Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Environ Manage ; 370: 122623, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39326080

RESUMO

Landscape heterogeneity is considered a promising option for building resilient and sustainable agroecosystems. Understanding the relationships between farmland soil organic carbon (SOC) and landscape heterogeneity can support soil carbon sequestration and better serve food security and climate change. However, the influence extent and optimal scale of farmland landscape heterogeneity (i.e. landscape composition and landscape configuration heterogeneity) on SOC remains unclear. In this study, we established the relationships between multi-scale landscape heterogeneity and SOC in a typical grain-production county of northeast China. Stepwise regression results showed that when the buffer radius was 2000 m, the interpretation of SOC by landscape heterogeneity was the largest. The effects of landscape composition and landscape configuration on SOC were further decomposed by Variance Partitioning Analysis, and we found that independent interpretation ability of landscape configuration (8%) exceeded landscape composition (7%). The result of soil mapping combined with landscape indexes also showed that landscape configuration contributed more to the increased accuracy. Moreover, we found that correlation between configuration indexes and SOC at the class level was less related than that at the landscape level, among which the two most important indexes were Mean Fractal Dimension Index (FRAC_MN) and Number of Patches (NP). FRAC_MN was even more important than natural factors, indicating the validity of landscape as an indicator of human activities should not be ignored when considering farmland SOC. Overall, the results of this study revealed that the negative effects of agricultural intensification on SOC can be buffered to a certain extent by increasing the complexity of patch shape and reducing the degree of landscape fragmentation at the landscape level, providing hope for the sustainable development in intensive agricultural areas. In addition, due to the scale effect of landscape heterogeneity on farmland SOC, we suggest that decision makers should consider the spatial scale in landscape allocation and planning. This study provides a scientific reference for realizing the balance between grain production and ecological function in intensive agricultural areas.

2.
Integr Zool ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003665

RESUMO

Mammal species globally exhibit distribution patterns conditioned by environmental conditions and human impact. The Mediterranean basin provides an ideal system to study these effects due to its diverse climate, and habitat conditions. In this work, we aim to assess the impact of landscape heterogeneity and anthropization degree on terrestrial mammal diversity in this region. Accordingly, we deployed over 300 camera traps across 28 sites for 3 months. Detected mammal species (weighing more than 1kg) were classified as domestic carnivores, domestic ungulates, wild carnivores, wild ungulates, lagomorphs, and large rodents. Alpha and beta diversity were calculated for each group and all wild mammals. Simple linear regressions and multimodal analysis were conducted between mammal diversities and climate, environmental conditions, landscape heterogeneity, and anthropization degree variables. Redundancy analyses were performed to identify variables and species determining the mammalian community composition. Indexes measuring landscape heterogeneity, anthropization degree, and its 30-year change did not correlate with mammal diversity. However, the difference in elevation within sites and domestic carnivore abundance showed a significant positive correlation with some of the diversity indexes. Nonetheless, rainfall and mean elevation factors generally showed the highest correlation with mammal diversity. Instead, a few influential species, including generalists and open-habitat specialists, highlighted the importance of conserving open areas, as well as the importance of the Pyrenees region as a key habitat for certain species. Therefore, climatic variables emerged as the key determinants of mammal diversity, highlighting climate change as a potential threat to mammal diversity in this area.

3.
Sci Total Environ ; 943: 173696, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38848905

RESUMO

Together with warming air temperatures, Arctic ecosystems are expected to experience increases in heavy rainfall events. Recent studies report accelerated degradation of permafrost under heavy rainfall, which could put significant amounts of soil carbon and infrastructure at risk. However, controlled experimental evidence of rainfall effects on permafrost thaw is scarce. We experimentally tested the impact and legacy effect of heavy rainfall events in early and late summer for five sites varying in topography and soil type on the High Arctic archipelago of Svalbard. We found that effects of heavy rainfall on soil thermal regimes are small and limited to one season. Thaw rates increased under heavy rainfall in a loess terrace site, but not in polygonal tundra soils with higher organic matter content and water tables. End-of-season active layer thickness was not affected. Rainfall application did not affect soil temperature trends, which appeared driven by timing of snowmelt and organic layer thickness, particularly during early summer. Late summer rainfall was associated with slower freeze-up and colder soil temperatures the following winter. This implies that rainfall impacts on Svalbard permafrost are limited, locally variable and of short duration. Our findings diverge from earlier reports of sustained increases in permafrost thaw following extreme rainfall, but are consistent with observations that maritime permafrost regions such as Svalbard show lower rainfall sensitivity than continental regions. Based on our experiment, no substantial in-situ effects of heavy rainfall are anticipated for thawing of permafrost on Svalbard under future warming. However, further work is needed to quantify permafrost response to local redistribution of active layer flow under natural rainfall extremes. In addition, replication of experiments across variable Arctic regions as well as long-term monitoring of active layers, soil moisture and local climate will be essential to develop a panarctic perspective on rainfall sensitivity of permafrost.

4.
Conserv Biol ; 38(4): e14250, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38477227

RESUMO

Tropical species richness is threatened by habitat degradation associated with land-use conversion, yet the consequences for functional diversity remain little understood. Progress has been hindered by difficulties in obtaining comprehensive species-level trait information to characterize entire assemblages and insufficient appreciation that increasing land-cover heterogeneity potentially compensates for species loss. We examined the impacts of tropical deforestation associated with land-use heterogeneity on bird species richness, functional redundancy, functional diversity, and associated components (i.e., alpha diversity, species dissimilarity, and interaction strength of the relationship between abundance and functional dissimilarity). We analyzed over 200 georeferenced bird assemblages in the Atlantic Forest of Brazil. We characterized the functional role of the species of each assemblage and modeled biodiversity metrics as a function of forest cover and land-cover heterogeneity. Replacement of native Atlantic Forest with a mosaic of land uses (e.g., agriculture, pastures, and urbanization) reduced bird species richness in a nonrandom way. Core forest species, or species considered sensitive to edges, tended to be absent in communities in heterogenous environments. Overall, functional diversity and functional redundancy of bird species were not affected by forest loss. However, birds in highly heterogenous habitats were functionally distinct from birds in forest, suggesting a shift in community composition toward mosaic-exclusive species led by land-cover heterogeneity. Threatened species of the Atlantic Forest did not seem to tolerate degraded and heterogeneous environments; they remained primarily in areas with large forest tracts. Our results shed light on the complex effects of native forest transformation to mosaics of anthropogenic landscapes and emphasize the importance of considering the effects of deforestation and land-use heterogeneity when assessing deforestation effects on Neotropical biodiversity.


Pérdida de especies y funciones en un bosque tropical megadiverso deforestado Resumen La riqueza de especies tropicales está amenazada por la degradación asociada con la conversión del uso de suelo, y aun así entendemos muy poco de las consecuencias que esto tiene para la diversidad funcional. El progreso está obstaculizado por las dificultades para obtener información completa de los rasgos a nivel de especie para caracterizar ensamblajes completos y la apreciación insuficiente de que la heterogeneidad creciente de la cobertura del suelo tiene el potencial para compensar la pérdida de especies. Analizamos el impacto que tiene la deforestación tropical asociada con la heterogeneidad del uso de suelo sobre la riqueza de especies de aves, la redundancia funcional, la diversidad funcional y sus componentes asociados (es decir, diversidad alfa, disimilitud de especies y fuerza de interacción de la relación entre la abundancia y la disimilitud funcional). Analizamos más de 200 ensamblajes georreferenciados de aves en el Bosque Atlántico de Brasil. Caracterizamos el papel funcional de las especies de cada ensamblaje y modelamos las medidas de biodiversidad como función de la cobertura forestal y de la heterogeneidad del uso de suelo. La sustitución del Bosque Atlántico nativo con un mosaico de usos de suelo (p. ej.: agricultura, pastura y urbanización) redujo la riqueza de especies de una manera no aleatoria. Las especies nucleares del bosque, o las especies consideradas como sensibles a los bordes, tendieron a estar ausentes en las comunidades de los ambientes heterogéneas. En general, la diversidad y la redundancia funcionales de las especies de aves no se vieron afectadas por la pérdida del bosque. Sin embargo, las aves en los hábitats con alta heterogeneidad eran funcionalmente distintas a las aves de los bosques, lo que sugiere un cambio en la composición x de la comunidad hacia especies exclusivas de mosaicos llevadas por la heterogeneidad de la cobertura del suelo. Las especies amenazadas del Bosque Atlántico no parecieron tolerar el ambiente degradado y heterogéneo pues permanecieron principalmente en las áreas con grandes extensiones de bosque. Nuestros resultados arrojan luz sobre los efectos complejos de la transformación de los bosques nativos en mosaicos de paisajes antropogénicos y recalcan la importancia de considerar los efectos de la deforestación y la heterogeneidad del uso de suelo cuando se evalúan los efectos de la deforestación sobre la biodiversidad neotropical.


