Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 862
Filtrar
1.
Mar Pollut Bull ; 205: 116638, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959571

RESUMO

pH reduction (Low pH), microplastic (MP), and lanthanum (La) are substantial stressors due to their increasing trends in marine ecosystems and having adverse effects on marine species. This study investigates the single and combined effects of those stressors (Low pH: 7.45, polyethylene MP: 26 µg L-1, and La: 9 µg L-1) on the physiology and histology of sea urchin Arbacia lixula. Regarding physiological results, while the coelomocytes' quantity was slightly affected by stressors, their viability was significantly affected. The coelomocyte count and viability were suppressed most in Low pH-MP-La treatment. The stressors did not impact the respiration rate. According to the histological examination results, the crypt (villi-like structure) was shorter, and epithelial layers were thinner in single and dual stress treatments like MP, Low pH, Low pH-La, and MP-La. Overall, we suggest that the combination of variable types of those stressors causes negative effects on sea urchin's physiology and histology.

2.
Regul Toxicol Pharmacol ; 151: 105670, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936798

RESUMO

Given the widespread applications in industrial and agricultural production, the health effects of rare earth elements (REEs) have garnered public attention, and the genotoxicity of REEs remains unclear. In this study, we evaluated the genetic effects of lanthanum nitrate, a typical representative of REEs, with guideline-compliant in vivo and in vitro methods. Genotoxicity assays, including the Ames test, comet assay, mice bone marrow erythrocyte micronucleus test, spermatogonial chromosomal aberration test, and sperm malformation assay were conducted to assess mutagenicity, chromosomal damage, DNA damage, and sperm malformation. In the Ames test, no statistically significant increase in bacterial reverse mutation frequencies was found as compared with the negative control. Mice exposed to lanthanum nitrate did not exhibit a statistically significant increase in bone marrow erythrocyte micronucleus frequencies, spermatogonial chromosomal aberration frequencies, or sperm malformation frequencies compared to the negative control (P > 0.05). Additionally, after a 24-h treatment with lanthanum nitrate at concentrations of 1.25, 5, and 20 µg/ml, no cytotoxicity was observed in CHL cells. Furthermore, the comet assay results indicate no significant DNA damage was observed even after exposure to high doses of lanthanum nitrate (20 µg/ml). In conclusion, our findings suggest that lanthanum nitrate does not exhibit genotoxicity.

3.
Sci Total Environ ; 945: 173960, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897472

RESUMO

Rare earth elements (REEs) have emerged as contaminants in airborne particulate matter (PM); however, their anthropogenic sources remain poorly quantified, and associated health risks are unknown. This study investigates the REE distribution across eight sizes of airborne PM during July and December in Qingdao, a major Chinese port city. Our results reveal a single coarse-mode distribution with REE concentrations. In contrast, fine PM (size: 0.43-2.1 µm) exhibits notable enrichment of La and Ce compared to Al and other REEs. This study traces La and Ce enrichment to fluid catalytic cracking catalysts (FCCC)-related sources, including refinery and ship emissions, by comparing the REE fractionation in samples with potential sources. We quantify the contributions from FCCC-related sources to La (July: 33.6 % ± 3.2 %, Dec.: 46.4 % ± 5.2 %) and Ce (July: 16.5 % ± 14.3 %, Dec.: 30.3 % ± 12.2 %) by comparing measured concentrations with predictions derived from neighboring REEs, a method previously used exclusively in aquatic systems. For the first time, supply ratios of refinery and ship to FCCC-related La are calculated using a two-component mixing model based on the [La]FCCC/[V]anth, revealing the dominance of refinery emissions (July: 97.3 % ± 0.6 %, Dec.: 99.6 % ± 0.1 %). Furthermore, a global review of La and Ce anomalies that integrates published REE data with our findings reveals a widespread distribution of positive anomalies. The significantly positive correlation between La and Ce anomalies underscores FCCC-related emissions as a global source in fine PM, contributing 0-92 % (mean: 35 % ± 33 %) for La and 0-72 % (mean: 21 % ± 24 %) for Ce. Although the non-carcinogenic health risks of Ce are generally low globally, concerns should be raised in areas near source emissions, where Ce health risks sharply increased along with its concentrations. There is urgently need to establish a threshold value for La, owing to its global enrichment. This study provides novel insights into the sources and health implications of REEs in airborne PM.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Metais Terras Raras , Material Particulado , Metais Terras Raras/análise , Material Particulado/análise , Poluentes Atmosféricos/análise , China , Medição de Risco , Humanos , Poluição do Ar/estatística & dados numéricos
4.
Materials (Basel) ; 17(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38893760

RESUMO

Al-10%Si-2%Cu alloys have been widely used in high-value industries (e.g., aerospace and automobiles) because of their lower specific gravity; however, galvanic corrosion rendered these alloys to have poor corrosion resistance. Therefore, the microstructure and corrosion properties of Al-10%Si-2%Cu alloys were investigated with respect to the lanthanum (La) content. All Al alloy samples were synthesized using gravity casting, with added La contents of 0.00, 0.25, 0.50, 0.75, and 1.00 wt%, and were characterized using microstructural characteristics analysis and electrochemical tests. Adding 0.5 wt% La (xLa-0.5) indicated the finest structure, which had a 4% lower α-Al area fraction than the La-free alloy (xLa-0). However, the area fraction of a 1 wt% La-added (xLa-1) alloy was 2.4% higher than that of xLa-0. The corrosion current density (Icorr) of the xLa-0.5 was 1.09 µA/cm2, representing a 68% decrease as compared to that of xLa-0, and xLa-0.5 reached the highest polarization resistance value (7.32 × 103 Ω·cm2). The improvement in corrosion resistance of xLa-0.5 was due to the rapid and dense formation of a passivation layer induced by its fine structure, as well as the precipitated phase by enhancing the dispersibility of Cu.

5.
Materials (Basel) ; 17(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38894022

RESUMO

LaFeO3 thin films were successfully epitaxially grown on single-crystalline SrTiO3 substrates by the one-step hydrothermal method at a temperature of 320 °C in a 10 mol/L KOH aqueous solution using La(NO3)3 and Fe(NO3)3 as the raw materials. The growth of the films was consistent with the island growth mode. Scanning electronic microscopy, elemental mapping, and atomic force microscopy demonstrate that the LaFeO3 thin films cover the SrTiO3 substrate thoroughly. The film subjected to hydrothermal treatment for 4 h exhibits a relatively smooth surface, with an average surface roughness of 10.1 nm. X-ray diffraction in conventional Bragg-Brentano mode shows that the LaFeO3 thin films show the same out-of-plane orientation as that of the substrate (i.e., (001)LaFeO3||(001)SrTiO3). The in-plane orientation of the films was analyzed by φ-scanning, revealing that the orientational relationship is [001]LaFeO3||[001]SrTiO3. The ω-rocking curve indicates that the prepared LaFeO3 films are of high quality with no significant mosaic defects.

6.
Ecotoxicol Environ Saf ; 281: 116576, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38878562

RESUMO

The accumulation of rare earth elements (REEs) in the global environment poses a threat to plant health and ecosystem stability. Stomata located on leaves serve as the primary site for plant responses to REE-related threats. This study focused on lanthanum [La(III)], a prevalent REE in the atmospheric environment. Using interdisciplinary techniques, it was found that La(III) (≤80 µM) interfered with the fundamental rhythms of stomatal opening, related gene expression, and evapotranspiration in plants. Specifically, when exposed to low concentrations of La(III) (15 and 30 µM), the expression levels of six genes were increased, stomatal opening was enhanced, and the evapotranspiration rate was accelerated. The interference on stomatal rhythms was enhanced with higher concentrations of La(III) (60 and 80 µM), increasing the expression levels of six genes, stomatal opening, and evapotranspiration rate. To counter the interference of low concentrations of La(III) (15 and 30 µM), plants accelerated nutrient replenishment through La(III)-induced endocytosis, which the redundant nutrients enhanced photosynthesis. However, replenished nutrients failed to counter the disruption of plant biological rhythms at higher concentrations of La(III) (60 and 80 µM), thus inhibiting photosynthesis due to nutrient deficit. The interference of La(III) on these biological rhythms negatively affected plant health and ecosystem stability.

7.
Int J Biol Macromol ; 270(Pt 1): 132193, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723816

RESUMO

Developing a sorbent for the removal of La3+ ions from wastewater offers significant environmental and economic advantages. This study employed an ion-imprinting process to integrate La3+ ions into a newly developed derivative of aminoguanidine-chitosan (AGCS), synthesized via an innovative method. The process initiated with the modification of chitosan by attaching cyanoacetyl groups through amide bonds, yielding cyanoacetyl chitosan (CAC). This derivative underwent further modification with aminoguanidine to produce the chelating AGCS biopolymer. The binding of La3+ ions to AGCS occurred through imprinting and cross-linking with epichlorohydrin (ECH), followed by the extraction of La3+, resulting in the La3+ ion-imprinted sorbent (La-AGCS). Structural confirmation of these chitosan derivatives was established through elemental analysis, FTIR, and NMR. SEM analysis revealed that La-AGCS exhibited a more porous structure compared to the smoother non-imprinted polymer (NIP). La-AGCS demonstrated superior La3+ capture capability, with a maximum capacity of 286 ± 1 mg/g. The adsorption process, fitting the Langmuir and pseudo-second-order models, indicated a primary chemisorption mechanism. Moreover, La-AGCS displayed excellent selectivity for La3+, exhibiting selectivity coefficients ranging from 4 to 13 against other metals. This study underscores a strategic approach in designing advanced materials tailored for La3+ removal, capitalizing on specific chelator properties and ion-imprinting technology.


Assuntos
Quitosana , Guanidinas , Lantânio , Impressão Molecular , Águas Residuárias , Poluentes Químicos da Água , Quitosana/química , Lantânio/química , Águas Residuárias/química , Adsorção , Guanidinas/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Impressão Molecular/métodos , Purificação da Água/métodos , Íons , Cinética
8.
Sci Total Environ ; 932: 172878, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697541

RESUMO

Excessive phosphorus (P) in eutrophic water induces cyanobacterial blooms that aggravate the burden of in-situ remediation measures. In order to ensure better ecological recovery, Flock & Lock technique has been developed to simultaneously sink cyanobacteria and immobilize P but requires a combination of flocculent and P inactivation agent. Here we synthesized a novel lanthanum-modified pyroaurite (LMP), as an alternative for Flock & Lock of cyanobacteria and phosphorus at the background of rich humic acid and suspended solids. LMP shows a P adsorption capacity of 36.0 mg/g and nearly 100 % removal of chlorophyll-a (Chl-a), turbidity, UV254 and P at a dosage (0.3 g/L) much lower than the commercial analogue (0.5 g/L). The resultant sediment (98.2 % as immobile P) exhibits sound stability without observable release of P or re-growth of cyanobacteria over a 50-day incubation period. The use of LMP also constrains the release of toxic microcystins to 1.4 µg/L from the sunk cyanobacterial cells, outperforming the commonly used polyaluminum chloride (PAC). Similar Flock & Lock efficiency could also be achieved in real eutrophic water. The outstanding Flock & Lock performance of LMP is attributable to the designed La modification. During LMP treatment, La acts as not only a P binder by formation of LaPO4, but also a coagulant to create a synergistic effect with pyroaurite. The controlled hydrolysis of surface La(III) over pyroaurite aided the possible formation of La(III)-pyroaurite networking structure, which significantly enhanced the Flock & Lock process through adsorption, charge neutralization, sweep flocculation and entrapment. In the end, the preliminary economic analysis is performed. The results demonstrate that LMP is a versatile and cost-effective agent for in-situ remediation of eutrophic waters.


Assuntos
Eutrofização , Lantânio , Microcystis , Fósforo , Lantânio/química , Poluentes Químicos da Água/análise , Hidróxido de Alumínio/química , Adsorção , Recuperação e Remediação Ambiental/métodos
9.
Carbohydr Polym ; 338: 122183, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763721

RESUMO

Phosphorus is a critical factor in the control of eutrophication. We developed a three-dimensional porous, bimetallic-modified adsorbent La-Ca-CS/ATP to remove excess phosphate from water. Langmuir model showed that the theoretical adsorption capacity of La-Ca-CS/ATP was up to 123 mg P/g. The amount of La and Ca leached by La-Ca-CS/ATP was small, and the adsorption of 36.08 mg P/g was maintained during the five cycles of La-Ca-CS/ATP. The La-Ca-CS/ATP adsorption mechanism mainly involved surface precipitation, ligand exchange, electrostatic attraction, and inner-sphere complexation. Molecular dynamics demonstrated that La and Ca had complementary effects on binding sites and energy barriers within the range of 0.5-0.7 nm and 1.2-2 nm, enhancing the adsorption effect of La-Ca-CS/ATP. The life cycle assessment results showed that adding calcium could help reduce the environmental impact of lanthanum and chitosan. The production of La-Ca-CS/ATP adsorbed 73.88 P mg/g and emitted 24.73 kg CO2 eq, which was less than other adsorbents.

10.
Sci Rep ; 14(1): 11644, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773135

RESUMO

Herein, a novel nanocomposite based on lanthanum zinc ferrite and nickel tungstate was created by incorporation between (MMT-jeffamine-400) nanoparticles (NPs), chloromethyl styrene as a binder and polymethyl methacrylate monomer using solution polymerization. The as-designed nanocomposites were employed to confiscate xylenol orange "X.O" as an acidic dye and rhodamine B "RhB" as "an amphoteric dye" from colored wastewater. The impact of several parameters such as solution pH, initial dye concentration, the effect of time, and the effect of temperature was explored. The consequences indicated that the pure organoclay had negligible adsorption while that composed of organoclay with PMMA@CMS-polymer incorporated with LaZnFe2O4@NiWO4 particles detached more than 90% for xylenol orange (XO) and 93% for "rhodamine B" molecules. Electrostatic interactions are the predominant factor in the adsorption of cationic and amphoteric adsorbates, as proven by zeta-potential measurement. Additionally, the adsorbent may be regenerate and utilized up to five times with good adsorption capabilities by adding sodium hydroxide. As a result, the removal can be effectively accomplished using the nanocomposite as an adsorbent. The actual and theoretical adsorption capacity values for both dyes at all doses were closely matched, which supported the adsorption kinetics data that fit the pseudo-first order rate model well. The adsorption data's correlation values (0.995 for XO and 0.98 for RhB) indicated that both dyes' Langmuir adsorption would perform well. Furthermore, the adsorption of XO and RhB dyes on the adsorbent is confirmed to be a viable reaction by the negative values of ΔGo. The enhanced adsorbent material for the removal of amphoteric and anionic dyes from waste water is the synthesized LaZnFe2O4 supported NiWO4@D400-MMT@CMS/MMA nanocomposites, which exhibits a reusability affinity of up to five cycles.

11.
ACS Appl Mater Interfaces ; 16(14): 17361-17370, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38556802

RESUMO

Chiral metal-organic frameworks (MOFs) have attracted much attention due to their highly tunable regular microporous structures. However, chiral electrochemical recognition based on chiral MOFs is often limited by poor charge separation and slow charge transfer kinetics. In this case, C60 can be encapsulated into the cavity of [La(BTB)]n by virtue of host-guest interactions through π-π stacking to synthesize the chiral composite C60@[La(BTB)]n and amplify electrochemically controlled enantioselective interactions with the target enantiomers. A large electrostatic potential difference is generated in chiral C60@[La(BTB)]n due to the host-guest interaction and the inhomogeneity of the charge distribution, leading to the generation of a strong built-in electric field and thus an overall enhancement of the conductivity of the chiral material. Their enantioselective detection of tryptophan enantiomers was demonstrated by electrochemical measurement. The results showed that chiral MOF materials can be used for enantiomeric recognition. It is worth noting that this new material derived from the concept of host-guest interaction to enhance charge separation opens up unprecedented possibilities for future enantioselective recognition and separation.

12.
Materials (Basel) ; 17(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38591626

RESUMO

In this study, tea waste was used as a raw material, and TBC (tea waste biochar) was prepared by pyrolysis at 700 °C. La(NO3)3·6H2O was used as the modifier to optimize one-way modification; the orthogonal experiment was undertaken to determine the optimal preparation conditions; and La-TBC (lanthanum-modified biochar) was obtained. The key factors for the adsorption of fluoride by La-TBC were investigated by means of batch adsorption experiments, and kinetics and isothermal adsorption experiments were carried out on the adsorption of fluoride in geothermal hot spring water. The adsorption mechanism of fluoride by La-TBC was analyzed via characterization methods such as SEM-EDS (Scanning Electron Microscope and Energy Dispersive Spectrometer), BET (Brunauer-Emmett-Teller), FTIR (Fourier transform infrared), XRD (X-ray diffraction), and so on. The results show that La-TBC had the best adsorption effect on fluoride at pH 7. The process of adsorption of fluoride follows the pseudo-second-order kinetics and Langmuir isothermal model, and the maximum theoretical adsorption quantity was 47.47 mg/g at 80 °C, while the removal rate of fluoride from the actual geothermal hot spring water reached more than 95%. The adsorption process was dominated by the monolayer adsorption of chemicals, and the mechanisms mainly include pore filling, ion exchange, and electrostatic interaction.

13.
Expert Opin Drug Saf ; : 1-8, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38602862

RESUMO

BACKGROUND: Lanthanum carbonate is widely used to manage serum phosphate and calcium levels in end-stage kidney disease (ESKD) patients, yet comprehensive long-term safety data are lacking. This study leverages the FDA Adverse Event Reporting System (FAERS) to assess the extended safety profile of lanthanum carbonate. RESEARCH DESIGN AND METHODS: We analyzed FAERS data (2004-2022) to study the association between lanthanum carbonate and adverse events (AEs). Using MedDRA v25.0, we identified risk signals through System Organ Classes (SOCs) and Preferred Terms (PTs). Disproportionality analyzes quantified lanthanum carbonate-associated AE signals. RESULTS: Among 3,284 reports, 2,466 were primary suspected AEs linked to lanthanum carbonate. Males reported AEs more frequently than females. Patients aged over 64 represented the majority. Median onset time for lanthanum carbonate-related AEs was 146 days. Gastrointestinal disorders were prevalent. We identified 16 new signals, including stress, abnormal hepatic function, cholelithiasis, bile duct stone, gastric cancer, and adenocarcinoma gastric. Stress was notable, particularly in male patients over 65 and those with lower weight. CONCLUSIONS: This study affirms lanthanum carbonate's long-term safety for reducing elevated blood phosphorus levels. While gastrointestinal disorders were common, attention must focus on emerging AEs, particularly stress, especially in elderly patients.

14.
Sci Rep ; 14(1): 7716, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565595

RESUMO

A simple technique was utilized to fabricate pure hexagonal La2O3 nanorods by utilizing lanthanum(III) nitrate hexahydrate (La(NO3)3·6H2O) and ammonia (NH4OH). The La2O3 nanoparticles were analyzed using XRD, TGA, Raman, SEM, FTIR, TEM, PL spectroscopy, and Mott-Schottky techniques. The XRD analysis confirmed the production of La(OH)3 nanorods under appropriate conditions, which were then successfully converted into La2O2CO3 and finally into La2O3 nanorods through annealing. The TGA analysis showed that the total weight loss was due to water evaporation and the dissolution of minimal moisture present in the environment. The FTIR analysis confirmed the presence of functional groups. The SEM analysis revealed changes in morphology. The TEM analysis to determine the particle size. The PL findings showed three emission peaks at 390, 520, and 698 nm due to interband transitions and defects in the samples. The Mott-Schottky analysis demonstrated that the flatband potential and acceptor density varied with annealing temperature, ranging from 1 to 1.2 V and 2 × 1018 to 1.4 × 1019 cm-3, respectively. Annealing at 1000 °C resulted in the lowest resistance to charge transfer (Rct).

15.
Sci Total Environ ; 929: 172560, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38641102

RESUMO

Lanthanum (La), the second most abundant rare earth element (REE) is emerging as an environmental issue, with the potential to impact ecosystems and human health. Major sources of soil contamination by La include agricultural, and industrial activities. Lanthanum is non-essential for plant growth but accumulates in various plant parts. The uptake of La by plants is intricately influenced by various factors such as soil pH, redox potential, cation exchange capacity, presence of organic acids and rhizosphere composition. These factors significantly impact the availability and absorption of La ions. Lanthanum impact on plants depends on soil characteristics, cultivated species, developmental stage, La concentration, treatment period, and growth conditions. Excessive La concentrations affect cell division, DNA structure, nutrient uptake, and photosynthesis and induce toxicity symptoms. Plants employ detoxification mechanisms like vacuolar sequestration, osmolyte synthesis, and antioxidant defense system. However, higher concentrations of La can overwhelm these defense mechanisms, leading to adverse effects on plant growth and development. Further, accumulation of La in plants increases the risk for human exposure. Strategies to mitigate La toxicity are, therefore, vital for ecosystem protection. The application of phytoremediation, supplementation, chelation, amendments, and biosorption techniques contributes to the mitigation of La toxicity. This review provides insights into La sources, uptake, toxicity, and alleviation strategies in plants. Identifying research gaps and discussing advancements aims to foster a holistic understanding and develop effective strategies for protecting plant health and ecosystem resilience against La contamination.


Assuntos
Biodegradação Ambiental , Lantânio , Plantas , Poluentes do Solo , Lantânio/toxicidade , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Plantas/efeitos dos fármacos , Plantas/metabolismo , Solo/química
16.
ACS Appl Mater Interfaces ; 16(17): 22421-22432, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634639

RESUMO

Lanthanides are largely used in optoelectronics as dopants to enhance the physical and optical properties of semiconducting devices. In this study, lanthanum(III)hydroxide nanoparticles (La(OH)3NPs) are used as a dopant of polyethylenimine (PEI)-functionalized nitrogen (N)-doped graphene quantum dots (PEI-NGQDs). The La(OH)3NPs-dopedPEI-NGQDs nanocomposites are prepared from La(NO)3 in a single step by a green novel method and are characterized by Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Deposited over an n-type Si wafer, the La(OH)3NPs-dopedPEI-NGQDs nanocomposites form Schottky diodes. The I-V characteristics and the photoresponse of the diodes are investigated as a function of the illumination intensity in the range 0-110 mW cm-2 and at room temperature. It is found that the rectification ratio and ideality factor of the diode decrease, while the Schottky barrier and series resistance increase with the enhancing illuminations. As a photodetector, the La(OH)3NPs-dopedPEI-NGQDs/n-Si heterojunction exhibits an appreciable responsivity of 3.9 × 10-3 AW-1 under 22 mW cm-2 at -0.3 V bias and a maximum detectivity of 8.7 × 108 Jones under 22 mW cm-2 at -0.5 V. This study introduces the green synthesis and presents the structural, electrical, and optoelectronic properties of La(OH)3NPs-dopedPEI-NGQDs, demonstrating that these nanocomposites can be promising for optoelectronic applications.

17.
Environ Sci Pollut Res Int ; 31(20): 29584-29594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38580876

RESUMO

Phosphate removal from water by lanthanum-modified tobermorite synthesized from fly ash (LTFA) with different lanthanum concentrations was studied. LTFA samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and Brunauer‒Emmett‒Teller specific surface area analysis. The results showed that the LTFA samples were mainly composed of mesoporous tobermorite-11 Å, and LTFA1 with a lanthanum concentration of 0.15 M had a high specific surface area (83.82 m2/g) and pore volume (0.6778 cm3/g). The phosphate adsorption capacities of LTFA samples were highest at pH 3 and gradually decreased with increasing pH. The phosphate adsorption kinetics data on LTFA samples were most accurately described by the Elovich model. The adsorption isotherms were in the strongest agreement with the Temkin model, and LTFA1 showed the highest phosphate adsorption capacity (282.51 mg P/g), which was higher than that of most other lanthanum-modified adsorbents. LTFA1 presented highly selective adsorption of phosphate with other coexisting ions (HCO3-, Cl-, SO42-, and NO3-). In addition, phosphate was adsorbed onto LTFA samples by forming inner-sphere phosphate complexes and amorphous lanthanum phosphate. This study provides technical support for development of efficient fly ash-based phosphate adsorbents.


Assuntos
Cinza de Carvão , Lantânio , Fosfatos , Lantânio/química , Cinza de Carvão/química , Fosfatos/química , Adsorção , Cinética , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/química
18.
EFSA J ; 22(4): e8729, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601863

RESUMO

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of lanthanum carbonate octahydrate as a zootechnical feed additive for dogs. The additive is already authorised for use in feed for cats. The FEEDAP Panel concluded that the additive lanthanum carbonate octahydrate is safe for adult dogs at the maximum recommended level of 7500 mg/kg complete feed. The additive is not irritant to skin or eyes, is not a skin sensitiser and exposure by inhalation is considered to be unlikely. The Panel also concluded that lanthanum carbonate octahydrate is efficacious in the reduction of phosphorus bioavailability in adult dogs at the minimum inclusion level of 1500 mg/kg complete feed.

19.
J Environ Manage ; 359: 120938, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669888

RESUMO

The effective purification of phosphate-containing wastewater is considered as increasingly important. In this study, a highly effective LC-CNT film was developed for efficient phosphate removal. Kinetic results showed that the adsorbent exhibited an improved mass transfer efficiency and a fast adsorption rate during adsorption (reaching 80% and 100% equilibrium adsorption capacity within 175 and 270 min, respectively). Kinetic model analysis suggested that the adsorption was a combined chemical physical process. Isotherm study revealed that the LC-CNT film showed a superior adsorption capacity (178.6 mg/g, estimated from the Langmuir model) with multiple adsorption mechanisms. pH study suggested that surface complexation and ligand exchange played important roles during adsorption, and the adsorbent worked well within the pH range of 3-7 with little La leakage. The ionic strength and competing anions showed little influence on the adsorbent effectiveness except for the carbonate and sulfate ions. The characterization and mechanism study revealed that the phosphate adsorption of the LC-CNT film was controlled by inner-sphere complexation, outer-sphere complexation and surface precipitation. The LC-CNT film also showed excellent regenerability and stability in cycling runs, further demonstrating its potential in industrial applications.


Assuntos
Lantânio , Nanotubos de Carbono , Fosfatos , Poluentes Químicos da Água , Fosfatos/química , Lantânio/química , Adsorção , Nanotubos de Carbono/química , Cinética , Poluentes Químicos da Água/química , Purificação da Água/métodos , Águas Residuárias/química , Concentração de Íons de Hidrogênio , Concentração Osmolar
20.
J Environ Manage ; 356: 120502, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479281

RESUMO

Effective removal of phosphorus from water is crucial for controlling eutrophication. Meanwhile, the post-disposal of wetland plants is also an urgent problem that needs to be solved. In this study, seedpods of the common wetland plant lotus were used as a new raw material to prepare biochar, which were further modified by loading nano La(OH)3 particles (LBC-La). The adsorption performance of the modified biochar for phosphate was evaluated through batch adsorption and column adsorption experiments. Adsorption performance of lotus seedpod biochar was significantly improved by La(OH)3 modification, with adsorption equilibrium time shortened from 24 to 4 h and a theoretical maximum adsorption capacity increased from 19.43 to 52.23 mg/g. Moreover, LBC-La maintained a removal rate above 99% for phosphate solutions with concentrations below 20 mg/L. The LBC-La exhibited strong anti-interference ability in pH (3-9) and coexisting ion experiments, with the removal ratio remaining above 99%. The characterization analysis indicated that the main mechanism is the formation of monodentate or bidentate lanthanum phosphate complexes through inner sphere complexation. Electrostatic adsorption and ligand exchange are also the mechanisms of LBC-La adsorption of phosphate. In the dynamic adsorption experiment of simulated wastewater treatment plant effluent, the breakthrough point of the adsorption column was 1620 min, reaching exhaustion point at 6480 min, with a theoretical phosphorus saturation adsorption capacity of 6050 mg/kg. The process was well described by the Thomas and Yoon-Nelson models, which indicated that this is a surface adsorption process, without the internal participation of the adsorbent.


Assuntos
Lotus , Poluentes Químicos da Água , Fósforo , Águas Residuárias , Fosfatos/química , Carvão Vegetal , Adsorção , Lantânio/química , Poluentes Químicos da Água/química , Sementes , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...