Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
SLAS Discov ; : 100172, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969289

RESUMO

The Cellular Thermal Shift Assay (CETSA) enables the study of protein-ligand interactions in a cellular context. It provides valuable information on the binding affinity and specificity of both small and large molecule ligands in a relevant physiological context, hence forming a unique tool in drug discovery. Though high-throughput lab protocols exist for scaling up CETSA, subsequent data analysis and quality control remain laborious and limit experimental throughput. Here, we introduce a scalable and robust data analysis workflow which allows integration of CETSA into routine high throughput screening (HT-CETSA). This new workflow automates data analysis and incorporates quality control (QC), including outlier detection, sample and plate QC, and result triage. We describe the workflow and show its robustness against typical experimental artifacts, show scaling effects, and discuss the impact of data analysis automation by eliminating manual data processing steps.

2.
Synth Biol (Oxf) ; 9(1): ysae009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939829

RESUMO

The paper addresses the application of engineering biology strategies and techniques to the automation of laboratory workflow-primarily in the context of biofoundries and biodesign applications based on the Design, Build, Test and Learn paradigm. The trend toward greater automation comes with its own set of challenges. On the one hand, automation is associated with higher throughput and higher replicability. On the other hand, the implementation of an automated workflow requires an instruction set that is far more extensive than that required for a manual workflow. Automated tasks must also be conducted in the order specified in the workflow, with the right logic, utilizing suitable biofoundry resources, and at scale-while simultaneously collecting measurements and associated data. The paper describes an approach to an automated workflow that is being trialed at the London Biofoundry at SynbiCITE. The solution represents workflows with directed graphs, uses orchestrators for their execution, and relies on existing standards. The approach is highly flexible and applies to not only workflow automation in single locations but also distributed workflows (e.g. for biomanufacturing). The final section presents an overview of the implementation-using the simple example of an assay based on a dilution, measurement, and data analysis workflow.

3.
Biochem Med (Zagreb) ; 34(2): 020708, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38882586

RESUMO

Introduction: Glycomics, focusing on the role of glycans in biological processes, particularly their influence on the folding, stability and receptor interactions of glycoconjugates like antibodies, is vital for our understanding of biology. Changes in immunoglobulin G (IgG) N-glycosylation have been associated with various physiological and pathophysiological conditions. Nevertheless, time-consuming manual sample preparation is one of the limitations in the glycomics diagnostic implementation. The study aimed to develop an automated method for sample preparation on the Tecan Freedom Evo 200 platform and compare its efficiency and precision with the manual counterpart. Materials and methods: The initial method development included 32 pooled blood plasma technical replicates. An additional 24 pooled samples were used in the method comparison along with 78 random duplicates of plasma samples collected from 10,001 Dalmatians biobank to compare the manual and automated methods. Results: The development resulted in a new automated method. For the automated method, glycan peaks comprising 91% of the total sample glycan showed a variation of less than 5% while 92% of the total sample showed a variation of less than 5% for the manual method. The results of the Passing-Bablok regression indicated no differences between the automated and manual methods for 12 glycan peaks (GPs). However, for 8 GPs systematic difference was present, while both systematic and proportional differences were present for four GPs. Conclusions: The developed automated sample preparation method for IgG glycan analysis reduced exposure to hazardous chemicals and offered a simplified workflow. Despite slight differences between the methods, the new automated method showed high precision and proved to be highly comparable to its manual counterpart.


Assuntos
Imunoglobulina G , Polissacarídeos , Humanos , Glicosilação , Imunoglobulina G/sangue , Glicômica/métodos , Ensaios de Triagem em Larga Escala , Automação , Glicoproteínas
4.
Lab Med ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884132

RESUMO

BACKGROUND: Test consolidation and total laboratory automation (TLA) were implemented in a core laboratory with a high volume of specimens in a medical center in Taiwan to reduce the costs of laboratory services and improve laboratory workflow and performance. METHODS: Using a retrospective research approach, 5 stat and 7 routine tests were used to analyze the in-laboratory to report turnaround time (IR-TAT). Mean, SD, medium, 90th percentile, outlier percentage of IR-TAT, full-time equivalents, productivity, tube touch moment (TTM), and financial impact were determined and compared pre- and post-TLA. RESULTS: The mean IR-TAT of overall stat chemical tests for inpatient and outpatient were 32.8% and 11.9% reductions, respectively. The productivity of each medical technologist increased by 32.4% per month, and there was a reduction of 5 medical technologists compared with the number required to complete the same tests before consolidation. The TTM of staff per year post-TLA decreased by 74.1% tube touches. CONCLUSION: The efficiency of laboratory services was improved by consolidation to the core laboratory along with TLA implementation coupled with logic rules such as delta-check and autoverification. Effectiveness was improved as measured by an increase in productivity, labor reduction, staff safety, and cost reduction.

5.
SLAS Technol ; 29(3): 100135, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703999

RESUMO

Laboratory management automation is essential for achieving interoperability in the domain of experimental research and accelerating scientific discovery. The integration of resources and the sharing of knowledge across organisations enable scientific discoveries to be accelerated by increasing the productivity of laboratories, optimising funding efficiency, and addressing emerging global challenges. This paper presents a novel framework for digitalising and automating the administration of research laboratories through The World Avatar, an all-encompassing dynamic knowledge graph. This Digital Laboratory Framework serves as a flexible tool, enabling users to efficiently leverage data from diverse systems and formats without being confined to a specific software or protocol. Establishing dedicated ontologies and agents and combining them with technologies such as QR codes, RFID tags, and mobile apps, enabled us to develop modular applications that tackle some key challenges related to lab management. Here, we showcase an automated tracking and intervention system for explosive chemicals as well as an easy-to-use mobile application for asset management and information retrieval. Implementing these, we have achieved semantic linking of BIM and BMS data with laboratory inventory and chemical knowledge. Our approach can capture the crucial data points and reduce inventory processing time. All data provenance is recorded following the FAIR principles, ensuring its accessibility and interoperability.


Assuntos
Automação Laboratorial , Automação Laboratorial/métodos , Laboratórios , Armazenamento e Recuperação da Informação/métodos
6.
J Clin Med ; 13(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673517

RESUMO

Background: We compared the performance of 21 different assays performed by the Wantai Wan200+ (Wantai BioPharm, Beijing, China) with respect to other methods in use at the University Hospital of Padova (AOPD), Italy. Methods: The plasma (P) or serum (S) of 5027 leftover samples, collected from May to Sept 2023, was either analyzed or frozen at -20 °C. Beckman DXI800 (DXI), Roche Cobas 8000 e801 (RC), Snibe Maglumi 4000 plus (SM), DiaSorin Liaison XL (DL) and Binding Site Optilite (BS) equipment were used at the AOPD. P-procalcitonin (PCT), DXI; P-Troponin I (TnI), DXI; S-CA125, DXI; S-free PSA (f-PSA), DXI; S-total PSA (t-PSA), DXI; S-IL6, SM; P-Troponin T (TnT), RC; P-NT-proBNP, RC; P-Neuron-Specific Enolase (NSE), RC; S-CA15-3, DL; S-CA19-9, DL; S-AFP, DL; and S-CEA, DL were tested in fresh samples. P-Myoglobin (Myo), DXI; P-Cyfra21-1, RC; S-ß2 microglobulin (B2MIC), BS; S-HE4, SM; S-PGI, SM; S-PGII, SM; S-CA72-4, SM; and S-CA50, SM were analyzed in frozen and thawed samples. Bland-Altman (BA), Passing-Bablok (PB) and Cohen's Kappa (CKa) metrics were used as statistics. Results: An excellent comparability profile was found for 11 analytes. For example, the t-PSA CKa was 0.94 (95%CI: 0.90 to 0.98), and the PB slope and intercept were 1.02 (95%CI: 0.99 to 1.03) and 0.02 (95%CI: 0.01 to 0.03), respectively; the BA bias was 2.25 (95%CI: -0.43 to 4.93). Ten tested measurands demonstrated a suboptimal comparability profile. Biological variation in EFLM (EuBIVAS) performance specifications was evaluated to assess the clinical relevance of measured biases. Conclusions: Evaluation of the Wantai Wan200+'s performance suggests that between-method differences did not exceed the calculated bias. Metrological traceability may influence the comparisons obtained for some measurands.

7.
J Clin Microbiol ; 62(5): e0174923, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38624235

RESUMO

The timely identification of microbial pathogens is essential to guide targeted antimicrobial therapy and ultimately, successful treatment of an infection. However, the yield of standard microbiology testing (SMT) is directly related to the duration of antecedent antimicrobial therapy as SMT culture methods are dependent on the recovery of viable organisms, the fastidious nature of certain pathogens, and other pre-analytic factors. In the last decade, metagenomic next-generation sequencing (mNGS) has been successfully utilized as a diagnostic tool for various applications within the clinical laboratory. However, mNGS is resource, time, and labor-intensive-requiring extensive laborious preliminary benchwork, followed by complex bioinformatic analysis. We aimed to address these shortcomings by developing a largely Automated targeted Metagenomic next-generation sequencing (tmNGS) PipeLine for rapId inFectIous disEase Diagnosis (AMPLIFIED) to detect bacteria and fungi directly from clinical specimens. Therefore, AMPLIFIED may serve as an adjunctive approach to complement SMT. This tmNGS pipeline requires less than 1 hour of hands-on time before sequencing and less than 2 hours of total processing time, including bioinformatic analysis. We performed tmNGS on 50 clinical specimens with concomitant cultures to assess feasibility and performance in the hospital laboratory. Of the 50 specimens, 34 (68%) were from true clinical infections. Specimens from cases of true infection were more often tmNGS positive compared to those from the non-infected group (82.4% vs 43.8%, respectively, P = 0.0087). Overall, the clinical sensitivity of AMPLIFIED was 54.6% with 85.7% specificity, equating to 70.6% and 75% negative and positive predictive values, respectively. AMPLIFIED represents a rapid supplementary approach to SMT; the typical time from specimen receipt to identification of potential pathogens by AMPLIFIED is roughly 24 hours which is markedly faster than the days, weeks, and months required to recover bacterial, fungal, and mycobacterial pathogens by culture, respectively. IMPORTANCE: To our knowledge, this represents the first application of an automated sequencing and bioinformatics pipeline in an exclusively pediatric population. Next-generation sequencing is time-consuming, labor-intensive, and requires experienced personnel; perhaps contributing to hesitancy among clinical laboratories to adopt such a test. Here, we report a strong case for use by removing these barriers through near-total automation of our sequencing pipeline.


Assuntos
Bactérias , Infecções Bacterianas , Fungos , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Micoses , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fungos/genética , Fungos/isolamento & purificação , Fungos/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Metagenômica/métodos , Micoses/diagnóstico , Micoses/microbiologia , Automação Laboratorial/métodos , Sensibilidade e Especificidade , Técnicas de Diagnóstico Molecular/métodos , Fatores de Tempo , Biologia Computacional/métodos , Masculino , Feminino , Criança , Adolescente , Adulto , Pré-Escolar
8.
Drug Discov Ther ; 18(2): 130-133, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38569832

RESUMO

We have established several models of infectious diseases in silkworms to explore disease-causing mechanisms and identify new antimicrobial substances. These models involve injecting laboratory-cultured pathogens into silkworms and monitoring their survival over a period of days. The use of silkworms is advantageous because they are cost-effective and raise fewer ethical concerns than mammalian subjects, allowing for larger experimental group sizes. To capitalize on these benefits, there is a growing importance in mechanizing and automating the experimental processes that currently require manual labor. This paper discusses the future of laboratory automation, specifically through the mechanization and automation of silkworm-based experimental procedures.


Assuntos
Automação Laboratorial , Bombyx , Descoberta de Drogas , Animais , Humanos , Modelos Animais de Doenças , Descoberta de Drogas/métodos
10.
Microb Cell Fact ; 23(1): 74, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433206

RESUMO

BACKGROUND: Lactic acid bacteria are commonly used as protective starter cultures in food products. Among their beneficial effects is the production of ribosomally synthesized peptides termed bacteriocins that kill or inhibit food-spoiling bacteria and pathogens, e.g., members of the Listeria species. As new bacteriocins and producer strains are being discovered rapidly, modern automated methods for strain evaluation and bioprocess development are required to accelerate screening and development processes. RESULTS: In this study, we developed an automated workflow for screening and bioprocess optimization for bacteriocin producing lactic acid bacteria, consisting of microcultivation, sample processing and automated antimicrobial activity assay. We implemented sample processing workflows to minimize bacteriocin adsorption to producer cells via addition of Tween 80 and divalent cations to the cultivation media as well as acidification of culture broth prior to cell separation. Moreover, we demonstrated the applicability of the automated workflow to analyze influence of media components such as MES buffer or yeast extract for bacteriocin producers Lactococcus lactis B1629 and Latilactobacillus sakei A1608. CONCLUSIONS: Our automated workflow provides advanced possibilities to accelerate screening and bioprocess optimization for natural bacteriocin producers. Based on its modular concept, adaptations for other strains, bacteriocin products and applications are easily carried out and a unique tool to support bacteriocin research and bioprocess development is provided.


Assuntos
Bacteriocinas , Lactobacillales , Lactococcus lactis , Latilactobacillus sakei , Fluxo de Trabalho , Adsorção
11.
Trends Biotechnol ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38402137

RESUMO

Laboratory automation with robot-assisted processes enhances synthetic biology, but its economic impact on projects is uncertain. We have proposed an experiment price index (EPI) for a quantitative comparison of factors in time, cost, and sample numbers, helping measure the efficiency of laboratory automation in synthetic biology and biomolecular engineering.

12.
Microorganisms ; 12(2)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38399726

RESUMO

Matrix-Assisted Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) in the last decade has revealed itself as a valid support in the workflow in the clinical microbiology laboratory for the identification of bacteria and fungi, demonstrating high reliability and effectiveness in this application. Its use has reduced, by 24 h, the time to obtain a microbiological diagnosis compared to conventional biochemical automatic systems. MALDI-TOF MS application to the detection of pathogens directly in clinical samples was proposed but requires a deeper investigation, whereas its application to positive blood cultures for the identification of microorganisms and the detection of antimicrobial resistance are now the most useful applications. Thanks to its rapidity, accuracy, and low price in reagents and consumables, MALDI-TOF MS has also been applied to different fields of clinical microbiology, such as the detection of antibiotic susceptibility/resistance biomarkers, the identification of aminoacidic sequences and the chemical structure of protein terminal groups, and as an emerging method in microbial typing. Some of these applications are waiting for an extensive evaluation before confirming a transfer to the routine. MALDI-TOF MS has not yet been used for the routine identification of parasites; nevertheless, studies have been reported in the last few years on its use in the identification of intestinal protozoa, Plasmodium falciparum, or ectoparasites. Innovative applications of MALDI-TOF MS to viruses' identification were also reported, seeking further studies before adapting this tool to the virus's diagnostic. This mini-review is focused on the MALDI-TOF MS application in the real life of the diagnostic microbiology laboratory.

13.
Microbiol Spectr ; 12(2): e0215323, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38230933

RESUMO

Laboratory automation in microbiology improves productivity and reduces sample turnaround times (TATs). However, its full potential can be unlocked through the optimization of workflows by adopting lean principles. This study aimed to explore the relative impact of laboratory automation and continuous improvement events (CIEs) on productivity and TATs. Laboratory automation took place in November 2020 and consisted of the introduction of WASPLab and VITEK MS systems. CIEs were run in May and September 2021. Before the conversion, the laboratory processed about ~492 samples on weekdays and had 10 full-time equivalent (FTE) staff for a productivity of 49 samples/FTE/day. In March 2021, after laboratory automation, the caseload went up to ~621 while the FTEs decreased to 8.5, accounting for productivity improvement to 73 samples/FTE/day. The hypothetical productivity went up to 110 samples/FTE/day following CIEs, meaning that the laboratory could at that point deal with a caseload increase to ~935 with unchanged FTEs. Laboratory conversion also led to an improvement in TATs for all sample types. For vaginal swabs and urine samples, median TATs decreased from 70.3 h [interquartile range (IQR): 63.5-93.1] and 73.7 h (IQR: 35.6-50.7) to 48.2 h (IQR: 44.8-67.7) and 40.0 h (IQR: 35.6-50.7), respectively. Automation alone was responsible for 37.2% and 75.8% of TAT reduction, respectively, while the remaining reduction of 62.8% and 24.2%, respectively, was achieved due to CIEs. The laboratory reached productivity and TAT goals predefined by the management after CIEs. In conclusion, automation substantially improved productivity and TATs, while the subsequent implementation of lean management further unlocked the potential of laboratory automation.IMPORTANCEIn this study, we combined total laboratory automation with lean management to show that appropriate laboratory work organization enhanced the benefit of the automation and substantially contributed to productivity improvements. Globally, the rapid availability of accurate results in the setting of a clinical microbiology laboratory is part of patient-centered approaches to treat infections and helps the implementation of antibiotic stewardship programs backed by the World Health Organization. Locally, from the point of view of laboratory management, it is important to find ways of maximizing the benefits of the use of technology, as total laboratory automation is an expensive investment.


Assuntos
Automação Laboratorial , Laboratórios , Feminino , Humanos , Automação Laboratorial/métodos , Fatores de Tempo
14.
ACS Synth Biol ; 13(2): 457-465, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38295293

RESUMO

Modern biological science, especially synthetic biology, relies heavily on the construction of DNA elements, often in the form of plasmids. Plasmids are used for a variety of applications, including the expression of proteins for subsequent purification, the expression of heterologous pathways for the production of valuable compounds, and the study of biological functions and mechanisms. For all applications, a critical step after the construction of a plasmid is its sequence validation. The traditional method for sequence determination is Sanger sequencing, which is limited to approximately 1000 bp per reaction. Here, we present a highly scalable in-house method for rapid validation of amplified DNA sequences using long-read Nanopore sequencing. We developed two-step amplicon and transposase strategies to provide maximum flexibility for dual barcode sequencing. We also provide an automated analysis pipeline to quickly and reliably analyze sequencing results and provide easy-to-interpret results for each sample. The user-friendly DuBA.flow start-to-finish pipeline is widely applicable. Furthermore, we show that construct validation using DuBA.flow can be performed by barcoded colony PCR amplicon sequencing, thus accelerating research.


Assuntos
DNA , Sequenciamento de Nucleotídeos em Larga Escala , Fluxo de Trabalho , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Plasmídeos/genética , DNA/genética
15.
BMC Biotechnol ; 24(1): 4, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243234

RESUMO

BACKGROUND: Modern high-throughput technologies enable the processing of a large number of samples simultaneously, while also providing rapid and accurate procedures. In recent years, automated liquid handling workstations have emerged as an established technology for reproducible sample preparation. They offer flexibility, making them suitable for an expanding range of applications. Commonly, such approaches are well-developed for experimental procedures primarily designed for cell-line processing and xenobiotics testing. Conversely, little attention is focused on the application of automated liquid handlers in the analysis of whole organisms, which often involves time-consuming laboratory procedures. RESULTS: Here, we present a fully automated workflow for all steps, from RNA extraction to real-time PCR processing, for gene expression quantification in the ascidian marine model Ciona robusta. For procedure validation, we compared the results obtained with the liquid handler with those of the classical manual procedure. The outcome revealed comparable results, demonstrating a remarkable time saving particularly in the initial steps of sample processing. CONCLUSIONS: This work expands the possible application fields of this technology to whole-body organisms, mitigating issues that can arise from manual procedures. By minimizing errors, avoiding cross-contamination, decreasing hands-on time and streamlining the procedure, it could be employed for large-scale screening investigations.


Assuntos
Perfilação da Expressão Gênica , Manejo de Espécimes , Automação , Reação em Cadeia da Polimerase em Tempo Real , Análise em Microsséries , Manejo de Espécimes/métodos
16.
SLAS Technol ; 29(1): 100103, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37595636

RESUMO

Automation of diagnostic assays generally aims to increase reproducibility and throughput while decreasing human errors and hands-on time. Here, we introduce a protocol for the automated chemical conjugation of glycans to color-coded magnetic beads using the KingFisher Flex magnetic particle processor. The resulting glycan-coupled magnetic beads allow the detection of anti-glycan antibodies of different isotypes from various species. By generating anti-glycan antibody profiles, monoclonal antibodies can be screened for their specificity and cross-reactivity, while anti-glycan antibody profiles from different human body fluids can aid in predicting response to treatment or outcome of disease. This efficient, scalable protocol can also be adapted to attach proteins and other biomolecules to beads, making it useful for a wider range of applications that require bead-based laboratory methods.


Assuntos
Anticorpos Monoclonais , Magnetismo , Humanos , Reprodutibilidade dos Testes , Automação , Polissacarídeos/análise
17.
Int J Lab Hematol ; 46(1): 72-82, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37746889

RESUMO

INTRODUCTION: Mindray MC-80 is an automated system for digital imaging of white blood cells (WBCs) and their pre-classification. The objective of this work is to analyse its performance comparing it with the CellaVision® DM9600. METHODS: A total of 445 samples were used, 194 normal and 251 abnormal: acute leukaemia (100), myelodysplastic syndromes/myeloproliferative neoplasms (33), lymphoid neoplasms (50), plasma cell neoplasms (14), infections (49) and thrombocytopenia (5). WBC pre-classification values with the MC-80 and DM9600 were compared with (1) the microscope, (2) Mindray BC-6800Plus differentials in only normal samples, and (3) confirmed or reclassified images (post-classification). Pearson's correlation, Lin's concordance, Passing-Bablok regression, and Bland-Altman plots were used. Sensitivity, specificity, positive (PPV) and negative (NPV) predictive values for abnormal cells using the MC-80 were calculated. RESULTS: The PPV and NPV were above 98% and 99%, for normal samples. For immature granulocytes (IG), NPV and PPV were 100% and 74.2%. When comparing the WBC differentials using the MC-80, the microscope and the BC-6800Plus, no differences were found except for basophils and IG. Our results showed good agreement between the pre- and post-classification of normal WBC, including IG, quantified by high correlation and concordance values (0.91-1). Sensitivity and specificity for blasts were 0.984 and 0.640. The MC-80 detected abnormal lymphocytes in 30% of the smears from patients with lymphoid neoplasm. Plasma cell identification was better using the DM9600. The sensitivity and specificity for erythroblast detection were 1 and 0.890. CONCLUSION: We found that the MC-80 shows high performance for WBC differentials for both normal samples and patients with haematological diseases.


Assuntos
Leucemia , Leucopenia , Humanos , Contagem de Leucócitos , Leucócitos , Plasmócitos
18.
Anal Bioanal Chem ; 416(1): 5-19, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030885

RESUMO

The large volumes of samples to be analysed every day would be impossible to manage without laboratory automation. As laboratory procedures have progressed, so have the tasks of laboratory personnel. With this feature article, we would like to provide (bio)chemical practitioners with little or no knowledge of laboratory automation with a guide to help them decide whether to implement laboratory automation and find a suitable system. Especially in small- and medium-sized laboratories, operating a laboratory system means having bioanalytical knowledge, but also being familiar with the technical aspects. However, time, budget and personnel limitations allow little opportunity for personnel to get into the depths of laboratory automation. This includes not only the operation, but also the decision to purchase an automation system. Hasty investments do not only result in slow or non-existent cost recovery, but also occupy valuable laboratory space. We have structured the article as a decision tree, so readers can selectively read chapters that apply to their individual situation. This flexible approach allows each reader to create a personal reading flow tailored to their specific needs. We tried to address a variety of perspectives on the topic, including people who are either supportive or sceptical of laboratory automation, personnel who want or need to automate specific processes, those who are unsure whether to automate and those who are interested in automation but do not know which areas to prioritize. We also help to make a decision whether to reactivate or discard already existing and unused laboratory equipment.

19.
Plant J ; 118(2): 584-600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38141174

RESUMO

Phenotyping of model organisms grown on Petri plates is often carried out manually, despite the procedures being time-consuming and laborious. The main reason for this is the limited availability of automated phenotyping facilities, whereas constructing a custom automated solution can be a daunting task for biologists. Here, we describe SPIRO, the Smart Plate Imaging Robot, an automated platform that acquires time-lapse photographs of up to four vertically oriented Petri plates in a single experiment, corresponding to 192 seedlings for a typical root growth assay and up to 2500 seeds for a germination assay. SPIRO is catered specifically to biologists' needs, requiring no engineering or programming expertise for assembly and operation. Its small footprint is optimized for standard incubators, the inbuilt green LED enables imaging under dark conditions, and remote control provides access to the data without interfering with sample growth. SPIRO's excellent image quality is suitable for automated image processing, which we demonstrate on the example of seed germination and root growth assays. Furthermore, the robot can be easily customized for specific uses, as all information about SPIRO is released under open-source licenses. Importantly, uninterrupted imaging allows considerably more precise assessment of seed germination parameters and root growth rates compared with manual assays. Moreover, SPIRO enables previously technically challenging assays such as phenotyping in the dark. We illustrate the benefits of SPIRO in proof-of-concept experiments which yielded a novel insight on the interplay between autophagy, nitrogen sensing, and photoblastic response.


Assuntos
Germinação , Plântula , Fenótipo , Germinação/fisiologia , Sementes , Processamento de Imagem Assistida por Computador
20.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139202

RESUMO

The presence of antiphospholipid antibodies (aPLs) is associated with antiphospholipid syndrome (APS), characterized by thrombosis and obstetric morbidity. aPLs included in APS classification criteria are lupus anticoagulant, anti-cardiolipin and anti-beta-2-glycoprotein-I of IgG or IgM isotypes. Enzyme-linked immunosorbent assay is the most used diagnostic technique to determine aPLs. Recently, new automated technologies mainly based in antigen-coated beads have been developed. The aim is to compare a fluorescence enzyme immunoassay (M1) and an antigen-coated bead assay (M2) in obstetric and thrombotic APS patients. All samples from the first 1020 patients received in the Immune Service Laboratory (Hospital 12 de Octubre) during the recruitment period, without exclusions, were analysed for aPLs. The weighted kappa for both methods in all the patients was 0.39 (0.30-0.47). Agreement increased to 0.56 (0.38-0.73) in patients with autoimmune disease. Sensitivity and specificity obtained for M1 were 17.1% and 89.3%, respectively, and 12.7% and 91.4% for M2. The sensibility and specificity of IgG isotypes were higher than the IgM ones. Regarding obstetric patients, M1 obtained significant diagnostic performance and had more sensitivity 23.75 (14.95-34.58) compared to M2 12.50 (6.16-21.79). In conclusion, clinical suspicion-based method selection for aPLs should be considered. To identify obstetric APS patients, solid phase methods remain more preferable.


Assuntos
Síndrome Antifosfolipídica , Trombose , Feminino , Gravidez , Humanos , Anticorpos Antifosfolipídeos , Inibidor de Coagulação do Lúpus , Imunoglobulina G , Imunoglobulina M
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...