Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Front Microbiol ; 15: 1418556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946910

RESUMO

Introduction: This study aimed to explore the anti-oxidative and anti-inflammatory properties of Lactococcus lactis subsp. lactis HFY14 (LLSLHFY14) and investigate its effects on the intestinal barrier, cranial nerve, and motor function in mice treated with antibiotics. Methods: Mice were administered an antibiotic mixture (neomycin 5 mg/mL, vancomycin 25 mg/mL, amphotericin B 0.1 mg/mL, ampicillin 10 mg/mL, metronidazole file 5 mg/mL, and lipopolysaccharide 1.5 µg/mL) intraperitoneally, and oxidative stress and inflammatory markers in the serum and brain tissues, and liver index were measured. H&E staining was performed to detect pathological alterations in brain tissues. The expression of intestinal-barrier-related genes and that of genes involved in inflammatory pathways in the brain were detected using polymerase chain reaction (PCR). Results: LLSLHFY14 administration extended the weight-loaded swimming and running times of mice and decreased the liver index. Moreover, the levels of malondialdehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) in the serum and brain tissue were reduced, whereas those of superoxide dismutase (SOD), glutathione (GSH), and interleukin-10 (IL-10) were elevated. Elevated brain expression of the protein kinase B (AKT)/cAMP-response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF)/extracellular signal-regulated kinase 1 (ERK1) pathway, decreased brain expression of the IL-6 gene, and elevated cecum expression of zonula occludens-1 (ZO-1), occludin-1, and claudin-1 genes were noted. LLSLHFY14 supplementation significantly increased Bacteroidetes expression but decreased Firmicutes expression, thus increasing the Bacteroidetes/Firmicutes ratio. Discussion: Overall, LLSLHFY14 supplementation ameliorated antibiotic-induced oxidative stress and inflammation in the mouse central nervous system, intestinal barrier dysfunction, and increased motor function, thus confirming its potential application as probiotics.

2.
Nutrients ; 16(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931275

RESUMO

Probiotics are posited to enhance exercise performance by influencing muscle protein synthesis, augmenting glycogen storage, and reducing inflammation. This double-blind study randomized 88 participants to receive a six-week intervention with either a placebo, Lactococcus lactis subsp. lactis LY-66, Lactobacillus plantarum PL-02, or a combination of both strains, combined with a structured exercise training program. We assessed changes in maximal oxygen consumption (VO2max), exercise performance, and gut microbiota composition before and after the intervention. Further analyses were conducted to evaluate the impact of probiotics on exercise-induced muscle damage (EIMD), muscle integrity, and inflammatory markers in the blood, 24 and 48 h post-intervention. The results demonstrated that all probiotic groups exhibited significant enhancements in exercise performance and attenuation of muscle strength decline post-exercise exhaustion (p < 0.05). Notably, PL-02 intake significantly increased muscle mass, whereas LY-66 and the combination therapy significantly reduced body fat percentage (p < 0.05). Analysis of intestinal microbiota revealed an increase in beneficial bacteria, especially a significant rise in Akkermansia muciniphila following supplementation with PL-02 and LY-66 (p < 0.05). Overall, the combination of exercise training and supplementation with PL-02, LY-66, and their combination improved muscle strength, explosiveness, and endurance performance, and had beneficial effects on body composition and gastrointestinal health, as evidenced by data obtained from non-athlete participants.


Assuntos
Microbioma Gastrointestinal , Lactobacillus plantarum , Lactococcus lactis , Força Muscular , Resistência Física , Probióticos , Humanos , Probióticos/administração & dosagem , Método Duplo-Cego , Masculino , Resistência Física/fisiologia , Feminino , Adulto , Adulto Jovem , Consumo de Oxigênio , Músculo Esquelético/fisiologia , Exercício Físico/fisiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-38904895

RESUMO

The rapid rise of antimicrobial resistance (AMR) is a global concern, being triggered by the overuse or misuse of antibiotics in poultry farming sector. We evaluated Lactococcus lactis subsp. lactis BIONCL17752 strain, and characterized its probiotic potential to endure hostile gastrointestinal conditions. Genome sequencing analysis revealed probiotics traits, and gene clusters involved in bacteriocins, lactococcin A, and sactipeptides production. The absence of genes for antibiotic resistance, virulence, and biogenic amine production indicates the potential of probiotic strain. The BIONCL17752 strain was explored for antibiotic-free feed supplement for growth promotor in broiler chicken. The feed supplemented with 4 × 109 CFU/kg of probiotic strain, in combination with various concentrations of fructooligosaccharides (FOS) 1.0, 2.5, and 5.0 kg/tonne in starter, grower, and finisher diets, respectively. A significant improvement of body weight 152 to 171 g/bird (p < 0.05), and a low feed conversion ratio (FCR) of 1.62, was achieved without using synthetic antibiotics for growth promotion. The results of biochemical, hematological, and histological examinations showed normal features, indicating that the treatment had no harmful effects on the bird's health. Reduced levels of cholesterol, triglycerides, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) in serum are an indication of the health benefits for the treated birds. Microbial community analysis of fecal samples of poultry birds exhibited a higher abundance of Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, and Fusobacteria. Probiotic treatment resulted in reduced Firmicutes and increased Bacteroidetes (F/B ratio) in the broiler's gut which highlights the benefits of probiotic dietary supplements. Importantly, the probiotic-fed group exhibited a high abundance of carbohydrate-active enzymes (CAZyme) such as glycoside hydrolases (GH), glycoside transferases (GT), and carbohydrate-binding module (CBM) hydrolases which are essential for the degradation of complex sugar molecules. The probiotic potential of the BIONCL17752 strain contributes to broilers' health by positively affecting intestinal microbiota, achieving optimal growth, and lowering mortality, demonstrating the economic benefits of probiotic treatment in organic poultry farming.

4.
Food Chem X ; 21: 101224, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38384690

RESUMO

Lactococcus lactis subsp. lactis (L. lactis subsp. lactis) is a commonly used starter cultures in fermented dairy products, contributing distinct flavor and texture characteristics with high application value. However, the strains from different isolates have different contributions to milk fermentation. Therefore, this study aimed to investigate the influence of L. lactis subsp. lactis isolated from various sources on the volatile metabolites present in fermented milk. In this study, L. lactis subsp. lactis from different isolation sources (yogurt, koumiss and goat yogurt) was utilized as a starter culture for fermentation. The volatile metabolites of fermented milk were subsequently analyzed by headspace solid phase microextraction gas chromatography-mass spectrography (HS-SPME-GC-MS). The results indicated significant differences in the structure and abundance of volatile metabolites in fermented milk produced with different isolates (R2Y = 0.96, Q2 = 0.88). Notably, the strains isolated from goat yogurt appeared to enhance the accumulation of ketones (goat yogurt vs yogurt milk: 50 %; goat yogur vs koumiss: 27.3 %)and aldehydes (goat yogurt vs yogurt milk: 21.4 %; goat yogurt vs koumiss: 54.5 %) in fermented milk than strains isolated from koumiss and yogurt milk. It significantly promoted the production of 8 flavor substances (1 substance with OAV ≥ 1 and 6 substances with OAV > 0.1) and enhanced the biosynthesis of valine, leucine, and isoleucine. This study provides valuable insights for the application of Lactococcus lactis subsp. lactis isolated from different sources in fermented dairy production and screening of potential starter cultures.

5.
Int J Biol Macromol ; 258(Pt 2): 128977, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154722

RESUMO

By employing co-cultivation technique on Komagataeibacter xylinum and Lactococcus lactis subsp. lactis, bacterial cellulose (BC)/nisin films with improved antibacterial activity and mechanical properties were successfully produced. The findings demonstrated that increased nisin production is associated with an upregulation of gene expression. Furthermore, results from Scanning electronic microscopy (SEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), and Thermogravimetric analysis (TG) confirmed the integration of nisin within BC. While being biocompatible with human cells, the BC/nisin composites exhibited antimicrobial activity. Moreover, mechanical property analyses showed a noticeable improvement in Young's modulus, tensile strength, and elongation at break by 161, 271, and 195 %, respectively. Additionally, the nisin content in fermentation broth was improved by 170 % after co-culture, accompanied by an 8 % increase in pH as well as 10 % decrease in lactate concentration. Real-time reverse transcription PCR analysis revealed an upregulation of 11 nisin-related genes after co-cultivation, with the highest increase in nisA (5.76-fold). To our knowledge, this is the first study which demonstrates that an increase in secondary metabolites after co-culturing is modulated by gene expression. This research offers a cost-effective approach for BC composite production and presents a technique to enhance metabolite concentration through the regulation of relevant genes.


Assuntos
Lactococcus lactis , Nisina , Humanos , Nisina/química , Lactococcus lactis/metabolismo , Antibacterianos/metabolismo , Ácido Láctico/metabolismo , Fermentação
6.
Sci Bull (Beijing) ; 68(20): 2405-2417, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37718237

RESUMO

Traditional fermented milks are produced by inoculating technique, which selects well-adapted microorganisms that have been passed on through generations. Few reports have used naturally fermented milks as model ecosystems to investigate the mechanism of formation of intra-species microbial diversity. Here, we isolated and whole-genome-sequenced a total of 717 lactic acid bacterial isolates obtained from 12 independent naturally fermented milks collect from 12 regions across five countries. We further analyzed the within-sample intra-species phylogenies of 214 Lactobacillus helveticus isolates, 97 Lactococcus lactis subsp. lactis isolates, and 325 Lactobacillus delbrueckii subsp. bulgaricus isolates. We observed a high degree of intra-species genomic and functional gene diversity within-/between-sample(s). Single nucleotide polymorphism-based phylogenetic reconstruction revealed great within-sample intra-species heterogeneity, evolving from multiple lineages. Further phylogenetic reconstruction (presence-absence gene profile) revealed within-sample inter-clade functional diversity (based on carbohydrate-active enzyme- and peptidase-encoding genes) in all three investigated species/subspecies. By identifying and mapping clade-specific genes of intra-sample clades of the three species/subspecies to the respective fermented milk metagenome, we found extensive potential inter-/intra-species horizontal gene transfer events. Finally, the microbial composition of the samples is closely linked to the nucleotide diversity of the respective species/subspecies. Overall, our results contribute to the conservation of lactic acid bacteria resources, providing ecological insights into the microbial ecosystem of naturally fermented dairy products.


Assuntos
Lactobacillales , Lactobacillus delbrueckii , Lactococcus lactis , Animais , Leite/microbiologia , Lactobacillales/genética , Lactobacillus/genética , Ecossistema , Filogenia , Lactobacillus delbrueckii/genética
7.
Crit Rev Microbiol ; 49(5): 628-657, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35997756

RESUMO

Nisin is a naturally occurring bioactive small peptide produced by Lactococcus lactis subsp. lactis and belongs to the Type A (I) lantibiotics. Due to its potent antimicrobial activity, it has been broadly employed to preserve various food materials as well as to combat a variety of microbial pathogens. The present review discusses the antimicrobial properties of nisin and different types of their derivatives employed to treat microbial pathogens with a detailed underlying mechanism of action. Several alternative strategies such as combination, conjugation, and nanoformulations have been discussed in order to address several issues such as rapid degradation, instability, and reduced activity due to the various environmental factors that arise in the applications of nisin. Furthermore, the evolutionary relationship of many nisin genes from different nisin-producing bacterial species has been investigated. A detailed description of the natural and bioengineered nisin variants, as well as the underlying action mechanisms, has also been provided. The chemistry used to apply nisin in conjugation with natural or synthetic compounds as a synergetic mode of antimicrobial action has also been thoroughly discussed. The current review will be useful in learning about recent and past research that has been performed on nisin and its derivatives as antimicrobial agents.


Assuntos
Bacteriocinas , Nisina , Nisina/farmacologia , Bacteriocinas/genética , Bacteriocinas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Genes Bacterianos
8.
Food Res Int ; 162(Pt A): 111920, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461272

RESUMO

The bacterial starter has a crucial role in fermentation of dairy products; however, knowledge about metabolic differences in Lactococcus (L.) lactis subsp. lactis strains with different fermentation rates is limited. We analyzed the fermentation capacity and metabolic profiles of 17 L. lactis subsp. lactis strains through ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry Elevated Energy. Metabolomics results revealed significant differences in metabolites between the fast group (fermentation time < 16 h) and slow group (fermentation time ≥ 16 h). In the fast group, 98 and 55 metabolites were increased and decreased, respectively. The fast group was enriched with peptides and lipids, and we found that peptides, esters, and tributyrin can be used as biomarkers to distinguish between groups. Our results implicated that tributyrin plays a role in regulating strain growth. This study provides a novel insight into the metabolic cause of different acid production rates between individuals L. lactis subsp. lactis strains.


Assuntos
Lactococcus lactis , Humanos , Animais , Fermentação , Leite , Metabolômica , Espectrometria de Massas
9.
Microorganisms ; 10(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36296344

RESUMO

An in silico study that featured the effect of starter cultures on the bioactivity and other health benefits of peptides in semi-hard cheese is presented in this contribution. Model Caciotta-type cheese samples were obtained in laboratory conditions in two variations. Sample A included starter cultures of Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris. Sample B included starter cultures of Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris, and a culture of lactobacilli Lacticaseibacillus casei. The in silico method showed that the peptides inhibited angiotensin-converting enzymes (ACE) and ipeptidyl peptidase IV (DPP-4), as well as possessed antioxidant properties. Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris had a greater effect on the formation of bioactive peptides.

10.
Arch Microbiol ; 204(7): 428, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35751720

RESUMO

There are numerous factors restricting wide application of lactic acid bacteria (LAB) in dairy industry, causing urgent demands for novel bioprotectants. Protective effects and metabolites of Lactococcus lactis subsp. lactis (L. lactis) from ultraviolet (UV)-induced supernatant were investigated and the protective mechanism was explored. The strain viability of the group treated with the supernatant of continuous UV irradiation (V1) and the group with intermittent UV irradiation (V2) was 8.45 and 14.13 times of the control group, respectively. Further exploration on the protective of L. lactis supernatant, under different dose of UV treatment, showed it was dose-dependent. The condition for the supernatant with best protective effect was vertical distance 50.00 cm, horizontal distance 25.00 cm, intermittent UV irradiation (30 s interval 30 s) for 4.5 min (V2), which was chose for untargeted metabolite analysis. And that in V1 was for comparative study. There were 181 up-regulated metabolites in V1 and 161 up-regulated metabolites in V2, respectively. Most of the up-regulated metabolites were related to secondary metabolite synthesis, environmental microbial metabolism, antibiotic synthesis and amino acid biosynthesis. Notably, production of dithiothreitol (DTT) in V2 was 65.2-fold higher than that in the control group. Trehalose in ABC transporter pathway was also up-regulated in the metabolites induced by UV. Results indicated that L. lactis could adapt to the UV stress by adjusting metabolic pathways and producing special metabolites to protect itself. This research offers the basis for robust strain development and contributes to initial study on potential bioprotectant.


Assuntos
Lactococcus lactis , Adaptação Fisiológica , Lactococcus lactis/metabolismo
11.
Food Res Int ; 155: 111108, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35400401

RESUMO

Lactococcus lactis subsp. lactis (L. lactis subsp. lactis) is commonly found in naturally fermented dairy products (NFDPs). This subspecies is of high economic value due to its wide application in dairy industry. However, the genetic background and evolutionary history of L. lactis subsp. lactis are still poorly understood, analysis of its genetic background and functional genome will lay a genetic foundation for its application. This study analyzed the whole genomes of 227 novel L. lactis subsp. lactis isolated from NFDPs and investigated the genetic history of this subspecies from a population genetic perspective. These strains were classified into four phylogenetically distinct groups, which were likely derived from only a few wild ancestors through three divergence events, resulting in genetic and phenotypic divergence. Functional genomic analysis found that the divergence events caused strong lineage-specific selection for carbohydrate utilization and lactic acid production genes. Moreover, the time of the divergence coincided with mass migration of nomads due to climate change and decrease in average annual temperature, suggesting that these drastic environmental changes might be evolutionary drivers of the divergence. Genome-wide association analysis results showed that the single nucleic acid polymorphic loci we associated with pepF and CoiA genes were significantly correlated with fermentation capability, and based on this, a rapid screening model for potential starter strains was constructed. Our findings shed light on the evolutionary history and genomic diversity of NFDP-originated L. lactis subsp. lactis, and provide a new insight for screening strains with excellent characteristics.


Assuntos
Produtos Fermentados do Leite , Lactococcus lactis , Estudo de Associação Genômica Ampla , Genômica , Lactococcus lactis/genética , Filogenia
12.
Food Chem ; 384: 132566, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35247774

RESUMO

Exopolysaccharides (EPSs) from lactic acid bacteria have special functions and complex structures, but the function and structure of EPSs of the important dairy starter, Lactococcus (L.) lactis subsp. lactis, are less known. This study investigated the cytotoxicity, antioxidant capacities, rheological characteristics, chemical structure and expression of biosynthetic genes of EPSs of the L. lactis subsp. lactis IMAU11823. The EPSs showed strong reducing power and no cytotoxicity. EPS-1 comprised glucose and mannose (molar ratio of 7.01: 1.00) and molecular weight was 6.10 × 105 Da, while EPS-2 comprised mannose, glucose and rhamnose (7.45: 1.00: 2.34) and molecular weight was 2.93 × 105 Da. EPS-1 was a linear structure comprised two sugar residues, while EPS-2 was more complex, non-linear, and comprised eight sugar residues. In additions, our study proposed an EPS biosynthesis model for the IMAU11823 strain. The current findings have broadened the understanding of the formation, structure and function of complex EPSs of IMAU11823.


Assuntos
Lactococcus lactis , Antioxidantes/metabolismo , Glucose/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Manose/metabolismo , Polissacarídeos Bacterianos/química
13.
Braz J Microbiol ; 53(2): 903-920, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35138631

RESUMO

Lactococcus spp. are industrially crucial lactic acid bacteria (LAB) used to manufacture lactic acid, pickled vegetables, buttermilk, cheese, and many kinds of delicious dairy foods and drinks. In addition to these, they are also being used as probiotics in specific formulations. However, their uses as probiotics are comparatively less than the other LAB genera. The present communication hypothesizes to validate the probiotic potentiality of two new Lactococcus lactis subsp. lactis strains for their future uses. These native food fermenting strains were characterized for in vitro acid tolerance, tolerance to simulated gastric and pancreatic juices, autoaggregation and co-aggregation, hydrophobicity, haemolytic activity, bile salt deconjugation, cholesterol removal, antimicrobial spectrum, and antibiotic sensitivity. The in vivo live bacterial feeding of these strains for 30 days was done in Swiss albino mice either singly or in combination with prebiotic inulin and evaluated for hypocholesterolemic activity, immune enhancement, and gut colonization efficiency and compared with the commercial probiotic consortia. The study revealed that the strains could survive in human gut bile concentration, gastric pH conditions at pH 2.0, 3.0, and 8.0 for 6 h, had a broad antibacterial spectrum, and cholesterol binding efficacy. The strains could survive with higher colony-forming units (CFU/mL) when amended with sodium caseinate. The strains had autoaggregation ranges from 15 to 25% over 24 h and had a significant co-aggregation with both lactic acid and Gram-positive and Gram-negative bacterial strains related to human illness. The strains also showed solvent and media-specific hydrophobicity against n-hexane and xylene. The live bacterial feeding either singly or in combination with prebiotic inulin resulted in a significant reduction of LDL (low-density lipoprotein), VLDL (very low-density lipoprotein) cholesterol and triglyceride (TG), and a significant increase in HDL (high-density lipoprotein) cholesterol level, and improved gut colonization and gut immunomodulation. The results prove that these non-haemolytic, non-toxic strains had significant health benefits than the commercial probiotics consortium with the recommended prebiotics mix. Thus, these new Lactococcus lactis subsp. lactis strains could be trialled as a new probiotic combination for human and animal feeds.


Assuntos
Lactobacillales , Lactococcus lactis , Probióticos , Simbióticos , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias , Inulina , Ácido Láctico/metabolismo , Lactococcus lactis/metabolismo , Lipoproteínas LDL , Camundongos
14.
Microorganisms ; 9(10)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34683350

RESUMO

Lactococcus lactis subsp. lactis strain plasma (LC-plasma) is a bacterial strain that activates plasmacytoid dendritic cells and induces viral resistance genes via the TLR9/MyD88 pathway. We recently showed that oral administration of LC-plasma prevents skin infection by Staphylococcus aureus, possibly by activating skin immunity. In this study, we conducted a double-blind clinical trial to investigate the effect of oral administration of heat-killed LC-plasma on the skin microbiome, gene expression in the skin, and the skin condition of healthy volunteers. Seventy healthy volunteers were randomly assigned to receive either heat-killed LC-plasma or a placebo for eight weeks. Analysis of the skin microbiome by next-generation sequencing suggested that the alpha-diversity of the skin microbiome did not change during the test period in either group. However, the proportion of species that changed significantly during the test period was 10-fold smaller in the LC-plasma group than in the placebo group, suggesting that LC-plasma may maintain the skin microbiome. Quantitative PCR analysis indicated that tight-junction genes, such as CLDN1 and CLDN12, and the antimicrobial peptide gene BD3 were significantly up-regulated in the LC-plasma group but not in the placebo group. Our results suggest that administration of LC-plasma helps to maintain the skin microbiome and that it affects homeostasis-related genes.

15.
Front Microbiol ; 11: 1794, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903743

RESUMO

It is well known that consumers are keen to try fermented milk products with different flavors and starter cultures are important in determining the resulting fermented dairy products. Here, we present the phenome of 227 Lactococcus lactis subsp. lactis isolates from traditionally fermented dairy products and the selection of potential starter strains. Large-scale phenotyping revealed significant technological diversity in fermentation characteristics amongst the isolates including variation in fermentation time, viscosity, water holding capacity (WHC) and free amino nitrogen (FAN) production. The 16 isolates with the best fermentation characteristics were compared, in a sensory evaluation, with the commercial starter Chr. Hansen R-704 as excellent fermentation characteristics to identify potential starter isolates and find the isolate which can product good flavors. From these, and from solid phase micro extraction (SPME) - gas chromatography (GC)-mass spectrometry (MS) analysis, we identified IMAU11823 and IMAU11919 as producing 3-methyl butanal and 3-methyl-2-butanone which contribute to the malt aroma. This study expands the characterization of L. lactis subsp. lactis phenotypic dataset and technological diversity and identified isolates with potential culture starter in the fermentation industry.

16.
Microorganisms ; 8(8)2020 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-32748895

RESUMO

Recently, Lactococcus lactis subsp. lactis has been reported to have immunostimulating properties in an immunosuppressed-animal model. However, the immunological activities of Lactococcus lactis and the molecular mechanisms remain unclear. In this report, we evaluated the immunostimulating activity and associated mechanisms of Lactococcus lactis subsp. lactis GCWB1176 (GCWB1176) in macrophages and cyclophosphamide (CTX)-induced immunosuppressed mice. In a series of safety tests, GCWB1176 was found to have a negative response to hemolysis, as well as susceptibility to antibiotics. Administration of GCWB1176 elevated natural killer (NK) cell activities; concanavalin A-induced T cell proliferation; and serum levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-2, IL-4, IL-10 and IL-12 in CTX-induced immunosuppressed mice. In RAW264.7 macrophages, treatment with GCWB1176 induced phagocytic activity and increased the production of nitric oxide (NO) and expression of inducible NO synthase. Simultaneously, GCWB1176 increased the production of TNF-α, IFN-γ, IL-1ß, IL-10 and IL-12 from mouse splenocytes and RAW264.7 cells. In addition, GCWB1176 significantly increased the transcriptional activities of NF-κB and iNOS. Taken together, GCWB1176 improved immune function through the activation of macrophages and NK cells. These findings suggest that dietary supplementation of GCWB1176 may be used to enhance immunity.

17.
J Food Sci ; 85(7): 2171-2176, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32476148

RESUMO

L. lactis is known as industrial starter in the fermentation of dairy and meat products, and it plays an important role in human health as an edible probiotic. During industrial production, L. lactis often experiences different stresses that delay the growth and decrease the survival in some serious conditions. In this study, the protective effects of hydroxypropyl ß-cyclodextrin (HP ß-CD) on L. lactis under multiple stresses were investigated. The microbial cells were treated with different stresses including heat, NaCl, cold, and H2 O2 stresses, and the results were showed by measuring the OD600 or spot plating method. The growth and tolerance were improved when HP ß-CD was added during different stress conditions, better than that of trehalose. Besides, the scanning electron microscopic and fluorescence spectrum studies showed that HP ß-CD could combine with L. lactis to protect the cell structure, suggesting that HP ß-CD may act as a protective agent of L. lactis. Therefore, HP ß-CD could be considered as a potential protective agent to be applied in food industry, and its protective mechanism on L. lactis still needs further investigation.


Assuntos
Lactococcus lactis/fisiologia , beta-Ciclodextrinas/metabolismo , Meios de Cultura/metabolismo , Fermentação , Temperatura Alta , Lactococcus lactis/crescimento & desenvolvimento , Cloreto de Sódio/metabolismo
18.
Animals (Basel) ; 10(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365951

RESUMO

This research investigated the technological and safety effects of the nisin Z producer Lactococcus lactis subsp. lactis CBM 21, tested as an adjunct culture for the making of Squacquerone cheese in a pilot-scale plant. The biocontrol agent remained at a high level throughout the cheese refrigerated storage, without having a negative influence on the viability of the conventional Streptococcus thermophilus starter. The inclusion of CBM 21 in Squacquerone cheesemaking proved to be more effective compared to the traditional one, to reduce total coliforms and Pseudomonas spp. Moreover, the novel/innovative adjunct culture tested did not negatively modify the proteolytic patterns of Squacquerone cheese, but it gave rise to products with specific volatile and texture profiles. The cheese produced with CBM 21 was more appreciated by the panelists with respect to the traditional one.

19.
Benef Microbes ; 11(1): 67-78, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32066255

RESUMO

Fibroblast growth factor 21 (FGF21), a metabolism regulator, has an important effect on metabolic diseases, such as obesity and diabetes. It is also expressed in mice, and the murine source has high homology with human FGF21. Recently, it has been extensively studied and has become a potential drug target for the treatment of metabolic diseases. As it is a protein-based hormone, FGF21 cannot be easily and quickly absorbed into the blood through oral administration. Moreover, it has a 0-2 h half-life in vivo, as shown in a previous study, thus its efficacy lasts for a short period of time when used to treat metabolic diseases, limiting its clinical applications. To avoid these limitations, we used Lactococcus lactis, a food-grade bacterium, as the host to express FGF21. It could be used successfully for the expression and long-term effect of FGF21 in vivo. Instead of antibiotic resistance genes, the LacF gene was used as a selection marker in the NZ3900/PNZ8149 expression system, which is safe and could reduce the antibiotic resistance crisis. In this study, we a constructed human FGF21 expressing L. lactis strain and administered it to Db/Db mice by gavage. Compared with the control group, the body weight of mice in the experimental group was significantly reduced, and the overall homeostasis was improved in mice treated with human FGF21. Moreover, the activity of brown adipose tissue was enhanced. These results revealed that oral administration of FGF21 through heterologous expression in L. lactis appears to be an effective approach for its clinical application.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/farmacologia , Lactococcus lactis/genética , Microrganismos Geneticamente Modificados , Probióticos/farmacologia , Tecido Adiposo Marrom/metabolismo , Animais , Fatores de Crescimento de Fibroblastos/genética , Humanos , Camundongos , Modelos Animais , Obesidade
20.
Arch Microbiol ; 201(9): 1249-1258, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31197409

RESUMO

This work was aimed to screen bacteriocin-producing LAB from freshwater fish, select a prominent strain and evaluate its safety, characterise the bacteriocin produced, and evaluate its potential to be used as biopreservatives. Isolate 3MT showed the ability to produce bacteriocin-like substances and was identified as Lactococcus lactis subsp. lactis. This strain proved to be free from virulence factors as well as biogenic amine production and antibiotic resistance patterns. The bacteriocin produced displayed high resistance to heat, pH, detergents, and its partial purification led to a 4.35-fold increase in specific activity. Moreover, this bacteriocin showed the ability to inhibit the growth of Vibrio sp. 1T1 in fish pâté stored at 10 °C for 20 days, without altering its sensory properties. The bacteriocin can be used successfully as a preservative to improve the hygienic quality and enhance the shelf life of fish paté in particular and food products in general. Lactococcus lactis subsp. lactis strain 3MT can also be safely used as a protective culture.


Assuntos
Bacteriocinas/metabolismo , Ciclídeos/microbiologia , Conservantes de Alimentos/metabolismo , Lactococcus lactis/metabolismo , Alimentos Marinhos/microbiologia , Animais , Água Doce/microbiologia , Lactococcus lactis/isolamento & purificação , Vibrio/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...