Assuntos
Biodiversidade , Aves , Conservação dos Recursos Naturais , Florestas , Clima Tropical , Animais , Brasil , Aves/fisiologia
5.
Sci Total Environ ; 916: 170163, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38242455

RESUMO

Agricultural Biodiversity dynamics has been evaluated by social metabolism or by landscape structure-function analysis. In this study, by using ELIA modeling, we used both methods in combination to understand how the interplay between social metabolism and landscape structure-function can affect biodiversity pattern distribution. We used energy reinvestment (E) as an indicator of social metabolism and landscape heterogeneity (Le) as an indicator of landscape structure-function. We propose a research hypothesis to analyze biodiversity patterns considering four different clusters identified based on high or low E or Le. As cluster 1, we defined E as high and Le as low and associated natural ecosystems to it. These ecosystems are expected to contain high species abundance but low richness. As cluster 2, both E and Le were defined as high and semi-natural ecosystems were associated to it, where nature friendly farm system developed. In these ecosystems, high species abundance and richness are expected. Cluster 3 with low E and Le was associated intensive farmland, which is due to the simplification of the landscape. Here, low energy reinvestment and landscape heterogeneity confirm that ecosystem services related to biodiversity have been drastically reduced. Lastly, cluster 4 with low E but high Le refers to intensive mosaics of farmland and pasture. In this cluster, the biodiversity richness index is high due to spatial landscape diversity, but the biodiversity abundance index is low due to the lack of energy reinvestment. We evaluate the proposed hypothesis for biodiversity analysis in the Qazvin province, emphasizing the interplay between energy availability and landscape heterogeneity in shaping ecological communities. This study highlights the importance of understanding biodiversity patterns at spatial scale and emphasizes the need for interdisciplinary research to address conservation and sustainability challenges. Our approach would be very useful where there is lack of biodiversity data.


Assuntos
Biodiversidade , Ecossistema , Agricultura/métodos , Fazendas , Conservação dos Recursos Naturais/métodos
6.
Life (Basel) ; 13(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38137891

RESUMO

Climate change raises a serious threat to global entomofauna-the foundation of many ecosystems-by threatening species preservation and the ecosystem services they provide. Already, changes in climate-warming-are causing (i) sharp phenological mismatches among host-parasitoid systems by reducing the window of host susceptibility, leading to early emergence of either the host or its associated parasitoid and affecting mismatched species' fitness and abundance; (ii) shifting arthropods' expansion range towards higher altitudes, and therefore migratory pest infestations are more likely; and (iii) reducing biological control effectiveness by natural enemies, leading to potential pest outbreaks. Here, we provided an overview of the warming consequences on biodiversity and functionality of agroecosystems, highlighting the vital role that phenology plays in ecology. Also, we discussed how phenological mismatches would affect biological control efficacy, since an accurate description of stage differentiation (metamorphosis) of a pest and its associated natural enemy is crucial in order to know the exact time of the host susceptibility/suitability or stage when the parasitoids are able to optimize their parasitization or performance. Campaigns regarding landscape structure/heterogeneity, reduction of pesticides, and modelling approaches are urgently needed in order to safeguard populations of natural enemies in a future warmer world.

7.
Proc Natl Acad Sci U S A ; 120(49): e2300861120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011572

RESUMO

Increasing landscape heterogeneity has been suggested to be an important strategy to strengthen natural pest control in crops, especially through enhancing the amount of seminatural habitats. Increasing crop diversity is also a promising strategy to complement or replace seminatural habitat when seminatural habitat is scarce. However, their relative or possibly interactive effects on pest and weed infestation remain poorly investigated, and the role of different types of seminatural habitats has been understudied. Using an extensive sampling effort in 974 arable fields across 7 y, we evaluated the separate and interactive effects of crop diversity (seven arable crop types) and the amount of four types of seminatural habitats (meadows, hay, forests, and hedgerows) in the landscape on pest and weed control. Meadows and crop diversity, respectively, supported insect pest and weed control services in agricultural landscapes through a complementarity effect. Crop diversity increased weed seed predation rate (by 16%) and reduced weed infestation (by 6%), whereas long-term grasslands (to a much higher degree than hay or woody habitats) increased insect pest predation rates (by 23%) and reduced pest infestation (by 19%) in most arable crops. Our results demonstrate that diversification of the agricultural landscape requires long-term grasslands as well as improved crop diversity to ensure the delivery of efficient pest and weed control services.


Assuntos
Agricultura , Pradaria , Animais , Agricultura/métodos , Ecossistema , Produtos Agrícolas , Insetos
8.
Front Public Health ; 11: 1148582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37026143

RESUMO

Introduction: As the world becomes increasingly urbanized and human-nature contact declines, urban greenspace's impact on human health has garnered growing interest across academic disciplines. Various definitions and multiple indicators of greenspace have been utilized, with most studies finding an overall positive association between greenspace and health. Nevertheless, studies directly comparing how different greenspace indicators impact different disease types have been limited. Moreover, to verify the robustness of conclusions drawn, studies should compare multiple measures of greenspace across various spatial scales. Thus, a more comprehensive analysis is necessary to help inform future study design, especially in determining which greenspace indicators would be most useful in data-limited areas. Methods: Chengdu, the capital city of Sichuan Province, is West China's largest and most urban city, being typical of other large cities in lower to middle-income countries (LMICs). With twenty county-level jurisdictions spanning various degrees of urbanization, Chengdu's landscape heterogeneity and large population make it ideal for studying greenspace's impact on public health. This study took Chengdu as a case study to assess the association and potential impact of three traditional measures of greenspace (Normalized Difference Vegetation Index, Enhanced Vegetation Index, and Fractional Vegetation Cover) and urban ratio (% of population being urban) on hospitalization rates and medical expenses paid for three major disease categories (circulatory system diseases, neoplasms, and respiratory system diseases). Results and discussion: We found greenspace did have a significant impact on public health, but this relationship differed by disease type. Greenspace exhibited significant positive association with respiratory diseases, but insignificant negative associations with the other disease categories. Urban ratio showed significant negative association with greenspace abundance. The higher the urban ratio (e.g., less greenspace), the more money was paid on medical expenses. This relationship was found not only in terms of urban ratio being positively correlated with medical expenses, but also in that all three greenspace indicators were negatively correlated with medical expenses. Consequently, in future health outcome studies, urban ratio could be an acceptable negative indicator of greenness in LMICs where urban ratio is likely to imply less greenness.


Assuntos
Doenças Cardiovasculares , Parques Recreativos , Humanos , Cidades , China/epidemiologia
9.
Proc Biol Sci ; 290(1990): 20222203, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629117

RESUMO

Abandonment of agricultural lands promotes the global expansion of secondary forests, which are critical for preserving biodiversity and ecosystem functions and services. Such roles largely depend, however, on two essential successional attributes, trajectory and recovery rate, which are expected to depend on landscape-scale forest cover in nonlinear ways. Using a multi-scale approach and a large vegetation dataset (843 plots, 3511 tree species) from 22 secondary forest chronosequences distributed across the Neotropics, we show that successional trajectories of woody plant species richness, stem density and basal area are less predictable in landscapes (4 km radius) with intermediate (40-60%) forest cover than in landscapes with high (greater than 60%) forest cover. This supports theory suggesting that high spatial and environmental heterogeneity in intermediately deforested landscapes can increase the variation of key ecological factors for forest recovery (e.g. seed dispersal and seedling recruitment), increasing the uncertainty of successional trajectories. Regarding the recovery rate, only species richness is positively related to forest cover in relatively small (1 km radius) landscapes. These findings highlight the importance of using a spatially explicit landscape approach in restoration initiatives and suggest that these initiatives can be more effective in more forested landscapes, especially if implemented across spatial extents of 1-4 km radius.


Assuntos
Ecossistema , Florestas , Biodiversidade , Árvores , Plantas
10.
Biol Rev Camb Philos Soc ; 98(3): 697-726, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36517934

RESUMO

Ephemeral resource patches (ERPs) - short lived resources including dung, carrion, temporary pools, rotting vegetation, decaying wood, and fungi - are found throughout every ecosystem. Their short-lived dynamics greatly enhance ecosystem heterogeneity and have shaped the evolutionary trajectories of a wide range of organisms - from bacteria to insects and amphibians. Despite this, there has been no attempt to distinguish ERPs clearly from other resource types, to identify their shared spatiotemporal characteristics, or to articulate their broad ecological and evolutionary influences on biotic communities. Here, we define ERPs as any distinct consumable resources which (i) are homogeneous (genetically, chemically, or structurally) relative to the surrounding matrix, (ii) host a discrete multitrophic community consisting of species that cannot replicate solely in any of the surrounding matrix, and (iii) cannot maintain a balance between depletion and renewal, which in turn, prevents multiple generations of consumers/users or reaching a community equilibrium. We outline the wide range of ERPs that fit these criteria, propose 12 spatiotemporal characteristics along which ERPs can vary, and synthesise a large body of literature that relates ERP dynamics to ecological and evolutionary theory. We draw this knowledge together and present a new unifying conceptual framework that incorporates how ERPs have shaped the adaptive trajectories of organisms, the structure of ecosystems, and how they can be integrated into biodiversity management and conservation. Future research should focus on how inter- and intra-resource variation occurs in nature - with a particular focus on resource × environment × genotype interactions. This will likely reveal novel adaptive strategies, aid the development of new eco-evolutionary theory, and greatly improve our understanding of the form and function of organisms and ecosystems.


Assuntos
Biodiversidade , Ecossistema , Biota , Evolução Biológica
11.
Remote Sens Ecol Conserv ; 9(4): 483-500, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38505567

RESUMO

Birds are useful indicators of overall biodiversity, which continues to decline globally, despite targets to reduce its loss. The aim of this paper is to understand the importance of different spatial drivers for modelling bird distributions. Specifically, it assesses the importance of satellite-derived measures of habitat productivity, heterogeneity and landscape structure for modelling bird diversity across Great Britain. Random forest (RF) regression is used to assess the extent to which a combination of satellite-derived covariates explain woodland and farmland bird diversity and richness. Feature contribution analysis is then applied to assess the relationships between the response variable and the covariates in the final RF models. We show that much of the variation in farmland and woodland bird distributions is explained (R 2 0.64-0.77) using monthly habitat-specific productivity values and landscape structure (FRAGSTATS) metrics. The analysis highlights important spatial drivers of bird species richness and diversity, including high productivity grassland during spring for farmland birds and woodland patch edge length for woodland birds. The feature contribution provides insight into the form of the relationship between the spatial drivers and bird richness and diversity, including when a particular spatial driver affects bird richness positively or negatively. For example, for woodland bird diversity, the May 80th percentile Normalized Difference Vegetation Index (NDVI) for broadleaved woodland has a strong positive effect on bird richness when NDVI is >0.7 and a strong negative effect below. If relationships such as these are stable over time, they offer a useful analytical tool for understanding and comparing the influence of different spatial drivers.

12.
Ecol Solut Evid ; 4(4)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38898889

RESUMO

Landscape heterogeneity creates diverse habitat and resources for mosquito vectors of disease. A consequence may be varied distribution and abundance of vector species over space and time dependent on niche requirements.We tested the hypothesis that landscape heterogeneity driven by urbanization influences the distribution and relative abundance of Culex pipiens, Cx. restuans, and Cx. quinquefasciatus, three vectors of West Nile virus (WNv) in the eastern North American landscape. We collected 9,803 cryptic Culex from urban, suburban, and rural sites in metropolitan Washington, District of Columbia, during the months of June-October, 2019-2021. In 2021, we also collected mosquitoes in April and May to measure early-season abundance and distribution. Molecular techniques were used to identify a subset of collected Culex to species (n = 2,461). Ecological correlates of the spatiotemporal distribution of these cryptic Culex were examined using constrained and unconstrained ordination.Seasonality was not associated with Culex community composition in June-October over three years but introducing April and May data revealed seasonal shifts in community composition in the final year of our study. Culex pipiens were dominant across site types, while Cx. quinquefasciatus were associated with urban environments, and Cx. restuans were associated with rural and suburban sites. All three species rarely coexisted.Our work demonstrates that human-mediated land-use changes influence the distribution and relative abundance of Culex vectors of WNv, even on fine geospatial scales. Site classification, percent impervious surface, distance to city center, and longitude predicted Culex community composition. We documented active Culex months before vector surveillance typically commences in this region, with Culex restuans being most abundant during April and May. Active suppression of Cx. restuans in April and May could reduce early enzootic transmission, delay the seasonal spread of WNv, and thereby reduce overall WNv burden. By June, the highest risk of epizootic spillover of WNv to human hosts may be in suburban areas with high human population density and mixed Culex assemblages that can transmit WNv between birds and humans. Focusing management efforts there may further reduce human disease burden.

13.
Proc Natl Acad Sci U S A ; 119(38): e2203385119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095174

RESUMO

Managing agricultural landscapes to support biodiversity conservation requires profound structural changes worldwide. Often, discussions are centered on management at the field level. However, a wide and growing body of evidence calls for zooming out and targeting agricultural policies, research, and interventions at the landscape level to halt and reverse the decline in biodiversity, increase biodiversity-mediated ecosystem services in agricultural landscapes, and improve the resilience and adaptability of these ecosystems. We conducted the most comprehensive assessment to date on landscape complexity effects on nondomesticated terrestrial biodiversity through a meta-analysis of 1,134 effect sizes from 157 peer-reviewed articles. Increasing landscape complexity through changes in composition, configuration, or heterogeneity significatively and positively affects biodiversity. More complex landscapes host more biodiversity (richness, abundance, and evenness) with potential benefits to sustainable agricultural production and conservation, and effects are likely underestimated. The few articles that assessed the combined contribution of linear (e.g., hedgerows) and areal (e.g., woodlots) elements resulted in a near-doubling of the effect sizes (i.e., biodiversity level) compared to the dominant number of studies measuring these elements separately. Similarly, positive effects on biodiversity are stronger in articles monitoring biodiversity for at least 2 y compared to the dominant 1-y monitoring efforts. Besides, positive and stronger effects exist when monitoring occurs in nonoverlapping landscapes, highlighting the need for long-term and robustly designed monitoring efforts. Living in harmony with nature will require shifting paradigms toward valuing and promoting multifunctional agriculture at the farm and landscape levels with a research agenda that untangles complex agricultural landscapes' contributions to people and nature under current and future conditions.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Fazendas , Conservação dos Recursos Naturais/métodos
14.
J Theor Biol ; 547: 111135, 2022 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-35490762

RESUMO

Chronic wasting disease (CWD) is a fatal disease of cervid species that continues to spread across North America and now in Europe. It poses a threat to cervid populations and the local ecological and economic communities that depend on them. Although empirical studies have shown that host home range overlap and male dispersal are important in the spread of disease, there are few mechanistic models explicitly considering those factors. We built a spatio-temporal, differential equation model for CWD spreading with restricted movement of hosts within home ranges. The model incorporates both direct and environmental transmission within and between groups as well as male dispersal. We compared the relative influence of host density, sex ratio, home range size, and male dispersal distance on the spreading speed using sensitivity analysis. We also assessed the effect of landscape heterogeneity, quantified as edge density, on the spreading speed of CWD because it jointly alters the host density and home range size. Our model binds the theoretical study of CWD spreading speed together with empirical studies on deer home ranges and sets a base for models in 2D space to evaluate management and control strategies.


Assuntos
Cervos , Doença de Emaciação Crônica , Animais , Comportamento de Retorno ao Território Vital , Masculino , Modelos Teóricos , América do Norte/epidemiologia , Doença de Emaciação Crônica/epidemiologia , Doença de Emaciação Crônica/metabolismo , Doença de Emaciação Crônica/prevenção & controle
15.
Ecol Appl ; 32(6): e2634, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35403772

RESUMO

Loss of habitats and native species, introduction of invasive species, and changing climate regimes lead to the homogenization of landscapes and communities, affecting the availability of habitats and resources for economically important guilds, such as pollinators. Understanding how pollinators and their interactions vary along resource diversity gradients at different scales may help to determine their adaptability to the current diversity loss related to global change. We used data on 20 plant-pollinator communities along gradients of flower richness (local diversity) and landscape heterogeneity (landscape diversity) to understand how the diversity of resources at local and landscape scales affected (1) wild pollinator abundance and richness (accounting also for honey bee abundance), (2) the structure of plant-pollinator networks, (3) the proportion of actively selected interactions (those not occurring by neutral processes), and (4) pollinator diet breadth and species' specialization in networks. Wild pollinator abundance was higher overall in flower-rich and heterogeneous habitats, while wild pollinator richness increased with flower richness (more strongly for beetles and wild bees) and decreased with honeybee abundance. Network specialization (H2 '), modularity, and functional complementarity were all positively related to floral richness and landscape heterogeneity, indicating niche segregation as the diversity of resources increases at both scales. Flower richness also increased the proportion of actively selected interactions (especially for wild bees and flies), whereas landscape heterogeneity had a weak negative effect on this variable. Overall, network-level metrics responded to larger landscape scales than pollinator-level metrics did. Higher floral richness resulted in a wider taxonomic and functional diet for all the study guilds, while functional diet increased mainly for beetles. Despite this, specialization in networks (d') increased with flower richness for all the study guilds, because pollinator species fed on a narrower subset of plants as communities became richer in species. Our study indicates that pollinators are able to adapt their diet to resource changes at local and landscape scales. However, resource homogenization might lead to poor and generalist pollinator communities, where functionally specialized interactions are lost. This study highlights the importance of including different scales to understand the effects of global change on pollination service through changes in resource diversity.


Assuntos
Besouros , Polinização , Animais , Abelhas , Dieta , Ecossistema , Flores , Plantas
16.
Ecol Appl ; 32(4): e2555, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35112748

RESUMO

Human land use and climate change have increased forest density and wildfire risk in dry conifer forests of western North America, threatening various ecosystem services, including habitat for wildlife. Government policy supports active management to restore historical structure and ecological function. Information on potential contributions of restoration to wildlife habitat can allow assessment of tradeoffs with other ecological benefits when prioritizing treatments. We predicted avian responses to simulated treatments representing alternative scenarios to inform landscape-scale forest management planning along the Colorado Front Range. We used data from the Integrated Monitoring in Bird Conservation Regions program to inform a hierarchical multispecies occupancy model relating species occupancy and richness with canopy cover at two spatial scales. We then simulated changes in canopy cover (remotely sensed in 2018) under three alternative scenarios, (1) a "fuels reduction" scenario representing landscape-wide 30% reduction in canopy cover, (2) a "restoration" scenario representing more nuanced, spatially variable treatments targeting historical conditions, and (3) a reference, no-change scenario. Model predictions showed areas of potential gains and losses for species richness, richness of ponderosa pine forest habitat specialists, and the ratio of specialists to generalists at two (1 km2 and 250 m2 ) spatial scales. Under both fuels reduction and restoration scenarios, we projected greater gains than losses for species richness. Surprisingly, despite restoration more explicitly targeting ecologically relevant historical conditions, fuels reduction benefited bird species richness over a greater spatial extent than restoration, particularly in the lower montane life zone. These benefits reflected generally positive species associations with moderate canopy cover promoted more consistently under the fuels reduction scenario. In practice, contemporary forest management is likely to lie somewhere between the fuels reduction and restoration scenarios represented here. Therefore, our results inform where and how active forest management can best support avian diversity. Although our study raises questions regarding the value of including landscape-scale heterogeneity as a management objective, we do not question the value of targeting finer scale heterogeneity (i.e., stand and treatment level). Rather, our results combined with those from previous work clarify the scale at which targeting structural heterogeneity and historical reference conditions can promote particular ecosystem services.


Assuntos
Ecossistema , Traqueófitas , Animais , Animais Selvagens , Aves/fisiologia , Florestas , Humanos , Pinus ponderosa/fisiologia
17.
Ecol Appl ; 32(3): e2560, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35112756

RESUMO

Biological control services of agroecosystems depend on the functional diversity of species traits. However, the relationship between arthropod traits and landscape heterogeneity is still poorly understood, especially in tropical rice agroecosystems, which harbor a high diversity of often specialized species. We investigated how landscape heterogeneity, measured by three metrics of landscape composition and configuration, influenced body size, functional group composition, dispersal ability, and vertical distribution of rice arthropods in the Philippines. We found that landscape composition and configuration acted to filter arthropod traits in tropical rice agroecosystems. Landscape diversity and rice habitat fragmentation were the two main gradients influencing rice-arthropod traits, indicating that different rice arthropods have distinct habitat requirements. Whereas small parasitoids and species mostly present in the rice canopy were favored in landscapes with high compositional heterogeneity, predators and medium-sized species occupying the base of the rice plant, including planthoppers, mostly occurred in highly fragmented rice habitats. We demonstrate the importance of landscape heterogeneity as an ecological filter for rice arthropods, identifying how the different components of landscape heterogeneity selected for or against specific functional traits. However, the contrasting effects of landscape parameters on different groups of natural enemies indicate that not all beneficial rice arthropods can be promoted at the same time when using a single land management strategy. Increasing compositional heterogeneity in rice landscapes can promote parasitoids but may also negatively affect predators. Future research should focus on identifying trade-offs between fragmented rice habitats and structurally diverse landscapes to maximize the presence of multiple groups of beneficial arthropods.


Assuntos
Artrópodes , Oryza , Animais , Biodiversidade , Ecossistema
18.
Ecol Appl ; 32(2): e2499, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34787932

RESUMO

As the Arctic region moves into uncharted territory under a warming climate, it is important to refine the terrestrial biosphere models (TBMs) that help us understand and predict change. One fundamental uncertainty in TBMs relates to model parameters, configuration variables internal to the model whose value can be estimated from data. We incorporate a version of the Terrestrial Ecosystem Model (TEM) developed for arctic ecosystems into the Predictive Ecosystem Analyzer (PEcAn) framework. PEcAn treats model parameters as probability distributions, estimates parameters based on a synthesis of available field data, and then quantifies both model sensitivity and uncertainty to a given parameter or suite of parameters. We examined how variation in 21 parameters in the equation for gross primary production influenced model sensitivity and uncertainty in terms of two carbon fluxes (net primary productivity and heterotrophic respiration) and two carbon (C) pools (vegetation C and soil C). We set up different parameterizations of TEM across a range of tundra types (tussock tundra, heath tundra, wet sedge tundra, and shrub tundra) in northern Alaska, along a latitudinal transect extending from the coastal plain near Utqiagvik to the southern foothills of the Brooks Range, to the Seward Peninsula. TEM was most sensitive to parameters related to the temperature regulation of photosynthesis. Model uncertainty was mostly due to parameters related to leaf area, temperature regulation of photosynthesis, and the stomatal responses to ambient light conditions. Our analysis also showed that sensitivity and uncertainty to a given parameter varied spatially. At some sites, model sensitivity and uncertainty tended to be connected to a wider range of parameters, underlining the importance of assessing tundra community processes across environmental gradients or geographic locations. Generally, across sites, the flux of net primary productivity (NPP) and pool of vegetation C had about equal uncertainty, while heterotrophic respiration had higher uncertainty than the pool of soil C. Our study illustrates the complexity inherent in evaluating parameter uncertainty across highly heterogeneous arctic tundra plant communities. It also provides a framework for iteratively testing how newly collected field data related to key parameters may result in more effective forecasting of Arctic change.


Assuntos
Ecossistema , Tundra , Regiões Árticas , Plantas , Solo , Incerteza
19.
PeerJ ; 9: e12476, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820198

RESUMO

Farmland birds have declined in the last decades mostly due to agriculture intensification. The Woodlark Lullula arborea, a farmland species of conservation concern and protected by the European Bird Directive, occurs in a variety of habitats across its geographic range. Although habitat heterogeneity has been recognized as a key feature, the preference or avoidance of particular habitat attributes might differ across its range because different localities may have distinct conditions. Such variation would challenge conservation efforts at the local level. Our aim was to assess habitat associations of Woodlarks and determine whether the habitat attributes identified as important in other locations across its range could be generalised and applied to Austrian populations. In addition, habitat associations can be influenced by land-use change. We examined changes in land use from 2007 to 2016 in 15 municipalities surrounding areas occupied by Woodlarks. We quantified the composition and configuration of the local landscape surrounding 18 singing males' territories and 16 non-territory sites. We found that the probability of Woodlarks territories increased with landscape heterogeneity between 50% and 70%, increased with dispersed bare soil patches, decreased with overall patch density and were away from dirt roads. Contrary to our expectation, there was no indication of land-use change. In contrast to previous studies, vegetation height, the presence and proximity to woodland were not identified as important habitat characteristics. Thus, some conservation recommendations can be derived from other localities, for example, maintaining or enhancing landscape heterogeneity. However, others should be adapted to local conditions. In Austria, conservation efforts should focus on including dispersed patches of bare soil and limiting the development of dirt roads nearby Woodlark territories, in addition to promoting a heterogeneous landscape.

20.
Trends Ecol Evol ; 36(10): 919-930, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34362590

RESUMO

We challenge the widespread appraisal that organic farming is the fundamental alternative to conventional farming for harnessing biodiversity in agricultural landscapes. Certification of organic production is largely restricted to banning synthetic agrochemicals, resulting in limited benefits for biodiversity but high yield losses despite ongoing intensification and specialisation. In contrast, successful agricultural measures to enhance biodiversity include diversifying cropland and reducing field size, which can multiply biodiversity while sustaining high yields in both conventional and organic systems. Achieving a landscape-level mosaic of natural habitat patches and fine-grained cropland diversification in both conventional and organic agriculture is key for promoting large-scale biodiversity. This needs to be urgently acknowledged by policy makers for an agricultural paradigm shift.


Assuntos
Biodiversidade , Agricultura Orgânica , Agricultura , Conservação dos Recursos Naturais , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA