levels of CLEC4G were higher in normal liver tissues, moderately expressed in cirrhotic and para-cancerous tissues (P<0.001), and lowest in HCC tissues (P<0.001). We also found high CD34 expression in tumors, which was negatively correlated with CLEC4G at both mRNA and protein levels. Compared to the healthy controls, the CLEC4G levels in liver fibrosis patients and HCC patients gradually became lower (P<0.001). CONCLUSIONS: The low expression of CLEC4G is potentially correlated with LSEC capillarization and the appearance of micro-vessels. Such a phenomenon may serve as a reliable diagnostic marker for hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antígenos CD34/genética , Carcinoma Hepatocelular/genética , Moléculas de Adesão Celular , Células Endoteliais , Lectinas Tipo C/genética , Cirrose Hepática/genética , Neoplasias Hepáticas/genética
7.
Cell Rep ; 42(8): 112836, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37471222

RESUMO

Liver sinusoidal endothelial cells (LSECs) rapidly clear lipopolysaccharide (LPS) from the bloodstream and establish intimate contact with immune cells. However, their role in regulating liver inflammation remains poorly understood. We show that LSECs modify their chemokine expression profile driven by LPS or interferon-γ (IFN-γ), resulting in the production of the myeloid- or lymphoid-attracting chemokines CCL2 and CXCL10, respectively, which accumulate in the serum of LPS-challenged animals. Natural killer (NK) cell exposure to LSECs in vitro primes NK cells for higher production of IFN-γ in response to interleukin-12 (IL-12) and IL-18. In livers of LPS-injected mice, NK cells are the major producers of this cytokine. In turn, LSECs require exposure to IFN-γ for CXCL10 expression, and endothelial-specific Cxcl10 gene deletion curtails NK cell accumulation in the inflamed livers. Thus, LSECs respond to both LPS and immune-derived signals and fuel a positive feedback loop of immune cell attraction and activation in the inflamed liver tissue.


Assuntos
Células Endoteliais , Lipopolissacarídeos , Camundongos , Animais , Células Endoteliais/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Células Matadoras Naturais , Fígado/metabolismo , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL
8.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166810, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37487374

RESUMO

BACKGROUND AND AIMS: Non-alcoholic liver disease (NAFLD) is emerging as the leading cause of end-stage liver disease with a serious threat to global health burden. Fatty acid-binding protein 4 (FABP4) is closely associated with metabolic syndromes. We aimed to explore the potential mechanisms of FABP4 in NAFLD progression. MATERIALS AND METHODS: For NAFLD mice, animals were fed with high fat diet (HFD) for 20 weeks. The assays of hematoxylin and eosin, Sirius Red, oil red O staining and immunohistology were performed to evaluate hepatic pathology. Flow cytometric analysis was used to distinguish macrophage subtypes. RESULTS: Serum FABP4 level was positively correlate with the severity of hepatic steatosis in NAFLD patients. FABP4 expression was mainly distributed in liver sinusoidal endothelial cells (LSECs), which was significantly increased in HFD mice. The level of CXCL10 was positively correlated with FABP4 at mRNA and serum level. FABP4 inhibition resulted in decreased expression of CXCL10. The percentage of M1 macrophage and CXCR3+ cells in infiltrated macrophage was increased in liver of HFD mice. Inhibition of FABP4 ameliorated HFD-induced M1 macrophage polarization as well as CXCR3+ macrophages recruitment. Recombinant CXCL10 and co-culturing with TMNK-1 stimulated macrophage toward M1 polarization, which could be reversed by CXCR3 inhibitor. Palmitic acid treatment resulted in increased nuclear P65 expression, which could be reversed by inhibiting FABP4. Cxcl10 expression was dramatically suppressed by NF-κB inhibitor. CONCLUSIONS: FABP4 in LSECs may play a pathogenic role in NAFLD course by promoting CXCL10-mediated macrophage M1 polarization and CXCR3+ macrophage infiltration via activating NF-κB/p65 signaling.


