Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 143: 105243, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35139455

RESUMO

BACKGROUND: The larynx of the human respiratory tract plays a vital role in breathing and voice production. Both can be influenced by functional and/or morphological changes of the larynx, e.g., immobility of one or both vocal folds (VF). The immobile VF can become stationary in different positions such as the median, paramedian, intermediate or lateral position. The impact of unilateral vocal fold immobility (UVFI) on inhalation is the focus of this study. METHODS: Transient numerical simulations of the inhalation process in patient-specific airways are performed. Five configurations are considered: paramedian and intermediate VF positions on the left and right, and healthy. Large eddy simulations are used to describe the complex laryngeal turbulent flow. Airway resistance, power loss, and spectral entropy are calculated to quantify the work of inspiration and evaluate flow regimes. RESULTS: The laryngeal jet intensity and flow disturbance increase with the severity of immobility. In comparison to the healthy configuration, UVFI with right/left intermediate and right/left paramedian VF position increases the airway resistance over the oropharynx to the trachea by 69%/58% and 310%/285%, respectively. When the entire respiratory system is considered, an increase of up to 48% is estimated. Spectral entropy increases of up to 2.5 times indicate higher turbulence levels due to UVFI. CONCLUSIONS: Surgery of immobile VF aims to improve glottis closure. However, this can have a negative impact on breathing efficiency. To that end, this study provides initial insights into the conflicting objectives of open versus closed VFs.

2.
Boundary Layer Meteorol ; 182(1): 119-146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35068494

RESUMO

The influence of drifting and blowing snow on surface mass and energy exchange is difficult to quantify due to limitations in both measurements and models, but is still potentially very important over large areas with seasonal or perennial snow cover. We present a unique set of measurements that make possible the calculation of turbulent moisture, heat, and momentum fluxes during conditions of drifting and blowing snow. From the data, Monin-Obukhov estimation of bulk fluxes is compared to eddy-covariance-derived fluxes. In addition, large-eddy simulations with sublimating particles are used to more completely understand the vertical profiles of the fluxes. For a storm period at the Syowa S17 station in East Antarctica, the bulk parametrization severely underestimates near-surface heat and moisture fluxes. The large-eddy simulations agree with the eddy-covariance fluxes when the measurements are minimally disturbed by the snow particles. We conclude that overall exchange over snow surfaces is much more intense than current models suggest, which has implications for the total mass balance of the Antarctic ice sheet and the cryosphere. SUPPLEMENTARY INFORMATION: The online version supplementary material available at 10.1007/s10546-021-00653-x.

3.
Front Pharmacol ; 12: 746420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887754

RESUMO

The nasal olfactory region is a potential route for non-invasive delivery of drugs directly from the nasal epithelium to the brain, bypassing the often impermeable blood-brain barrier. However, efficient aerosol delivery to the olfactory region is challenging due to its location in the nose. Here we explore aerosol delivery with bi-directional pulsatile flow conditions for targeted drug delivery to the olfactory region using a computational fluid dynamics (CFD) model on the patient-specific nasal geometry. Aerosols with aerodynamic diameter of 1 µm, which is large enough for delivery of large enough drug doses and yet potentially small enough for non-inertial aerosol deposition due to, e.g., particle diffusion and flow oscillations, is inhaled for 1.98 s through one nostril and exhaled through the other one. The bi-directional aerosol delivery with steady flow rate of 4 L/min results in deposition efficiencies (DEs) of 50.9 and 0.48% in the nasal cavity and olfactory region, respectively. Pulsatile flow with average flow rate of 4 L/min (frequency: 45 Hz) reduces these values to 34.4 and 0.12%, respectively, and it mitigates the non-uniformity of right-left deposition in both the cavity (from 1.77- to 1.33-fold) and the olfactory region (from 624- to 53.2-fold). The average drug dose deposited in the nasal cavity and the olfactory epithelium region is very similar in the right nasal cavity independent of pulsation conditions (inhalation side). In contrast, the local aerosol dose in the olfactory region of the left side is at least 100-fold lower than that in the nasal cavity independent of pulsation condition. Hence, while pulsatile flow reduces the right-left (inhalation-exhalation) imbalance, it is not able to overcome it. However, the inhalation side (even with pulsation) allows for relatively high olfactory epithelium drug doses per area reaching the same level as in the total nasal cavity. Due to the relatively low drug deposition in olfactory region on the exhalation side, this allows either very efficient targeting of the inhalation side, or uniform drug delivery by performing bidirectional flow first from the one and then from the other side of the nose.

4.
J Adv Model Earth Syst ; 13(6): e2020MS002352, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34221242

RESUMO

It is well known that subtropical shallow convection transports heat and water vapor upwards from the surface. It is less clear if it also transports horizontal momentum upwards to significantly affect the trade winds in which it is embedded. We utilize unique multiday large-eddy simulations run over the tropical Atlantic with ICON-LEM to investigate the character of shallow convective momentum transport (CMT). For a typical trade-wind profile during boreal winter, CMT acts as an apparent friction to decelerate the north-easterly flow. This effect maximizes below the cloud base while in the cloud layer, friction is very small, although present over a relatively deep layer. In the cloud layer, the zonal component of the momentum flux is counter-gradient and penetrates deeper than reported in traditional shallow cumulus LES cases. The transport through conditionally sampled convective updrafts and downdrafts explains a weak friction effect, but not the counter-gradient flux near the cloud tops. The analysis of the momentum flux budget reveals that, in the cloud layer, the counter-gradient flux is driven by convectively triggered nonhydrostatic pressure-gradients and horizontal circulations surrounding the clouds. A model set-up with large domain size and realistic boundary conditions is necessary to resolve these effects.

5.
J Hazard Mater ; 413: 125358, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33611042

RESUMO

Public transport has been identified as high risk as the corona-virus carrying droplets generated by the infected passengers could be distributed to other passengers. Therefore, predicting the patterns of droplet spreading in public transport environment is of primary importance. This paper puts forward a novel computational and artificial intelligence (AI) framework for fast prediction of the spread of droplets produced by a sneezing passenger in a bus. The formation of droplets of salvia is numerically modelled using a volume of fluid methodology applied to the mouth and lips of an infected person during the sneezing process. This is followed by a large eddy simulation of the resultant two phase flow in the vicinity of the person while the effects of droplet evaporation and ventilation in the bus are considered. The results are subsequently fed to an AI tool that employs deep learning to predict the distribution of droplets in the entire volume of the bus. This combined framework is two orders of magnitude faster than the pure computational approach. It is shown that the droplets with diameters less than 250 micrometers are most responsible for the transmission of the virus, as they can travel the entire length of the bus.


Assuntos
Coronavirus , Inteligência Artificial , Humanos , Meios de Transporte , Ventilação
6.
J Adv Model Earth Syst ; 13(12): e2021MS002664, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35865715

RESUMO

An approach to drive Lagrangian large eddy simulation (LES) of boundary layer clouds with reanalysis data is presented and evaluated using satellite (Spinning Enhanced Visible and Infrared Imager, SEVIRI) and aircraft (Cloud-Aerosol-Radiation Interactions and Forcing, CLARIFY) measurements. The simulations follow trajectories of the boundary layer flow. They track the formation and evolution of a pocket of open cells (POC) underneath a biomass burning aerosol layer in the free troposphere. The simulations reproduce the evolution of observed stratocumulus cloud morphology, cloud optical depth, and cloud drop effective radius, and capture the timing of the cloud state transition from closed to open cells seen in the satellite imagery on the three considered trajectories. They reproduce a biomass burning aerosol layer identified by the in-situ aircraft measurements above the inversion of the POC. Entrainment of aerosol from the biomass burning layer into the POC is limited to the extent of having no impact on cloud- or boundary layer properties, in agreement with the CLARIFY observations. The two-moment bin microphysics scheme used in the simulations reproduces the in-situ cloud microphysical properties reasonably well. A two-moment bulk microphysics scheme reproduces the satellite observations in the non-precipitating closed-cell state, but overestimates liquid water path and cloud optical depth in the precipitating open-cell state due to insufficient surface precipitation. A boundary layer cold and dry bias occurring in LES can be counteracted by reducing the grid aspect ratio and by tightening the large scale wind speed nudging towards the surface.

7.
J Adv Model Earth Syst ; 12(5): e2019MS001910, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32714494

RESUMO

The gust fronts of convective cold pools (CPs) are increasingly recognized as loci of enhanced triggering for subsequent convective cells. It has so far been difficult to track these gust fronts in high-resolution data, such as large eddy simulations (LES)-rendering mechanistic analysis of CP interaction incomplete. Here, a simple tracking method is defined, tested, and applied, which uses horizontal advection and a condition on horizontal divergence, to emit tracers at the perimeter of surface precipitation patches. Tracers are then reliably transported to the gust front, yielding closed bands marking the CP boundary. The method thereby allows analysis of the dynamics also along the gust front, which allows to identify point-like loci of pronounced updrafts. The tracking works well for a single idealized CP and reliably tracks a population of CPs in a midlatitude diurnal cycle. As the method uniquely links CPs and their tracers to a specific parent precipitation cell, it may be useful for the analysis of interactions in evolving CP populations.

8.
Heliyon ; 6(1): e03294, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32051867

RESUMO

The common design of cyclone separators is the cylinder-on-cone design, and the conical shape has a strong effect on the behavior of the vortex core low in the cyclone. The "vortex length" is the distance between the lip of the gas outlet tube and the position at which the core of the vortex attaches to the wall of the cyclone separation space. This occurs spontaneously at an axial position that, at present, cannot be predicted, although it has a profound effect on the cyclone operation, since, if the vortex is too short, it can lead to plugging and wear. In this paper numerical CFD simulations, using advanced turbulence modeling (LES), are the basis for the formulation of models for the vortex length taking into account the geometrical and operational variables influencing it. The work leads to useful models for the vortex length and reveals important information about which variables determine it and the nature of their effects.

9.
Philos Trans A Math Phys Eng Sci ; 377(2159): 20190081, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31607250

RESUMO

In the last decade, many research groups have reported predictions of jet noise using high-fidelity large-eddy simulations (LES) of the turbulent jet flow and these methods are beginning to be used more broadly. A brief overview of the publications since the review by Bodony & Lele (2008, AIAA J. 56, 346-380) is undertaken to assess the progress and overall contributions of LES towards a better understanding of jet noise. In particular, we stress the meshing, numerical and modelling advances which enable detailed geometric representation of nozzle shape variations intended to impact the noise radiation, and sufficiently accurate capturing of the turbulent boundary layer at the nozzle exit. Examples of how LES is currently being used to complement experiments for challenging conditions (such as highly heated pressure-mismatched jets with afterburners) and guide jet modelling efforts are highlighted. Some of the physical insights gained from these numerical studies are discussed, in particular on crackle, screech and shock-associated noise, impingement tones, acoustic analogy models, wavepackets dynamics and resonant acoustic waves within the jet core. We close with some perspectives on the remaining challenges and upcoming opportunities for future applications. This article is part of the theme issue 'Frontiers of aeroacoustics research: theory, computation and experiment'.

10.
Eur J Pharm Sci ; 133: 183-189, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30940542

RESUMO

Particle Image Velocimetry (PIV) measurements with the aim of providing experimental data for the SimInhale benchmark case are presented within this work. We, therefore, present a refractive index matched, transparent model of the benchmark geometry, in which the velocity and turbulent kinetic energy fields are examined at flow rates comparable to 15, 30 and 60 L/min (Re ≈ 1000-4500) in air. Furthermore, these results are compared with Large Eddy Simulations (LES). The results reveal a Reynolds number independence of the qualitative velocity field in the range covered within this work. Good agreement is found between the PIV and LES data, with a slight over-prediction of turbulent kinetic energies by the simulations. The obtained experimental data will be part of a common, publicly accessible ERCOFTAC database along with additional results published recently.


Assuntos
Pulmão/metabolismo , Modelos Biológicos , Reologia , Resinas Acrílicas , Benchmarking , Butadienos , Simulação por Computador , Humanos , Poliestirenos , Impressão Tridimensional
11.
Environ Pollut ; 233: 782-796, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29132119

RESUMO

The city of London, UK, has seen in recent years an increase in the number of high-rise/multi-storey buildings ("skyscrapers") with roof heights reaching 150 m and more, with the Shard being a prime example with a height of ∼310 m. This changing cityscape together with recent plans of local authorities of introducing Combined Heat and Power Plant (CHP) led to a detailed study in which CFD and wind tunnel studies were carried out to assess the effect of such high-rise buildings on the dispersion of air pollution in their vicinity. A new, open-source simulator, FLUIDITY, which incorporates the Large Eddy Simulation (LES) method, was implemented; the simulated results were subsequently validated against experimental measurements from the EnFlo wind tunnel. The novelty of the LES methodology within FLUIDITY is based on the combination of an adaptive, unstructured, mesh with an eddy-viscosity tensor (for the sub-grid scales) that is anisotropic. The simulated normalised mean concentrations results were compared to the corresponding wind tunnel measurements, showing for most detector locations good correlations, with differences ranging from 3% to 37%. The validation procedure was followed by the simulation of two further hypothetical scenarios, in which the heights of buildings surrounding the source building were increased. The results showed clearly how the high-rise buildings affected the surrounding air flows and dispersion patterns, with the generation of "dead-zones" and high-concentration "hotspots" in areas where these did not previously exist. The work clearly showed that complex CFD modelling can provide useful information to urban planners when changes to cityscapes are considered, so that design options can be tested against environmental quality criteria.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Cidades , Monitoramento Ambiental , Vento , Poluição do Ar/análise , Londres , Modelos Teóricos , Fenômenos Físicos
12.
Boundary Layer Meteorol ; 167(3): 421-443, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31258159

RESUMO

We present a proof-of-concept for the adaptive mesh refinement method applied to atmospheric boundary-layer simulations. Such a method may form an attractive alternative to static grids for studies on atmospheric flows that have a high degree of scale separation in space and/or time. Examples include the diurnal cycle and a convective boundary layer capped by a strong inversion. For such cases, large-eddy simulations using regular grids often have to rely on a subgrid-scale closure for the most challenging regions in the spatial and/or temporal domain. Here we analyze a flow configuration that describes the growth and subsequent decay of a convective boundary layer using direct numerical simulation (DNS). We validate the obtained results and benchmark the performance of the adaptive solver against two runs using fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen and refine the grid dynamically whilst maintaining an accurate solution. In particular, during the initial growth of the convective boundary layer a high resolution is required compared to the subsequent stage of decaying turbulence. More specifically, the number of grid cells varies by two orders of magnitude over the course of the simulation. For this specific DNS case, the adaptive solver was not yet more efficient than the more traditional solver that is dedicated to these types of flows. However, the overall analysis shows that the method has a clear potential for numerical investigations of the most challenging atmospheric cases.

13.
Philos Trans A Math Phys Eng Sci ; 375(2091)2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28265024

RESUMO

Complex turbine wake interactions play an important role in overall energy extraction in large wind farms. Current control strategies optimize individual turbine power, and lead to significant energy losses in wind farms compared with lone-standing wind turbines. In recent work, an optimal coordinated control framework was introduced (Goit & Meyers 2015 J. Fluid Mech.768, 5-50 (doi:10.1017/jfm.2015.70)). Here, we further elaborate on this framework, quantify the influence of optimization parameters and introduce new simulation results for which gains in power production of up to 21% are observed.This article is part of the themed issue 'Wind energy in complex terrains'.

14.
Artigo em Inglês | MEDLINE | ID: mdl-28124821

RESUMO

In this paper, we consider large eddy simulations (LES) for human stenotic carotids in presence of atheromasic plaque, a pathological condition where transitional effects to turbulence may occur, with relevant clinical implications such as plaque rupture. We provide a reference numerical solution obtained at high resolution without any subgrid scale model, to be used to assess the accuracy of LES simulations. In the context we are considering, ie, hemodynamics, we cannot refer to a statistically homogeneous, isotropic, and stationary turbulent regime; hence, the classical Kolmogorov theory cannot be used. For this reason, a mesh size and a time step are deemed fine enough if they allow to capture all the features of the velocity field in the shear layers developed after the bifurcation. To assess these requirements, we consider a simplified model of the evolution of a 2D shear layer, a relevant process in the formation of transitional effects in our case. Then, we compare the results of LES σ model (both static and dynamic) and mixed LES models (where also a similarity contribution is considered). In particular, we consider a realistic scenario of a human carotid, and we use the reference solution as gold standard. The results highlight the accuracy of the LES σ models, especially for the static model.


Assuntos
Estenose das Carótidas/fisiopatologia , Hemodinâmica , Modelos Cardiovasculares , Humanos , Viscosidade
15.
Philos Trans A Math Phys Eng Sci ; 373(2050)2015 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-26261361

RESUMO

We review existence and non-uniqueness results for the Euler equation of fluid flow. These results are placed in the context of physical models and their solutions. Non-uniqueness is in direct conflict with the purpose of practical simulations, so that a mitigating strategy, outlined here, is important. We illustrate these issues in an examination of mesh converged turbulent statistics, with comparison to laboratory experiments.

16.
Appl Acoust ; 87: 153-161, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32317805

RESUMO

The Lattice Boltzmann method was used to perform numerical simulations of the sound and turbulent flow inside a standing wave tube terminated by a circular orifice in presence of a forced mean flow. The computational domain comprised a standard virtual impedance tube apparatus in which sound waves were produced by periodic pressure oscillations imposed at one end. An orifice plate was located between the driver and the tube termination. All waves transmitted through the orifice were effectively dissipated by a passively non-reflecting (i.e. anechoic) boundary at the tube termination. A turbulent jet was formed at the discharge of the orifice by the forced mean flow inside the tube. The acoustic impedance and sound absorption coefficient of the orifice plate were calculated from a wave decomposition of the sound field upstream of the orifice. Simulations were carried out for different excitation frequencies, and orifice Mach numbers. Results and trends were in good quantitative agreement with available analytical solutions and experimental data. The Lattice Boltzmann method was found to be an efficient numerical scheme for prediction of sound absorption by realistic three dimensional orifice configurations.

17.
Philos Trans A Math Phys Eng Sci ; 372(2022): 20130320, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25024415

RESUMO

Since its introduction, in the early 1970s, large eddy simulations (LES) have advanced considerably, and their application is transitioning from the academic environment to industry. Several landmark developments can be identified over the past 40 years, such as the wall-resolved simulations of wall-bounded flows, the development of advanced models for the unresolved scales that adapt to the local flow conditions and the hybridization of LES with the solution of the Reynolds-averaged Navier-Stokes equations. Thanks to these advancements, LES is now in widespread use in the academic community and is an option available in most commercial flow-solvers. This paper will try to predict what algorithmic and modelling advancements are needed to make it even more robust and inexpensive, and which areas show the most promise.

18.
Philos Trans A Math Phys Eng Sci ; 372(2022): 20130322, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25024418

RESUMO

Blade cooling technology will play a critical role in the next generation of propulsion and power generation gas turbines. Accurate prediction of blade metal temperature can avoid the use of excessive compressed bypass air and allow higher turbine inlet temperature, increasing fuel efficiency and decreasing emissions. Large eddy simulation (LES) has been established to predict heat transfer coefficients with good accuracy under various non-canonical flows, but is still limited to relatively simple geometries and low Reynolds numbers. It is envisioned that the projected increase in computational power combined with a drop in price-to-performance ratio will make system-level simulations using LES in complex blade geometries at engine conditions accessible to the design process in the coming one to two decades. In making this possible, two key challenges are addressed in this paper: working with complex intricate blade geometries and simulating high-Reynolds-number (Re) flows. It is proposed to use the immersed boundary method (IBM) combined with LES wall functions. A ribbed duct at Re=20 000 is simulated using the IBM, and a two-pass ribbed duct is simulated at Re=100 000 with and without rotation (rotation number Ro=0.2) using LES with wall functions. The results validate that the IBM is a viable alternative to body-conforming grids and that LES with wall functions reproduces experimental results at a much lower computational cost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA