Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
Polymers (Basel) ; 16(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000657

RESUMO

The investigation of damage development is essential for the design and optimization of hybrid structures. This paper provides a reference for the structural design of brittle-ductile hybrid LVI-resistant laminates through analyzing the damage development mechanism of carbon/Kevlar fabric-reinforced composite laminates. The effects of Kevlar fabric hybrid ply and intercalation on the damage development of carbon/Kevlar composite laminates under low-velocity impact (LVI) were investigated using quasi-static indentation (QSI). It was found that an increase in the Kevlar hybrid ratio significantly reduced the peak load and stiffness of these laminates (the maximum decreases in strength and stiffness were 46.03% and 41.43%, respectively), while laminates with identical hybrid ratios but different plying configurations maintained a comparable stiffness under QSI, with differences of less than 5%. Interestingly, Kevlar fibers exhibited irregular fractures as the yarn was splitting, while carbon fibers presented neat breaks, which indicated material-specific failure modes. Notably, the introduction of Kevlar hybridization beyond pure Kevlar configurations (KKKK) resulted in a decrease in the percentage of fiber damage (CCCC, CCCK, CCKK, and KCCK accounted for 80%, 79.8%, 70%, and 60% of fiber damage, respectively), attributed to an increase in resin cracks and lower levels of Kevlar yarn breakage. The internal damage diameter of specimens was accurately predicted from the diameter of visible damage on the QSI surface. Compared with CCCC and CCKK setups, which are affected by resin cracks formed via the carbon surface on the loading side propagating along the yarn direction (including the yarn settling direction), KCCK demonstrated less delamination between the first and second ply.

2.
Sensors (Basel) ; 24(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38894240

RESUMO

The time difference of arrival (TDOA) method has traditionally proven effective for locating acoustic emission (AE) sources and detecting structural defects. Nevertheless, its applicability is constrained when applied to anisotropic materials, particularly in the context of fiber-reinforced composite structures. In response, this paper introduces a novel COmposite LOcalization using Response Surface (COLORS) algorithm based on a two-step approach for precise AE source localization suitable for laminated composite structures. Leveraging a response surface developed from critical parameters, including AE velocity profiles, attenuation rates, distances, and orientations, the proposed method offers precise AE source predictions. The incorporation of updated velocity data into the algorithm yields superior localization accuracy compared to the conventional TDOA approach relying on the theoretical AE propagation velocity. The mean absolute error (MAE) for COLORS and TDOA were found to be 6.97 mm and 8.69 mm, respectively. Similarly, the root mean square error (RMSE) for COLORS and TODA methods were found to be 9.24 mm and 12.06 mm, respectively, indicating better performance of the COLORS algorithm in the context of source location accuracy. The finding underscores the significance of AE signal attenuation in minimizing AE wave velocity discrepancies and enhancing AE localization precision. The outcome of this investigation represents a substantial advancement in AE localization within laminated composite structures, holding potential implications for improved damage detection and structural health monitoring of composite structures.

3.
Materials (Basel) ; 17(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38930199

RESUMO

Glass fiber-reinforced polymer (GFRP) laminates are used in many applications because of their availability, high mechanical properties, and cost-effectiveness. Fiber defects in the form of waviness or wrinkles can occur during the production of multilayered laminates. When curved laminates of significant thickness are produced, the likelihood of such defects increases. Studies have confirmed that fiber deformation during manufacture leads to a reduction in the mechanical properties of laminates. Therefore, early detection of such defects is essential. The main part of this paper deals with research into the possibility of using active infrared thermography to detect wrinkles in curved multilayered GFRP laminates. The size of the artificial wrinkles was assessed by analyzing scans and microimages. The shape deformations of the samples were evaluated by comparing the samples with the mold and the assumed nominal shape. The influence of the out-of-autoclave manufacturing process on the reduction in wrinkles formed without significantly affecting the internal structure of the laminate is presented in this work. This research demonstrated the ability to detect wrinkles in thick curved laminates using active infrared thermography. However, it also showed how the interpretation of the thermographic results is affected by the curvature of the structure, the lack of uniform heating, and the configuration of the thermographic setup.

4.
Ultrasonics ; 142: 107357, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38838609

RESUMO

Composite laminates are widely used in various fields, but their structures are prone to cracks and damage. Due to the difference in angles of the instantaneous direction of the wave front propagation and the direction of the energy flow in an anisotropic material, the use of Lamb waves for damage localization in composite laminates is a challenging task. Establishing the wave front shape equation can overcome the difficulty of damage localization caused by anisotropy, but this usually requires a priori knowledge of the acoustic velocity distribution of the laminates, which is not convenient for efficient damage localization. In this paper, a damage localization method based on wave front shapes for composite laminates without any knowledge of the velocity profile is presented. Numerical simulation and experimental results show that the proposed method works. This method shows good damage localization accuracy and has broad application prospects in non-destructive testing for plate structures with strong anisotropy.

5.
Ultrasonics ; 142: 107384, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38917730

RESUMO

This study aimed to assess the delamination detection in FMLs via the finite element (FE) simulations of Lamb wave propagation. An FE model of an FML specimen with [Al/902/Al/902/Al] layup was developed. Delamination damage of 10 and 25 mm diameters was induced between different layers of the FML specimen. The fundamental antisymmetric Lamb wave mode (A0) at 60 kHz and the fundamental symmetric Lamb wave mode (S0) at the frequency of 206 kHz were propagated on the developed FE models. The Lamb wave phase velocity was obtained from the FE models and compared with those obtained from the Lamb wave propagation tests. The sensitivity of the A0 and S0 Lamb wave modes to the delamination and its diameter were examined. The inverse Lamb wave propagation problem was then solved, and the elastic modulus of the FML specimen was estimated in the intact and delamination regions. It was observed that the phase velocity of the S0 Lamb wave mode had a higher sensitivity to the delamination damage compared to that of the A0 Lamb wave mode. The phase velocity of the A0 Lamb wave mode was more sensitive to the delamination diameter. The capability of the proposed simulated Lamb wave propagation method as a virtual lab for detecting delamination in the FMLs was confirmed.

6.
Polymers (Basel) ; 16(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38794579

RESUMO

In this paper, an enhanced VARTM process is proposed and its pressure effect on resin infusion behavior and composite material performance is studied to reveal the control mechanism of the fiber volume fraction and void content. The molding is vacuumized during the resin injection stage while it is pressurized during the mold filling and curing stages via a VARTM pressure control system designed in this paper. Theoretical calculations and simulation methods are used to reveal the resin's in-plane, transverse, and three-dimensional flow patterns in multi-layer media. For typical thin-walled components, the infiltration behavior of resin in isotropic porous media is studied, elucidating the control mechanisms of fiber volume fraction and void content. The experiments demonstrate that the enhanced VARTM process significantly improves mold filling efficiency and composite's performance. Compared to the regular VARTM process, the panel thickness is reduced by 4% from 1.7 mm, the average tensile strength is increased by 7.3% to 760 MPa, the average flexural strength remains at approximately 720 MPa, porosity is decreased from 1.5% to below 1%, and the fiber volume fraction is increased from 55% to 62%.

7.
Materials (Basel) ; 17(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38793295

RESUMO

This paper introduces a unique finite element analysis (FEA) technique designed to predict elastic response in polymer matrix composites (PMCs). Extensive research has been conducted to model the manufacturing process of multiple 'L'-shaped components, fabricated from SPRINTTM materials (GLP 43 and GLP 96) at two thicknesses (15 mm and 25 mm). Three distinct FEA methodologies were utilised to determine the impact of thermal loads and rigid fixtures. An error deviation of 3.23% was recorded when comparing simulation results to experimental data, thereby validating the effectiveness of the FEA methodology.

8.
Polymers (Basel) ; 16(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38543452

RESUMO

The growth of the Urban Air Mobility (UAM) industry emphasizes the need for considerable study into assembly procedures and dependability to guarantee its effective integration into air transport networks. In this context, this study seeks to evaluate the mechanical characteristics of bolted joint Carbon Fiber Reinforced Plastic (CFRP), with a particular emphasis on bearing strength. By altering the w/D (specimen width to hole diameter) and e/D (distance between hole center and specimen end to hole diameter) ratios, the study investigates how edge and end distances affect material performance. The study discovered a shift from tension to bearing failure at w/D ratios of 4.0, with maximum bearing strength decreases of 90.50% and 69.96% compared to full bearing failure. Similarly, for e/D ratios of 1.5, 2.0, and 3.0, transitioning from shear to bearing failure at 2.0 resulted in maximum bearing strength losses of 94.90% and 75.96%, respectively. Maintaining a w/D ratio of at least 6.0 and an e/D ratio of at least 3.0 is critical for maintaining maximum performance and stability in CFRP structure design.

9.
Sci Rep ; 14(1): 7446, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548916

RESUMO

Degradation of polymer composites is a significant problem in many engineering aspects. Due to the interaction of various degradation factors during the exploitation of composites, a synergistic effect of destruction is observed. The article describes the phenomena occurring in glass fiber reinforced polyester laminates under the influence of ultraviolet radiation (UV) in an aquatic environment. The laminates were exposed to UV-A, UV-B and UV-C radiation for 1000 h in free-air and underwater conditions. During the test, the materials were immersed at stable depth of 1 mm and 10 mm, respectively. The three-point bending tests performed on the samples after being exposed to UV showed an increase in the flexural strength of the composites. Simultaneously, degradation of the outer surface layer was observed. The degradation removed the thin resin film from the surface which resulted in a direct exposure of the reinforcing fibers to the environment. The transformations taking place in the deeper layers of the composite increased the mechanical strength due to the additional cross-linking reactions excited by the energy arising from the radiation. Moreover, the formation of polymer structures from free styrene remaining after the technological process and the occurrence of free radical reactions as a result of the cage effect was also observed.

10.
Materials (Basel) ; 17(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38399097

RESUMO

There is limited research on the fracture toughness of carbon-fiber-reinforced polymer (CFRP) materials under accelerated UV aging conditions. In this study, the primary focus was on investigating the influence of varying durations of ultraviolet (UV) irradiation at different temperatures on the Mode I, Mode II, and mixed-mode fracture toughness of CFRP laminates. The results indicate that with increasing UV aging duration, the material's Mode I fracture toughness increases, while Mode II fracture toughness significantly decreases. The mixed-mode fracture toughness exhibits an initial increase followed by a subsequent decrease. Furthermore, as the aging temperature increases, the change in the fracture toughness of the material is more obvious and the rate of change is faster. In addition, the crack expansion of the composite layer of crack-containing Type IV hydrogen storage cylinders was analyzed based on the extended finite element method in conjunction with the performance data after UV aging. The results reveal that cracks in the aged composite material winding layers become more sensitive, with lower initiation loads and longer crack propagation lengths under the same load. UV aging diminishes the overall load-bearing capacity and crack resistance of the hydrogen storage cylinder, posing increased safety risks during its operational service.

11.
Polymers (Basel) ; 16(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38256972

RESUMO

In this paper, the low-velocity impact behavior and damage modes of carbon/glass-hybrid fiber-reinforced magnesium alloy laminates (FMLs-H) and pure carbon-fiber-reinforced magnesium alloy laminates (FMLs-C) are investigated using experimental, theoretical modeling, and numerical simulation methods. Low-velocity impact tests were conducted at incident energies of 20 J, 40 J, and 60 J using a drop-weight impact tester, and the load-displacement curves and energy-time curves of the FMLs were recorded and plotted. The results showed that compared with FMLs-C, the stiffness of FMLs-H was slightly reduced, but the peak load and energy absorption were both greatly improved. Finally, a finite element model based on the Abaqus-VUMAT subroutine was developed to simulate the experimental results, and the damage modes of the metal layer, fiber layer, and interlayer were observed and analyzed. The experimental results are in good agreement with the finite element analysis results. The damage mechanisms of two kinds of FMLs under low-velocity impacts are discussed, providing a reference for the design and application of laminates.

12.
Materials (Basel) ; 16(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005092

RESUMO

Dynamic problems of elastic non-periodically laminated solids are considered in this paper. It is assumed that these laminates have a functionally graded structure on the macrolevel along the x1-axis and non-periodic structure on the microlevel. However, along the other two directions, i.e., x2 and x3, their properties are constant. The effects of the size of a microstructure (the microstructure effect) on the behaviour of the composites can play a significant role. This effect can be described using the tolerance modelling method. This method allows us to derive model equations with slowly varying coefficients. Some of these terms can depend on the size of the microstructure. These governing equations of the tolerance model make it possible to determine formulas describing not only fundamental lower-order vibrations related to the macrostructure of these composite solids, but also higher-order vibrations related to the microstructure. Here, the application of the tolerance modelling procedure is shown to lead to equations of the tolerance model that can be used for non-periodically laminated solids. Then, these model equations are mainly used to analyse a simple example of vibrations for functionally graded composites with non-periodically laminated microstructure (FGL). Similar problems were investigated in the framework of the homogenised (macrostructural) model (Jedrysiak et al. 2006); the resulting equations neglect the microstructure effect.

13.
Materials (Basel) ; 16(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895801

RESUMO

Experimental methodologies for fatigue lifetime prediction are time-intensive and susceptible to environmental variables. Although the cohesive zone model is popular for predicting adhesive fatigue lifetime, entropy-based methods have also displayed potential. This study aims to (1) provide an understanding of the durability characteristics of carbon fiber-reinforced plastic (CFRP) adhesive joints by incorporating an entropy damage model within the context of the finite element method and (2) examine the effects of different adhesive layer thicknesses on single-lap shear models. As the thickness of the adhesive layer increases, damage variables initially increase and then decrease. These peak at 0.3 mm. This observation provides a crucial understanding of the stress behavior at the resin-CFRP interface and the fatigue mechanisms of the resin.

14.
Waste Manag ; 171: 393-400, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37776810

RESUMO

High-density polythene (HDPE) is difficult to separate from food packaging waste for recycling because the packaging occasionally has multilayer plastic labels attached. Solvents are employed in the current separation techniques to remove undesirable layers from HDPE substrates. The possibility of separating HDPE via the impact-delamination phenomenon was explored both theoretically and experimentally. Using the cohesive zone model (CZM), the decohesion of layers in a model two-layer laminate made of HDPE and LDPE layers was studied theoretically. According to this study, stress waves emerge and severely damage the adhesion between the layers as a cutting blade strikes the laminate at speeds greater than 40 m/s. The damage can be enhanced by increasing the strike velocity and the apex radius of the blade. These findings show that a novel plastic delaminator that can cut and delaminate the laminates simultaneously can be designed. The proposed machine will feature two sets of blades with varying edge apex radii. One set of blades can be designed to cause the most adhesion damage while the other blades cut the laminate. This unique combination of cutting and delamination operations has several benefits, including less solvent waste and downstream processes, greater environmental friendliness, and faster HDPE separation. Laminates from HDPE milk bottles were cut using a high-speed cutter-blender with six blades to test the predicted results. The cut HDPE flakes were separated pneumatically. According to FTIR analysis and SEM, only a trace of adhesive was present on the cut and separated HDPE flakes.

15.
Materials (Basel) ; 16(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37763515

RESUMO

Prepregs are commonly fabricated with non-renewable petroleum-based materials. To reduce the impact of the manufacturing of these materials and to produce more sustainable prepregs, this research aims to manufacture poly(furfuryl alcohol)/wood veneer prepregs and their posterior molding in laminate composites. For this purpose, the vacuum infusion process was used to impregnate the wood veneers, and compression molding was applied to manufacture three- and four-layer laminate composites. Scanning electronic microscopy was used to evaluate the impregnation. the laminate manufacturing and differential scanning calorimetry were used to predict the shelf-life of the prepregs, Fourier-transform infrared was used to evaluate the induced hydrolysis resistance, and thermogravimetric analysis was used to determine the thermal degradation of the laminates. Moreover, water uptake and flexural, compressive, and tensile properties were evaluated. The kinetic models were effective and showed a shelf life for the laminates of approximately 30 days in storage at -7 °C, which is an interesting result for laminates with lignocellulosic materials. FTIR proved the laminates' excellent resistance to hydrolysis. The water absorption, thermal stability, and mechanical properties did not differ as the amount of wood veneer increased, but these results were up to ~40% higher compared with unidirectional wood laminates found in the literature, which is probably linked to the excellent interface observed with SEM.

16.
Heliyon ; 9(8): e19143, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37636436

RESUMO

Impact damage can affect the carrying capacity and service life of aerospace composite structures seriously. In this study, the carbon fiber/epoxy composite (ZT7H/EC3448) was used for scarf bonding repair for CFRP (Z7TH/QY9611) laminates to restore strength. In view of the impact sensitivity of bonding repair of CFRP laminates, a three-dimensional (3D) finite element model (FEM) of the whole damaged response from impact to compression-after-impact (CAI) was established by the subroutine of ABAQUS finite element simulation software. Combined with the experiments of low-velocity impact and compression, the impact damage mode and CAI response of the intact laminates and the wet bonding repaired laminates were evaluated by analyzing the impact response, the failure situation and the residual strength. The results show that the damage of both started in the impacted area and expanded to complete failure in the direction of the vertical fiber. Unlike the intact laminates, the patch of the repaired laminates absorbed a lot of impact energy, which greatly reduced the damage to the original laminates, and the CAI performance for the wet bonding repaired laminates by ZT7H/EC3448 recovered to 97.7% of the intact one.

17.
Materials (Basel) ; 16(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37629864

RESUMO

In this paper, the tensile mechanical behavior and progressive damage morphology of glass-fiber-reinforced magnesium alloy laminate for different numbers of holes in a temperature range of 25-180 °C were investigated. In addition, based on extensive tensile tests, the tensile mechanical behavior and microscopic damage morphology of porous-glass-fiber-reinforced magnesium alloy laminates at different temperatures were observed by finite element simulation and scanning electron microscopy (SEM). Finally, the numerical simulation and experimental results were in good accordance with the prediction of mechanical properties and fracture damage patterns of the laminates, the average difference between the residual strength values of the specimens at ambient temperature was 5.57%, and the stress-strain curves were in good agreement. The experimental and finite element analysis results showed that the damaged area of the bonded layer tended to expand with the increase in the number of holes, which has a lesser effect on the ultimate tensile strength. As the temperature increased, the specimens changed from obvious fiber breakage (pull-out) and the resin matrix damage mode to matrix softening damage and interfacial delamination fracture damage. As the testing temperature of the specimens increased from 25 °C to 180 °C, the tensile strength of the specimens decreased by an average of 51.59%, while the tensile strength of the specimens showed a nonlinear decreasing trend. The damage mechanism of porous-glass-fiber-reinforced magnesium alloy laminates at different temperatures is discussed in this paper, which can provide a reference for engineering applications and design.

18.
Materials (Basel) ; 16(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37512248

RESUMO

This paper presents an experimental study about the use of innovative bio-based pultruded carbon-fiber-reinforced polymer (CFRP) laminates for structural strengthening. The bio-based laminates were produced in the framework of an applied research project (BioLam) using a resin system with 50% (wt.%) bio-based content, obtained from renewable resources. In the first part of the study, their tensile and interlaminar shear properties were characterized and compared with those of conventional oil-based CFRP laminates. In the second part of the study, the bond behavior to concrete of both types of CFRP laminates applied according to the externally bonded reinforcement (EBR) technique was assessed by means of single-lap shear tests performed on CFRP-strengthened concrete blocks; the experimental results obtained from these tests were then used in a numerical procedure to calibrate local bond vs. slip laws for both types of laminates. The final part of this study comprised four-point bending tests on full-scale EBR-CFRP-strengthened reinforced concrete (RC) beams to assess the structural efficacy of the bio-based laminates; these were benchmarked with tests performed on similar RC beams strengthened with conventional CFRP laminates. The results obtained in this study show that the (i) material properties, (ii) the bond behavior to concrete, and (iii) the structural efficacy of the developed bio-based CFRP laminates are comparable to those of their conventional counterparts, confirming their potential to be used in the strengthening of RC structures.

19.
Materials (Basel) ; 16(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37176368

RESUMO

Fiber metal laminates have been widely used as the primary materials in aircraft panels, and have excellent specific strength. Bending deformation is the most common loading mode of such components. An accurate theoretical predictive model for the bending process for the carbon reinforced aluminum laminates is of great significance for predicting the actual stress response. In this paper, based on the metal-plastic bending theory and the modified classical fiber laminate theory, a modified bending theory model of carbon-fiber-reinforced aluminum laminates was established. The plastic deformation of the thin metal layer in laminates and the interaction between fiber and metal interfaces were considered in this model. The bending strength was predicted analytically. The FMLs were made from 5052 aluminum sheets, with carbon fibers as the reinforcement, and were bonded and cured by locally manufacturers. The accuracy of the theory was verified by three-point bending experiments, and the prediction error was 8.4%. The results show that the fiber metal laminates consisting of three layers of aluminum and two layers of fiber had the best bending properties. The theoretical model could accurately predict the bending deformation behaviors of fiber metal laminates, and has significant value for the theoretical analysis and performance testing of laminates.

20.
Materials (Basel) ; 16(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176452

RESUMO

Orthogonal antisymmetric composite laminates embedded with shape memory alloys (SMAs) wires have the potential to improve the sound quality of vibro-acoustics by taking advantage of the special superelasticity, temperature phase transition, and pre-strain characteristics of SMAs. In this research, space discretion and mode decoupling were employed to establish a vibro-acoustic sound quality model of SMA composite laminates. The association between the structural material parameters of SMA composite laminates and the sound quality index is then approached through methodologies. Numerical analysis was implemented to discuss the effects of SMA tensile pre-strain, SMA volume fraction, and the ratio of resin-to-graphite in the matrix on the vibro-acoustic sound quality of SMA composite laminates within a temperature environment. Subsequently, the sound quality test for SMA composite laminates is thus completed. The theoretically predicted value appears to agree well with the experimental outcomes, which validates the accuracy and applicability of the dynamic modeling theory and method for the sound quality of SMA composite laminates. The results indicate that attempting to alter the SMA tensile pre-strain, SMA volume fraction, and matrix material ratio can be used to modify loudness, sharpness, and roughness, which provides new ideas and a theoretical foundation for the design of composite laminates with decent sound quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...