Assuntos
Hepatopatias Alcoólicas , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Células Endoteliais/metabolismo , Hepatócitos/metabolismo , Hepatopatias Alcoólicas/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
9.
Liver Int ; 43(10): 2309-2319, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37403133

RESUMO

BACKGROUND & AIMS: Patients with non-alcoholic fatty liver disease (NAFLD) have impaired liver regeneration. Liver endothelial cells play a key role in liver regeneration. In non-alcoholic steatohepatitis (NASH), liver endothelial cells display a defect in autophagy, contributing to NASH progression. We aimed to determine the role of endothelial autophagy in liver regeneration following liver resection in NAFLD. METHODS: First, we assessed autophagy in primary endothelial cells from wild type mice fed a high fat diet and subjected to partial hepatectomy. Then, we assessed liver regeneration after partial hepatectomy in mice deficient (Atg5lox/lox ;VE-cadherin-Cre+ ) or not (Atg5lox/lox ) in endothelial autophagy and fed a high fat diet. The role of endothelial autophagy in liver regeneration was also assessed in ApoE-/- hypercholesterolemic mice and in mice with NASH induced by methionine- and choline-deficient diet. RESULTS: First, autophagy (LC3II/protein) was strongly increased in liver endothelial cells following hepatectomy. Then, we observed at 40 and 48 h and at 7 days after partial hepatectomy, that Atg5lox/lox ;VE-cadherin-Cre+ mice fed a high fat diet had similar liver weight, plasma AST, ALT and albumin concentration, and liver protein expression of proliferation (PCNA), cell-cycle (Cyclin D1, BrdU incorporation, phospho-Histone H3) and apoptosis markers (cleaved Caspase-3) as Atg5lox/lox mice fed a high fat diet. Same results were obtained in ApoE-/- and methionine- and choline-deficient diet fed mice, 40 h after hepatectomy. CONCLUSION: These results demonstrate that the defect in endothelial autophagy occurring in NASH does not account for the impaired liver regeneration occurring in this setting.


Assuntos
Hiperplasia Nodular Focal do Fígado , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatectomia/métodos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Regeneração Hepática , Células Endoteliais/metabolismo , Fígado/metabolismo , Dieta Hiperlipídica , Colina/metabolismo , Metionina/metabolismo , Autofagia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
10.
Toxicology ; 492: 153550, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209942

RESUMO

Organ-on-chip technology is a promising in vitro approach recapitulating human physiology for the study of responses to drug exposure. Organ-on-chip cell cultures have paved new grounds for testing and understanding metabolic dose-responses when evaluating pharmaceutical and environmental toxicity. Here, we present a metabolomic investigation of a coculture of liver sinusoidal endothelial cells (LSECs, SK-HEP-1) with hepatocytes (HepG2/C3a) using advanced organ-on-chip technology. To reproduce the physiology of the sinusoidal barrier, LSECs were separated from hepatocytes by a membrane (culture insert integrated organ-on-chip platform). The tissues were exposed to acetaminophen (APAP), an analgesic drug widely used as a xenobiotic model in liver and HepG2/C3a studies. The differences between the SK-HEP-1, HepG2/C3a monocultures and SK-HEP-1/HepG2/C3a cocultures, treated or not with APAP, were identified from metabolomic profiles using supervised multivariate analysis. The pathway enrichment coupled with metabolite analysis of the corresponding metabolic fingerprints contributed to extracting the specificity of each type of culture and condition. In addition, we analysed the responses to APAP treatment by mapping the signatures with significant modulation of the biological processes of the SK-HEP-1 APAP, HepG2/C3a APAP and SK-HEP-1/HepG2/C3a APAP conditions. Furthermore, our model shows how the presence of the LSECs barrier and APAP first pass can modify the metabolism of HepG2/C3a. Altogether, this study demonstrates the potential of a "metabolomic-on-chip" strategy for pharmaco-metabolomic applications predicting individual response to drugs.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Acetaminofen/toxicidade , Células Endoteliais/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Tecnologia , Células Hep G2 , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
11.
JHEP Rep ; 5(4): 100684, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36879887

RESUMO

Background & Aims: Progression of alcohol-associated liver disease (ALD) is driven by genetic predisposition. The rs13702 variant in the lipoprotein lipase (LPL) gene is linked to non-alcoholic fatty liver disease. We aimed at clarifying its role in ALD. Methods: Patients with alcohol-associated cirrhosis, with (n = 385) and without hepatocellular carcinoma (HCC) (n = 656), with HCC attributable to viral hepatitis C (n = 280), controls with alcohol abuse without liver damage (n = 366), and healthy controls (n = 277) were genotyped regarding the LPL rs13702 polymorphism. Furthermore, the UK Biobank cohort was analysed. LPL expression was investigated in human liver specimens and in liver cell lines. Results: Frequency of the LPL rs13702 CC genotype was lower in ALD with HCC in comparison to ALD without HCC both in the initial (3.9% vs. 9.3%) and the validation cohort (4.7% vs. 9.5%; p <0.05 each) and compared with patients with viral HCC (11.4%), alcohol misuse without cirrhosis (8.7%), or healthy controls (9.0%). This protective effect (odds ratio [OR] = 0.5) was confirmed in multivariate analysis including age (OR = 1.1/year), male sex (OR = 3.0), diabetes (OR = 1.8), and carriage of the PNPLA3 I148M risk variant (OR = 2.0). In the UK Biobank cohort, the LPL rs13702 C allele was replicated as a risk factor for HCC. Liver expression of LPL mRNA was dependent on LPL rs13702 genotype and significantly higher in patients with ALD cirrhosis compared with controls and alcohol-associated HCC. Although hepatocyte cell lines showed negligible LPL protein expression, hepatic stellate cells and liver sinusoidal endothelial cells expressed LPL. Conclusions: LPL is upregulated in the liver of patients with alcohol-associated cirrhosis. The LPL rs13702 high producer variant confers protection against HCC in ALD, which might help to stratify people for HCC risk. Impact and implications: Hepatocellular carcinoma is a severe complication of liver cirrhosis influenced by genetic predisposition. We found that a genetic variant in the gene encoding lipoprotein lipase reduces the risk for hepatocellular carcinoma in alcohol-associated cirrhosis. This genetic variation may directly affect the liver, because, unlike in healthy adult liver, lipoprotein lipase is produced from liver cells in alcohol-associated cirrhosis.

12.
Adv Mater ; 35(17): e2212206, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36862807

RESUMO

During the onset of liver fibrosis, capillarized liver sinusoidal endothelial cells (LSECs) limit substance exchange between the blood and the Disse space, further accelerating hepatic stellate cell (HSCs) activation and fibrosis progression. Limited accessibility of therapeutics to the Disse space is often overlooked and remains a major bottleneck for HSCs-targeted therapy in liver fibrosis. Here, an integrated systemic strategy for liver fibrosis treatment is reported, utilizing pretreatment with the soluble guanylate cyclase stimulator, riociguat, followed by insulin growth factor 2 receptor-mediated targeted delivery of the anti-fibrosis agent, JQ1, via peptide-nanoparticles (IGNP-JQ1). The riociguat reversed the liver sinusoid capillarization to maintain a relatively normal LSECs porosity, thus facilitating the transport of IGNP-JQ1 through the liver sinusoid endothelium wall and enhancing the accumulation of IGNP-JQ1 in the Disse space. IGNP-JQ1 is then selectively taken up by activated HSCs, inhibiting their proliferation and decreasing collagen deposition in the liver. The combined strategy results in significant fibrosis resolution in carbon tetrachloride-induced fibrotic mice as well as methionine-choline-deficient-diet-induced nonalcoholic steatohepatitis (NASH) mice. The work highlights the key role of LSECs in therapeutics transport through the liver sinusoid. The strategy of restoring LSECs fenestrae by riociguat represents a promising approach for liver fibrosis treatment.


Assuntos
Cirrose Hepática , Humanos , Animais , Camundongos , Capilares/patologia , Nanomedicina , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Resultado do Tratamento , Colágeno/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
13.
Hepatol Res ; 53(7): 661-674, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36866738

RESUMO

AIM: Hepatic zonation is a physiological feature of the liver, known to be key in the regulation of the metabolism of nutrients and xenobiotics and the biotransformation of numerous substances. However, the reproduction of this phenomenon remains challenging in vitro as only part of the processes involved in the orchestration and maintenance of zonation are fully understood. The recent advances in organ-on-chip technologies, which allow for the integration of multicellular 3D tissues in a dynamic microenvironment, could offer solutions for the reproduction of zonation within a single culture vessel. METHODS: An in-depth analysis of zonation-related mechanisms observed during the coculture of human-induced pluripotent stem cell (hiPSC)-derived carboxypeptidase M-positive liver progenitor cells and hiPSC-derived liver sinusoidal endothelial cells within a microfluidic biochip was carried out. RESULTS: Hepatic phenotypes were confirmed in terms of albumin secretion, glycogen storage, CYP450 activity, and expression of specific endothelial markers such as PECAM1, RAB5A, and CD109. Further characterization of the patterns observed in the comparison of the transcription factor motif activities, the transcriptomic signature, and the proteomic profile expressed at the inlet and the outlet of the microfluidic biochip confirmed the presence of zonation-like phenomena within the biochips. In particular, differences related to Wnt/ß-catenin, transforming growth factor-ß, mammalian target of rapamycin, hypoxia-inducible factor-1, and AMP-activated protein kinase signaling, to the metabolism of lipids, and cellular remolding were observed. CONCLUSIONS: The present study shows the interest in combining cocultures of hiPSC-derived cellular models and microfluidic technologies for reproducing in vitro complex mechanisms such as liver zonation and further incites the use of those solutions for accurate reproduction of in vivo situations.

14.
JHEP Rep ; 5(2): 100628, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36687470

RESUMO

Background & Aims: The prevalence of non-alcoholic fatty liver disease (NAFLD) and its severe form, non-alcoholic steatohepatitis (NASH), is increasing. Individuals with NASH often develop liver fibrosis and advanced liver fibrosis is the main determinant of mortality in individuals with NASH. We and others have reported that STAT3 contributes to liver fibrosis and hepatocellular carcinoma in mice. Methods: Here, we explored whether STAT3 activation in hepatocyte and non-hepatocyte areas, measured by phospho-STAT3 (pSTAT3), is associated with liver fibrosis progression in 133 patients with NAFLD. We further characterized the molecular and cellular determinants of STAT3 activation by integrating spatial distribution and transcriptomic changes in fibrotic NAFLD livers.Results: pSTAT3 scores in non-hepatocyte areas progressively increased with fibrosis severity (r = 0.53, p <0.001). Correlation analyses between pSTAT3 scores and expression of 1,540 immune- and cancer-associated genes revealed a large effect of STAT3 activation on gene expression changes in non-hepatocyte areas and confirmed a major role for STAT3 activation in fibrogenesis. Digital spatial transcriptomic profiling was also performed on 13 regions selected in hepatocyte and non-hepatocyte areas from four NAFLD liver biopsies with advanced fibrosis, using a customized panel of markers including pSTAT3, PanCK+CK8/18, and CD45. The regions were further segmented based on positive or negative pSTAT3 staining. Cell deconvolution analysis revealed that activated STAT3 was enriched in hepatic progenitor cells (HPCs) and sinusoidal endothelial cells. Regression of liver fibrosis upon STAT3 inhibition in mice with NASH resulted in a reduction of HPCs, demonstrating a direct role for STAT3 in HPC expansion. Conclusion: Increased understanding of the spatial dependence of STAT3 signaling in NASH and liver fibrosis progression could lead to novel targeted treatment approaches. Impact and implications: Advanced liver fibrosis is the main determinant of mortality in patients with NASH. This study showed using liver biopsies from 133 patients with NAFLD, that STAT3 activation in non-hepatocyte areas is strongly associated with fibrosis severity, inflammation, and progression to NASH. STAT3 activation was enriched in hepatic progenitor cells (HPCs) and sinusoidal endothelial cells (SECs), as determined by innovative technologies interrogating the spatial distribution of pSTAT3. Finally, STAT3 inhibition in mice resulted in reduced liver fibrosis and depletion of HPCs, suggesting that STAT3 activation in HPCs contributes to their expansion and fibrogenesis in NAFLD.

15.
Toxicology ; 483: 153374, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36396002

RESUMO

Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells forming the hepatic sinusoidal wall. Besides their high endocytic potential, LSECs have been demonstrated to markedly contribute to liver homeostasis and immunity, and may partially explain unexpected hepatotoxicity of drug candidates. However, their use for in vitro investigations is compromised by poor cell yields and a limited proliferation capacity. Here, we report the transient expansion of primary human LSECs from three donors by lentiviral transduction. Transduced ("upcyte®") LSECs were able to undergo at least 25 additional population doublings (PDs) before growth arrest due to senescence. Expanded upcyte® LSECs maintained several characteristics of primary LSECs, including expression of surface markers such as MMR and LYVE-1 as well as rapid uptake of acetylated LDL and ovalbumin. We further investigated the suitability of expanded upcyte® LSECs and proliferating upcyte® hepatocytes for detecting acetaminophen toxicity at millimolar concentrations (0, 0.5, 1, 2, 5, 10 mM) in static 2D cultures and a microphysiological 3D model. upcyte® LSECs exhibited a higher sensitivity to acetaminophen-induced toxicity compared to upcyte® hepatocytes in 2D culture, however, culturing upcyte® LSECs together with upcyte® hepatocytes in a co-culture reduced APAP-induced toxicity compared to 2D monocultures. A perfused Dynamic42 3D model was more sensitive to acetaminophen than the 2D co-culture model. Cytotoxicity in the 3D model was evident by decreased cellular viability, elevated LDH release, reduced nuclei counts and impaired cell morphology. Taken together, our data demonstrate that transient expansion of LSECs represents a suitable method for generation of large quantities of cells while maintaining many characteristics of primary cells and responsiveness to acetaminophen.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Acetaminofen/toxicidade , Fígado/metabolismo , Hepatócitos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
16.
Chinese Pharmacological Bulletin ; (12): 310-314, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1013858

RESUMO

Aim To explore the mechanism of the natural phenolic compound pterostilbene(PTE)in the protection of liver ischemic/reperfusion. Methods A total of 40 C57 mice were divided into control group,model group,drug delivery group and treatment group and a 70% liver ischemic/reperfusion(ischemic 60 min)model was established,then primary LSECs were isolated by perfusion and digestion. Hepatic structural disruption was observed by HE staining. The ultrastructure of hepatic sinus endothelial cells was observed by transmission electron microscopy(TEM). The structure of LSECs fenestrae was observed by scanning electron microscopy(SEM). The expression level of heme oxygenase 1(HO-1)in LSECs was detected by Western blot. Results HE staining showed that PTE protected against hepatic ischemic injury. TEM observed that PTE had a protective effect on hepatic sinus endothelial cells,and the number of LSECs fenestrae in the blank control group was larger and the number of fenestrae in the liver I/R model group was reduced. The number of LSECs fenestrae in the liver I/R model group treated with PTE increased compared with the untreated liver I/R model group. Western blot result showed that PTE was able to induce HO-1 expression in LSECs. Conclusions PTE alleviates oxidative damage of endothelial cells in mouse hepatic sinus by inducing HO-1expression,and protects the liver from ischemia/reperfusion injury.

17.
Elife ; 112022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36281643

RESUMO

Hepatic metastases are a poor prognostic factor of colorectal carcinoma (CRC) and new strategies to reduce the risk of liver CRC colonization are highly needed. Herein, we used mouse models of hepatic metastatization to demonstrate that the continuous infusion of therapeutic doses of interferon-alpha (IFNα) controls CRC invasion by acting on hepatic endothelial cells (HECs). Mechanistically, IFNα promoted the development of a vascular antimetastatic niche characterized by liver sinusoidal endothelial cells (LSECs) defenestration extracellular matrix and glycocalyx deposition, thus strengthening the liver vascular barrier impairing CRC trans-sinusoidal migration, without requiring a direct action on tumor cells, hepatic stellate cells, hepatocytes, or liver dendritic cells (DCs), Kupffer cells (KCs) and liver capsular macrophages (LCMs). Moreover, IFNα endowed LSECs with efficient cross-priming potential that, along with the early intravascular tumor burden reduction, supported the generation of antitumor CD8+ T cells and ultimately led to the establishment of a protective long-term memory T cell response. These findings provide a rationale for the use of continuous IFNα therapy in perioperative settings to reduce CRC metastatic spreading to the liver.


Colorectal cancer remains one of the most widespread and deadly cancers worldwide. Poor health outcomes are usually linked to diseased cells spreading from the intestine to create new tumors in the liver or other parts of the body. Treatment involves surgically removing the initial tumors in the bowel, but patient survival could be improved if, in parallel, their immune system was 'boosted' to destroy cancer cells before they can form other tumors. Interferon alpha is a small protein which helps to coordinate how the immune system recognizes and deactivates foreign agents and cancerous cells. It has recently been trialed as a colorectal cancer treatment to prevent tumors from spreading to the liver, but only with limited success. This partly because interferon-alpha is usually administered in high and pulsed doses, which cause severe side effects through the body. Instead, Tran, Ferreira, Alvarez-Moya et al. aimed to investigate whether continuously delivering lower amounts of the drug could be a better approach. This strategy was tested on mice in which colorectal cancer cells had been implanted into the wall of the large intestine. Continuous administration minimized the risk of the implanted cancer cells spreading to the liver while also creating fewer side effects. The team was able to identify an optimum delivery strategy by varying how much interferon-alpha the animals received and when. Further experiments also revealed a new mechanism by which interferon-alpha prevented the spread of colorectal cancer. Upon receiving continuous doses of the drug, a group of liver cells started to generate a physical barrier which stopped cancer cells from being able to invade the organ. The treatment also promoted long-term immune responses that targeted diseased cells while being safe for healthy tissues. If confirmed in clinical trials, these results suggest that colorectal patients undergoing tumor removal surgery may benefit from also receiving interferon-alpha through continuous delivery.


Assuntos
Neoplasias Colorretais , Interferon-alfa , Animais , Camundongos , Células Endoteliais/patologia , Linfócitos T CD8-Positivos , Fígado , Hepatócitos , Neoplasias Colorretais/patologia
18.
BMC Med ; 20(1): 335, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36171606

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have emerged as important regulators in a variety of human diseases. The dysregulation of liver sinusoidal endothelial cell (LSEC) phenotype is a critical early event in the fibrotic process. However, the biological function of lncRNAs in LSEC still remains unclear. METHODS: The expression level of lncRNA Airn was evaluated in both human fibrotic livers and serums, as well as mouse fibrotic livers. Gain- and loss-of-function experiments were performed to detect the effect of Airn on LSEC differentiation and hepatic stellate cell (HSC) activation in liver fibrosis. Furthermore, RIP, RNA pull-down-immunoblotting, and ChIP experiments were performed to explore the underlying mechanisms of Airn. RESULTS: We have identified Airn was significantly upregulated in liver tissues and LSEC of carbon tetrachloride (CCl4)-induced liver fibrosis mouse model. Moreover, the expression of AIRN in fibrotic human liver tissues and serums was remarkably increased compared with healthy controls. In vivo studies showed that Airn deficiency aggravated CCl4- and bile duct ligation (BDL)-induced liver fibrosis, while Airn over-expression by AAV8 alleviated CCl4-induced liver fibrosis. Furthermore, we revealed that Airn maintained LSEC differentiation in vivo and in vitro. Additionally, Airn inhibited HSC activation indirectly by regulating LSEC differentiation and promoted hepatocyte (HC) proliferation by increasing paracrine secretion of Wnt2a and HGF from LSEC. Mechanistically, Airn interacted with EZH2 to maintain LSEC differentiation through KLF2-eNOS-sGC pathway, thereby maintaining HSC quiescence and promoting HC proliferation. CONCLUSIONS: Our work identified that Airn is beneficial to liver fibrosis by maintaining LSEC differentiation and might be a serum biomarker for liver fibrogenesis.


Assuntos
RNA Longo não Codificante , Animais , Biomarcadores/metabolismo , Tetracloreto de Carbono/metabolismo , Tetracloreto de Carbono/farmacologia , Células Endoteliais/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/farmacologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Camundongos , RNA Longo não Codificante/genética
19.
Front Immunol ; 13: 983255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091042

RESUMO

Background: During liver injury, liver sinusoidal endothelial cells (LSECs) dysfunction and capillarization promote liver fibrosis. We have previously reported that the LSEC vascular cell adhesion molecule 1 (VCAM1) plays a key role in liver inflammation in nonalcoholic steatohepatitis (NASH) and we now aim to uncover its role in LSEC capillarization and liver fibrosis. Methods: Wild-type C57BL/6J mice were fed either chow or high fat, fructose and cholesterol diet to induce NASH and treated with either anti-VCAM1 neutralizing antibody or control isotype antibody. Inducible endothelial cell-specific Vcam1 deleted mice (Vcam1Δend ) and control mice (Vcam1fl/fl ) were fed choline-deficient high-fat diet (CD-HFD) to induce NASH or injected with carbon tetrachloride to induce liver fibrosis. LSECs isolated from Vcam1fl/fl or Vcam1Δend and hepatic stellate cells (HSCs) isolated from wild-type mice were cocultured in a 3-D system or a µ-Slide 2 well co-culture system. Results: Immunostaining for Lyve1 (marker of differentiated LSECs) was reduced in Vcam1fl/fl mice and restored in Vcam1Δend mice in both NASH and liver fibrosis models. Co-immunostaining showed increased α-smooth muscle actin in the livers of Vcam1fl/fl mice in areas lacking Lyve1. Furthermore, scanning electron microscopy showed reduced LSEC fenestrae in the Vcam1fl/fl mice but not Vcam1Δend mice in both injury models, suggesting that VCAM1 promotes LSEC capillarization during liver injury. HSCs profibrogenic markers were reduced when cocultured with LSECs from CD-HFD fed Vcam1Δend mice compared to Vcam1fl/fl mice. Furthermore, recombinant VCAM1 activated the Yes-associated protein 1 pathway and induced a fibrogenic phenotype in HSCs in vitro, supporting the profibrogenic role of LSEC VCAM1. Conclusion: VCAM1 is not just a scaffold for leukocyte adhesion during liver injury, but also a modulator of LSEC capillarization and liver fibrosis.


Assuntos
Células Endoteliais , Cirrose Hepática , Fígado , Hepatopatia Gordurosa não Alcoólica , Molécula 1 de Adesão de Célula Vascular , Animais , Biomarcadores/metabolismo , Capilares/metabolismo , Capilares/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fígado/irrigação sanguínea , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Molécula 1 de Adesão de Célula Vascular/biossíntese , Molécula 1 de Adesão de Célula Vascular/genética
20.
Cells ; 11(16)2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-36010588

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide. It is strongly associated with obesity, type 2 diabetes (T2DM), and other metabolic syndrome features. Reflecting the underlying pathogenesis and the cardiometabolic disorders associated with NAFLD, the term metabolic (dysfunction)-associated fatty liver disease (MAFLD) has recently been proposed. Indeed, over the past few years, growing evidence supports a strong correlation between NAFLD and increased cardiovascular disease (CVD) risk, independent of the presence of diabetes, hypertension, and obesity. This implies that NAFLD may also be directly involved in the pathogenesis of CVD. Notably, liver sinusoidal endothelial cell (LSEC) dysfunction appears to be implicated in the progression of NAFLD via numerous mechanisms, including the regulation of the inflammatory process, hepatic stellate activation, augmented vascular resistance, and the distortion of microcirculation, resulting in the progression of NAFLD. Vice versa, the liver secretes inflammatory molecules that are considered pro-atherogenic and may contribute to vascular endothelial dysfunction, resulting in atherosclerosis and CVD. In this review, we provide current evidence supporting the role of endothelial cell dysfunction in the pathogenesis of NAFLD and NAFLD-associated atherosclerosis. Endothelial cells could thus represent a "golden target" for the development of new treatment strategies for NAFLD and its comorbid CVD.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Aterosclerose/complicações , Diabetes Mellitus Tipo 2/complicações , Células Endoteliais/metabolismo , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...