Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39033545

RESUMO

In situ 3D printing is attractive for the direct repair of bone defects in underdeveloped countries and in emergency situations. So far, the lack of an interesting method to produce filament using FDA-approved biopolymers and nanoceramics combined with a portable strategy limits the use of in situ 3D printing. Herein, we investigated the osseointegration of new nanocomposite filaments based on polylactic acid (PLA), laponite (Lap), and hydroxyapatite (Hap) printed directly at the site of the bone defect in rats using a portable 3D printer. The filaments were produced using a single-screw extruder (L/D = 26), without the addition of solvents that can promote the toxicity of the materials. In vitro performance was evaluated in the cell differentiation process with mesenchymal stem cells (MSC) by an alkaline phosphatase activity test and visualization of mineralization nodules; a cell viability test and total protein dosage were performed to evaluate cytotoxicity. For the in vivo analysis, the PLA/Lap composite filaments with a diameter of 1.75 mm were printed directly into bone defects of Wistar rats using a commercially available portable 3D printer. Based on the in vitro and in vivo results, the in situ 3D printing technique followed by rapid cooling proved to be promising for bone tissue engineering. The absence of fibrous encapsulation and inflammatory processes became a good indicator of effectiveness in terms of biocompatibility parameters and bone tissue formation, and the use of the portable 3D printer showed a significant advantage in the application of this material by in situ printing.

2.
Molecules ; 28(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836672

RESUMO

Agro-industrial residues have attracted attention for their applications in the field of biodegradable packaging. Recently, our research group has developed onion-based films with promising properties for this type of application due to their non-toxicity, biocompatibility and biodegradability. Therefore, in this study, we investigated the effect of Laponite clay concentration on the physicochemical and antioxidant properties of the onion-based films, which were prepared by a casting method. The XRD and FTIR data confirm the presence of the mineral clay in the onion-based films. These findings are consistent with those obtained from FE-SEM analysis, which revealed the presence of typical Laponite grains. In terms of wettability, the results show that the clay decreases the hydrophilic character of the material but slightly increases the water vapor permeation. Optical characterization revealed that the materials exhibited zero transmittance in the UV region and increased opacity in the visible region for composites containing 5% and 10% Laponite. Furthermore, the antioxidant test demonstrated higher antioxidant potential in the composites compared to the pure films. Consequently, these results suggest that the formation of Laponite and onion composites could be an essential strategy for developing natural polymers in the field of food contact packaging.

3.
Pharmaceutics ; 15(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37631350

RESUMO

(1) Background: Riparin-A presents several pharmacological activities already elucidated, such as antimicrobial modulator, antileishmania, anxiolytic, anti-inflammatory, antinociceptive, and antioxidant. Even with important bioactive effects, the applicability of Riparin-A is limited due to its low solubility in water, impairing its dissolution in biological fluids. Thus, the objective of this study was to develop a nanohybrid based on Riparin-A and Laponite to obtain a better dissolution profile and evaluate its cytotoxic potential. (2) Methods: The formation of a hybrid system was highlighted by X-ray powder diffraction, infrared spectroscopy, and thermal analysis. Solubility, dissolution, and cytotoxicity studies were performed; (3) Results: An increase in the solubility and aqueous dissolution rate of Riparin-A was observed in the presence of clay. Diffractometric analysis of the hybrid system suggests the amorphization of Riparin-A, and thermal analyses indicated attenuation of decomposition and melting of the Riparin-A after interaction with clay. Furthermore, the nanosystem did not exhibit cytotoxic activity on normal and tumorigenic lines. (4) Conclusions: These results are promising for the development of the Riparin-A/Laponite nanosystem for therapeutic purposes, suggesting an increase in the range of possible routes of administration and bioavailability of this bioactive compound.

4.
Pharmaceutics ; 15(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37376082

RESUMO

A healing material must have desirable characteristics such as maintaining a physiological environment, protective barrier-forming abilities, exudate absorption, easy handling, and non-toxicity. Laponite is a synthetic clay with properties such as swelling, physical crosslinking, rheological stability, and drug entrapment, making it an interesting alternative for developing new dressings. This study evaluated its performance in lecithin/gelatin composites (LGL) as well as with the addition of maltodextrin/sodium ascorbate mixture (LGL MAS). These materials were applied as nanoparticles, dispersed, and prepared by using the gelatin desolvation method-eventually being turned into films via the solvent-casting method. Both types of composites were also studied as dispersions and films. Dynamic Light Scattering (DLS) and rheological techniques were used to characterize the dispersions, while the films' mechanical properties and drug release were determined. Laponite in an amount of 8.8 mg developed the optimal composites, reducing the particulate size and avoiding the agglomeration by its physical crosslinker and amphoteric properties. On the films, it enhanced the swelling and provided stability below 50 °C. Moreover, the study of drug release in maltodextrin and sodium ascorbate from LGL MAS was fitted to first-order and Korsmeyer-Peppas models, respectively. The aforementioned systems represent an interesting, innovative, and promising alternative in the field of healing materials.

5.
J Funct Biomater ; 13(2)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35645261

RESUMO

Herein, a nanocomposite hydrogel was produced using laponite and polyethylene-glycol diacrylate (PEGDA), with or without Irgacure (IG), for application in bone tissue regeneration. The nanocomposites were characterized by X-ray diffraction (XRD), Fourier-Transform infrared spectroscopy (FTIR), and thermal analysis (TG/DTG). The XRD results showed that the crystallographic structure of laponite was preserved in the nanocomposite hydrogels after the incorporation of PEGDA and IG. The FTIR results indicated that PEGDA polymer chains were entangled on laponite in hydrogels. The TG/DTG found that the presence of laponite (Lap) improved the thermal stability of nanocomposite hydrogel. The toxicity tests by Artemia salina indicated that the nanocomposite hydrogels were not toxic, because the amount of live nauplii was 80.0%. In addition, in vivo tests demonstrated that the hydrogels had the ability to regenerate bone in a bone defect model of the tibiae of osteopenic rats. For the nanocomposite hydrogel (PEGDA + Lap nanocomposites + UV light), the formation of intramembranous bone in the soft callus was more intense in 66.7% of the animals. Thus, the results presented in this study evidence that nanocomposite hydrogels obtained from laponite and PEGDA have the potential for use in bone regeneration.

6.
Gels ; 7(2)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068868

RESUMO

Multi-polymeric nanocomposite hydrogels with multi-functional characteristics have been engineered with high interest around the globe. The ease in fine tunability with maintained compliance makes an array of nanocomposite biomaterials outstanding candidates for the biomedical sector of the modern world. In this context, the present work intends to tackle the necessity of alternatives for the treatment of diabetic foot ulcers through the formulation of nanoclay and/or polymer-based nanocomposite hydrogels. Laponite RD, a synthetic 2-D nanoclay that becomes inert when in a physiological environment, while mixed with water, becomes a clear gel with interesting shear-thinning properties. Adding Laponite RD to chitosan or gelatin allows for the modification of the mechanical properties of such materials. The setup explored in this research allows for a promising polymeric matrix that can potentially be loaded with active compounds for antibacterial support in foot ulcers, as well as enzymes for wound debridement.

7.
Eur J Pharm Sci ; 163: 105861, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33930520

RESUMO

Nano-hybrid systems have been shown to be an attractive platform for drug delivery. Laponite® RD (LAP), a biocompatible synthetic clay, has been exploited for its ability to establish of strong secondary interactions with guest compounds and hybridization with polymers or small molecules that improves, for instance, cell adhesion, proliferation, and differentiation or facilitates drug attachment to their surfaces through charge interaction. In this work, LAP was combined with Tetronics, X-shaped amphiphilic PPO-PEO (poly (propylene oxide)-poly (ethylene oxide) block copolymers. ß-Lapachone (BLPC) was selected for its anticancer activity and its limited bioavailability due to very low aqueous solubility, with the aim to improve this by using LAP/Tetronic nano-hybrid systems. The nanocarriers were prepared over a range of Tetronic 1304 concentrations (1 to 20% w/w) and LAP (0 to 3% w/w). A combination of physicochemical methods was employed to characterize the hybrid systems, including rheology, particle size and shape (DLS, TEM), thermal analysis (TG and DSC), FTIR, solubility studies and drug release experiments. In vitro cytotoxicity assays were performed with BALB/3T3 and MCF-7 cell lines. In hybrid systems, a sol-gel transition can occur below physiological temperature. BLPC exhibits the most significant increase in solubility in formulations with a high concentration of T1304 (over 10% w/w) and 1.5% w/w LAP, or systems with only LAP (1.5%), with a 50 and 100-fold increase in solubilisation, respectively. TEM images showed spherical micelles of T1304, which elongated into wormlike micelles with concentration (20%) and in the presence of LAP, a finding that has not been reported before. A sustained release of BLPC over 140 hours was achieved in one of the formulations (10% T1304 with 1.5% laponite), which also showed the best selectivity index towards cancer cells (MCF-7) over BALB/3T3 cell lines. In conclusion, BLPC-loaded T1304/LAP nano-hybrid systems proved safe and highly effective and are thus a promising formulation for anticancer therapy.


Assuntos
Micelas , Naftoquinonas , Nanogéis , Polietilenoglicóis , Silicatos , Solubilidade
8.
J Biol Phys ; 47(1): 49-59, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33713219

RESUMO

In this work, we consider a ternary system formed by a surfactant with a lamellar phase (lecithin) that was doped with a solution of Laponite at 1% by volume. The inclusion of nanoparticles in the lamellar phase was investigated by the small-angle X-ray scattering (SAXS) technique, which revealed three types of structures according to the observed scattering pattern. The lamellar period increased linearly with hydration up to a certain limit; this type of behavior is not the same as that found for a similar system using AOT as a surfactant. In the region that corresponds to an isotropic phase, it was observed that the period corresponds to 60 Å, and in the lamellar system of pure lecithin, with the same volumetric fraction (1/φ = 0.66), the corresponding periodicity is 62 Å, indicating that the presence of Laponite nanoparticles increases the attractive interaction, reducing the lamellar period, causing the bilayer to become more rigid, that is, with less fluctuations. In the more diluted region, the periodicity reached a limit value of 64 Å, which is slightly higher than the lamellar system in the absence of Laponite particles, so there was an expansion of the lamellar phase due to the lack of consistency of Laponite nanoparticles. In the more concentrated lamellar phase (under strong confinement), it was observed that the distance between the bilayers decreased, establishing a long-range order.


Assuntos
Nanopartículas , Silicatos , Espalhamento a Baixo Ângulo , Difração de Raios X
9.
J Biomed Mater Res B Appl Biomater ; 108(4): 1388-1397, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31512818

RESUMO

The pivotal issue of skin regeneration research is the development of effective biomaterials that exhibit biological activities as fungicide and bactericide, combining simple and low cost manufacturing technologies. In this context, nanocomposite scaffolds based on chitosan (Ch)/Laponite (Lap) were produced by using different concentrations of Lap via freeze-drying process for potential application in skin regeneration. The influence of Lap concentration on the scaffold properties was evaluated. The prepared scaffolds were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), porosity, swelling capacity, and mechanical analyses. The results revealed that the scaffolds exhibited a porous architecture, besides the increase in the clay content, leads to an increase in the porosity, an improvement of mechanical strength, and a decrease of swelling capacity. In vitro tests were also carried out to evaluate the biocompatibility of the materials, such as bioadhesion, antibacterial activity, viability, and cell adhesion. Viability and cell adhesion demonstrated that all scaffolds were not cytotoxic and the fibroblast cells readily attached on the surface of the scaffolds. Thereby, the results suggested that the nanocomposite scaffolds are biomaterials potentially useful as wound dressings.


Assuntos
Bandagens , Quitosana/química , Fibroblastos/metabolismo , Teste de Materiais , Nanocompostos/química , Silicatos/química , Alicerces Teciduais/química , Animais , Células 3T3 BALB , Sobrevivência Celular , Camundongos
10.
ACS Appl Mater Interfaces ; 10(32): 26830-26834, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30063820

RESUMO

Cyclometalated IrIII complexes are promising candidates for biomedical applications but high cytotoxicity limits their use as imaging and sensing agents. We herein introduce the use of Laponite as carrier for triplet-emitting cyclometalated IrIII complexes. Laponite is a versatile nanoplatform because of its biocompatibility, dispersion stability and large surface area that readily adsorbs functional nonpolar and cationic molecules. These inorganic-organic hybrid nanomaterials mask cytotoxicity, show efficient cell uptake and increase luminescent properties and photostability. By camouflaging intrinsic cytotoxicity, this simple method potentially extends the palette of available imaging and sensing dyes to any metal-organic complexes, especially those that are usually cytotoxic.


Assuntos
Irídio/química , Materiais Biocompatíveis , Cátions , Luminescência , Nanoestruturas , Compostos Organometálicos , Piridinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA