Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 561
Filtrar
1.
Environ Res ; : 119585, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029730

RESUMO

In this study, the phytochemical profile and silver nanoparticle (AgNP)-synthesizing ability of Pittosporum undulatum methanol extract were investigated. Furthermore, biological applications of the AgNPs, such as antibacterial effect (against Klebsiella pneumoniae, Staphylococcus aureus, Bacillus subtilis, and Escherichia coli), mosquito larvicidal effect (against Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti), and cytotoxicity (against fibroblast cell line L929) were evaluated using in vitro experiments. The phytochemical analysis revealed that the methanol extract contained cardiac glycosides, terpenoids, saponins, alkaloids, flavonoids, glycosides, coumarins, phenolics, and tannins. Furthermore, standard characterization techniques such as UV-Vis spectrometry, SEM, TEM, FTIR, and XRD confirmed that the methanol extract of P. undulatum effectively synthesized the AgNPs. The synthesized AgNPs had a spherical shape and size of 20-200 nm. The bactericidal analysis revealed that the AgNPs have dose-dependent antibacterial activity. The MTT assay showed that the AgNPs were bio-compatible up to a dosage of 250 µg·mL-1 in the normal fibroblast cell line L929. Furthermore, the LC50 values for AgNPs against larvae of An. stephensi, Cx. quinquefasciatus, and Ae. aegypti were 0.4, 4.7, and 1.2 ppm, respectively. Field trials demonstrated that the larvicidal effect was enhanced within 24-72 h, and the rate of reduction increased over time. Thus, our findings provide an ideal sustainable AgNP bio-pesticide to combat filarial, dengue, and malaria vectors.

2.
Nat Prod Res ; : 1-8, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940013

RESUMO

The study explored Simarouba glauca DC. for mosquito larvicidal potential by performing bioactivity-guided chemical investigation of its root extract resulting in isolation of the known bioactive metabolite glaucarubinone (1). Mosquito larvicidal activity of glaucarubinone (1) against the three vector species viz. Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined using a modified WHO 2005 protocol. It was observed that Culex quinquefasciatus larvae were the most susceptible species with LC50 13.88 ppm and LC90 70.01 ppm followed by Aedes aegypti and Anopheles stephensi at 24 h of exposure. The mode of action as observed microscopically is the lysis of midgut and thorax cells of the third instar larvae. The crystal structure of the glaucarubinone (1) is reported for the first time using X-ray crystallography. This phytochemical product has the potential to act as a green alternative to existing chemical-based insecticides for integrated vector management.

3.
Int J Biol Macromol ; 273(Pt 2): 133072, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38885861

RESUMO

Plants contain a wide range of potential phytochemicals that are target-specific, and less toxic to human health. The present study aims to investigate the metabolomic profile of Nephrolepis exaltata (L.) Schott and its potential for mosquito control by targeting Glutathione-S-Transferase, focusing on the larvicidal activity against Culex pipiens. Crude extracts (CEs) were prepared using ethanol, ethyl acetate and n-hexane. CEs have been used for assessment of mosquitocidal bioassay. The metabolomic analyses for CEs were characterized for each CE by gas chromatography-mass spectrometry (GC-MS). The most efficient CE with the highest larval mortality and the least LC50 was the hexane CE. Then, alkaline phosphatase (ALP) activity, and glutathione-S-transferase (GST) activity were assessed in larvae treated with the hexane CE. The results demonstrated a decline in protein content, induction of ALP activity, and reduction in GST activity. Finally, molecular docking and dynamic simulation techniques were employed to evaluate the interaction between the hexane phytochemicals and the GST protein. D-(+)-Glucuronic acid, 3TMS derivative and Sebacic acid, 2TMS derivative showed best binding affinities to GST protein pointing to their interference with the enzyme detoxification functions, potentially leading to reduced ability to metabolize insecticides.


Assuntos
Glutationa Transferase , Larva , Metabolômica , Simulação de Acoplamento Molecular , Compostos Fitoquímicos , Extratos Vegetais , Glutationa Transferase/metabolismo , Animais , Metabolômica/métodos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Larva/efeitos dos fármacos , Controle de Mosquitos/métodos , Culex/efeitos dos fármacos , Culex/enzimologia , Inseticidas/química , Inseticidas/farmacologia , Metaboloma/efeitos dos fármacos
4.
Front Microbiol ; 15: 1381302, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832112

RESUMO

Biosynthetic metals have attracted global attention because of their safety, affordability, and environmental friendliness. As a consequence, the cell-free filtrate (CFF) of Dill leaf-derived endophytic fungus Aspergillus luchuensis was employed for the extracellularly synthesis silver nanoparticles (AgNPs). A reddish-brown color shift confirmed that AgNPs were successfully produced. The obtained AgNPs were characterized by UV-Vis (ultraviolet-visible spectroscopy), Transmission electron microscopy (TEM), FTIR, EDX, and zeta potential. Results demonstrated the creation of crystalline AgNPs with a spherical shape at 427.81 nm in the UV-Vis spectrum, and size ranged from 16 to 18 nm as observed by TEM. Additionally, the biogenic AgNPs had a promising antibacterial activity versus multidrug-resistant bacteria, notably, S. aureus, E. coli, and S. typhi. The highest growth reduction was recorded in the case of E. coli. Furthermore, the biosynthesized AgNPs demonstrated potent antifungal potential versus a variety of harmful fungi. The maximum growth inhibition was evaluated from A. brasinsilles, followed by C. albicans as compared to cell-free extract and AgNO3. In addition, data revealed that AgNPs possess powerful antioxidant activity, and their ability to scavenge radicals increased from 33.0 to 85.1% with an increment in their concentration from 3.9 to 1,000 µg/mL. Furthermore, data showed that AgNPs displayed high catalytic activity of safranin under light irradiation. The maximum decolorization percentage (100%) was observed after 6 h. Besides, the biosynthesized AgNPs showed high insecticidal potential against 3rd larval instar of Culex pipiens. Taken together, data suggested that endophytic fungus, A. luchuensis, is an attractive candidate as an environmentally sustainable and friendly fungal nanofactory.

5.
Chemosphere ; 358: 142240, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705417

RESUMO

The Aedes aegypti mosquito is a vector for various arboviruses, including dengue and yellow fever. Insecticides, such as pyrethroids and organophosphates, are widely used to manage and control these insects. However, mosquitoes have developed resistance to these chemicals. Therefore, this study aimed to investigate the effects of the commercial formulation of fipronil (Tuit® Florestal; 80% purity) on the survival, behavior, morphology, and proteins related to signaling pathways of the midgut in A. aegypti larvae under controlled laboratory conditions. Significant reductions in immature survival were observed in all concentrations of fipronil tested. Low insecticide concentration (0.5 ppb) led to decreased locomotor activity in the larvae and caused disorganization of the epithelial tissue in the midgut. Moreover, exposure to the insecticide decreased the activity of detoxifying enzymes such as catalase, superoxide dismutase, and glutathione-S-transferase. On the other hand, the insecticide increased protein oxidation and nitric oxide levels. The detection of LC3, caspase-3, and JNK proteins, related to autophagy and apoptosis, increased after exposure. However, there was a decrease in the positive cells for ERK 1/2. Furthermore, the treatment with fipronil decreased the number of positive cells for the proteins FMRF, Prospero, PH3, Wg, Armadillo, Notch, and Delta, which are related to cell proliferation and differentiation. These findings demonstrate that even at low concentrations, fipronil exerts larvicidal effects on A. aegypti by affecting behavior and enzymatic detoxification, inducing protein oxidation, free radical generation, midgut damage and cell death, and inhibiting cell proliferation and differentiation. Thus, this insecticide may represent a viable alternative for controlling the spread of this vector.


Assuntos
Aedes , Inseticidas , Larva , Pirazóis , Animais , Aedes/efeitos dos fármacos , Aedes/crescimento & desenvolvimento , Aedes/fisiologia , Pirazóis/toxicidade , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/fisiologia , Sistema Digestório/efeitos dos fármacos
6.
Molecules ; 29(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38792102

RESUMO

This study investigates the chemical composition of the essential oil obtained from the leaves of Bocageopsis multiflora (Mart.) R.E.Fr (Annonaceae), examining its effectiveness in combating both the larvae and adult forms of Aedes aegypti mosquitoes. Additionally, for a deeper understanding of the insecticidal activity, toxicity properties and molecular docking calculations were conducted using the main compounds of this essential oil. GC/MS analysis revealed the presence of 26 constituents, representing 95.2% of the essential oil, with the major components identified as the sesquiterpenes α-selinene, ß-selinene, and ß-elemene. Larvicidal assays demonstrated potent activity of this essential oil with significant LC50 values of 40.8 and 39.4 µg/mL at 24 and 48 h, respectively. Adulticidal assessments highlighted strong efficacy with LC50 of 12.5 µg/mL. Molecular docking analysis identified optimal interaction activities of α-selinene and ß-selinene with key Aedes proteins. The in silico studies comparing synthetic insecticides with the major sesquiterpenes of the essential oil revealed that ß-selinene exhibited a significantly higher binding affinity compared to the other two sesquiterpenes. Also, ADMET studies of the three main sesquiterpenes indicated acceptable drug-like properties. In these findings, safety evaluations showed low toxicity and skin sensitization for the main sesquiterpenes, contrasting with commercial synthetic insecticides. Therefore, in silico analyses suggest promising interactions with Aedes proteins, indicating its potential as an effective alternative to conventional insecticides These results show the larvicidal and adulticidal potential of the essential oil from Bocageopsis multiflora against Aedes aegypti, supported by its predominant constituents, α-selinene, ß-selinene and ß-elemene.


Assuntos
Aedes , Inseticidas , Larva , Simulação de Acoplamento Molecular , Óleos Voláteis , Animais , Aedes/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Inseticidas/química , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Folhas de Planta/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Cromatografia Gasosa-Espectrometria de Massas
7.
Insects ; 15(5)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38786901

RESUMO

The overuse of synthetic insecticides has led to various negative consequences, including insecticide resistance, environmental pollution, and harm to public health. This may be ameliorated by using insecticides derived from botanical sources. The primary objective of this study was to evaluate the anti-mosquito activity of the essential oil (EO) of Citrus reticulata Blanco cv. Chachiensis (Chachi) (referred to as CRB) at immature, semi-mature, and mature stages. The chemical compositions of the CRB EO were analyzed using GC-MS. The main components were identified to be D-limonene and γ-terpinene. The contents of D-limonene at the immature, semi-mature, and mature stages were 62.35%, 76.72%, and 73.15%, respectively; the corresponding contents of γ-terpinene were 14.26%, 11.04%, and 11.27%, respectively. In addition, the corresponding contents of a characteristic component, methyl 2-aminobenzoate, were 4.95%, 1.93%, and 2.15%, respectively. CRB EO exhibited significant larvicidal activity against Aedes albopictus (Ae. albopictus, Diptera: Culicidae), with the 50% lethal doses being 65.32, 61.47, and 65.91 mg/L for immature, semi-mature, and mature CRB EO, respectively. CRB EO was able to inhibit acetylcholinesterase and three detoxification enzymes, significantly reduce the diversity of internal microbiota in mosquitoes, and decrease the relative abundance of core species within the microbiota. The present results may provide novel insights into the utilization of plant-derived essential oils in anti-mosquitoes.

8.
Acta Trop ; 255: 107226, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697451

RESUMO

Mosquito-borne disease pandemics, such as the Zika virus and chikungunya, have escalated cognizance of how critical it is to implement proficient mosquito vector control measures. The prevention of Culicidae is becoming more difficult these days because of the expeditious imminence of synthetic pesticide resistance and the universal expansion of tremendously invasive mosquito vectors. The present study highlights the insecticidal and larvicidal efficacy of the prospective novel actinobacterium derived from the marine Streptomyces sp. RD06 secondary metabolites against Culex quinquefasciatus mosquito. The pupicidal activity of Streptomyces sp. RD06 showed LC50=199.22 ± 11.54 and LC90= 591.84 ± 55.41 against the pupa. The purified bioactive metabolites 1, 2-Benzenedicarboxylic acid, diheptyl ester from Streptomyces sp. RD06 exhibited an LC50 value of 154.13 ± 10.50 and an LC90 value of 642.84 ± 74.61 tested against Cx. quinquefasciatus larvae. The Streptomyces sp. RD06 secondary metabolites exhibited 100 % non-hatchability at 62.5 ppm, and 82 % of hatchability was observed at 250 ppm. In addition, media optimization showed that the highest biomass production was attained at a temperature of 41.44 °C, pH 9.23, nitrogen source 11.43 mg/ml, and carbon source 150 mg/ml. Compared to control larvae, the histology and confocal microscopy results showed destruction to the anal gill, lumen content, and epithelial layer residues in the treated larvae. Utilizing an eco-friendly method, these alternative inventive insecticidal derivatives from Streptomyces sp. RD06 eradicates Culex quinquefasciatus. This study highlights the promising potential of these Streptomyces sp. RD06 secondary metabolites to develop affordable and efficacious mosquito larvicides to replace synthetic insecticides in the future.


Assuntos
Culex , Inseticidas , Larva , Mosquitos Vetores , Streptomyces , Animais , Streptomyces/química , Streptomyces/metabolismo , Culex/efeitos dos fármacos , Larva/efeitos dos fármacos , Inseticidas/farmacologia , Inseticidas/química , Mosquitos Vetores/efeitos dos fármacos , Metabolismo Secundário , Controle de Mosquitos/métodos , Filariose/prevenção & controle , Pupa/efeitos dos fármacos
9.
Nat Prod Res ; : 1-9, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766845

RESUMO

The targeted organisms include mosquito vectors, bacterial pathogens and non-targeted organisms. Preliminary mosquito larvicidal activity was conducted using cell-free supernatants (CFSs) from 11 gut bacteria. Among them, the bacterium SS11 exhibited promising results and was identified as Kurthia gibsonii based on its 16S rRNA sequence (1350 bp). The diethyl ether extract (DEE) of K. gibsonii demonstrated significant larvicidal effects, with LC50 values of 5.59 µL/mL and 8.59 µL/mL for 3rd instar larvae of Aedes aegypti and 2nd instar larvae of Anopheles stephensi, respectively. Analysis of the DEE using FT-IR, and GC-MS revealed the presence of 16 functional groups, and 7 bioactive compounds, respectively. A molecular docking study identified GC-MS compounds against odorant receptors from A. aegypti and odorant-binding proteins from A. stephensi was performed to assess the interaction and binding affinity. Overall, these findings suggest that the bioactive compounds 2, 4, 6-tribromoaniline from the DEE of K. gibsonii hold potential as an environmentally compatible alternative for biocontrol purposes, and compounds 9-tricosene and didecyl phthalate can be used for mosquito traps.

10.
J Invertebr Pathol ; 205: 108126, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734162

RESUMO

Aedes-transmitted arboviral infections such as Dengue, Yellow Fever, Zika and Chikungunya are increasing public health problems. Xenorhabdus and Photorhabdus bacteria are promising sources of effective compounds with important biological activities. This study investigated the effects of cell-free supernatants of X. szentirmaii, X. cabanillasii and P. kayaii against Ae. aegypti eggs and larvae and identified the bioactive larvicidal compound in X. szentirmaii using The EasyPACId method. Among the three tested bacterial species, X. cabanillasii exhibited the highest (96%) egg hatching inhibition and larvicidal activity (100% mortality), whereas P. kayaii was the least effective species in our study. EasyPACId method revealed that bioactive larvicidal compound in the bacterial supernatant was fabclavine. Fabclavines obtained from promoter exchange mutants of different bacterial species such as X. cabanillasii, X. budapestensis, X. indica, X. szentirmaii, X. hominckii and X. stockiae were effective against mosquito larvae. Results show that these bacterial metabolites have potential to be used in integrated pest management (IPM) programmes of mosquitoes.


Assuntos
Aedes , Larva , Photorhabdus , Xenorhabdus , Animais , Aedes/efeitos dos fármacos , Aedes/microbiologia , Larva/microbiologia , Larva/efeitos dos fármacos , Xenorhabdus/metabolismo , Óvulo/efeitos dos fármacos , Óvulo/microbiologia , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/microbiologia , Controle Biológico de Vetores/métodos , Inseticidas/farmacologia
11.
Pestic Biochem Physiol ; 200: 105809, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582581

RESUMO

Culex quinquefasciatus is the main vector of lymphatic filariasis in Brazil, which present resistance to commercial insecticides. Nowadays, essential oils (EOs) exhibiting larvicidal activity, such as those derived from Piper alatipetiolatum, provide a promising alternative for vector control, including Culex species. This study aimed to investigate the larvicidal activity and the oxidative stress indicators of the EO from P. alatipetiolatum in Cx. quinquefasciatus larvae. The EO was extracted from P. alatipetiolatum leaves using the hydrodistillation method, resulting in a yield of 7.2 ± 0.1%, analysed by gas chromatography coupled with spectrometry and gas chromatography coupled with flame ionization detector (GC-MS and GC-FID), and evaluated against Cx. quinquefasciatus larvae. Reactive Oxygen and Nitrogen Species (RONS), Catalase (CAT), glutathione-S-transferase (GST), acetylcholinesterase (AChE), and Thiol levels were used as oxidative stress indicators. Analysis by CG-MS and CG-FID revealed that the main compound in the EO was the oxygenated sesquiterpene ishwarone, constituting 78.6% of the composition. Furthermore, the EO exhibited larvicidal activity, ranging from 26 to 100%, with an LC50 of 4.53 µg/mL and LC90 of 15.37 µg/mL. This activity was accompanied by a significant increase in RONS production, alterations in CAT, GST, AChE activity, and thiol levels compared to the control groups (p < 0.05). To the best of our knowledge, this is the first report describing the larvicidal activity and oxidative stress induced by the EO from P. alatipetiolatum against Cx. quinquefasciatus larvae. Therefore, we propose that this EO shows promise as larvicidal agent for the effective control of Cx. quinquefasciatus larvae.


Assuntos
Aedes , Culex , Culicidae , Inseticidas , Óleos Voláteis , Piper , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Larva , Acetilcolinesterase , Mosquitos Vetores , Inseticidas/farmacologia , Inseticidas/química , Compostos de Sulfidrila/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta
12.
Environ Sci Pollut Res Int ; 31(23): 33454-33463, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684608

RESUMO

Synthetic insecticides have been the primary approach in controlling Aedes aegypti; however, their indiscriminate use has led to the development of resistance and toxicity to non-target animals. In contrast, essential oils (EOs) are alternatives for vector control. This study investigated the mechanism of larvicidal action of the EO and ß-caryophyllene from Piper tuberculatum against A. aegypti larvae, as well as evaluated the toxicity of both on non-target animals. The EO extracted from P. tuberculatum leaves was majority constituted of ß-caryophyllene (54.8%). Both demonstrated larvicidal activity (LC50 of 48.61 and 57.20 ppm, p < 0.05), acetylcholinesterase inhibition (IC50 of 57.78 and 71.97 ppm), and an increase in the production of reactive oxygen and nitrogen species in larvae after exposure to the EO and ß-caryophyllene. Furthermore, EO and ß-caryophyllene demonstrate no toxicity to non-target animals Toxorhynchites haemorrhoidalis, Anisops bouvieri, and Diplonychus indicus (100% of survival rate), while the insecticide α-cypermethrin was highly toxic (100% of death). The results demonstrate that the EO from P. tuberculatum and ß-caryophyllene are important larvicidal agents.


Assuntos
Aedes , Inseticidas , Larva , Óleos Voláteis , Piper , Sesquiterpenos Policíclicos , Animais , Aedes/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Piper/química , Larva/efeitos dos fármacos , Folhas de Planta/química
13.
Environ Sci Pollut Res Int ; 31(22): 32998-33010, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38671268

RESUMO

We investigated the larvicidal activity of the essential oil (EO) from Tetradenia riparia and its majority compound fenchone for controlling Culex quinquefasciatus larvae, focusing on reactive oxygen and nitrogen species (RONS), catalase (CAT), glutathione S-transferase (GST), acetylcholinesterase (AChE) activities, and total thiol content as oxidative stress indicators. Moreover, the lethal effect of EO and fenchone was evaluated against Anisops bouvieri, Diplonychus indicus, Danio rerio, and Paracheirodon axelrodi. The EO and fenchone (5 to 25 µg/mL) showed larvicidal activity (LC50 from 16.05 to 18.94 µg/mL), followed by an overproduction of RONS, and changes in the activity of CAT, GST, AChE, and total thiol content. The Kaplan-Meier followed by Log-rank (Mantel-Cox) analyses showed a 100% survival rate for A. bouvieri, D. indicus, D. rerio, and P. axelrodi when exposed to EO and fenchone (262.6 and 302.60 µg/mL), while α-cypermethrin (0.25 µg/mL) was extremely toxic to these non-target animals, causing 100% of death. These findings emphasize that the EO from T. riparia and fenchone serve as suitable larvicides for controlling C. quinquefasciatus larvae, without imposing lethal effects on the non-target animals investigated.


Assuntos
Culex , Lamiaceae , Larva , Óleos Voláteis , Estresse Oxidativo , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Culex/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Larva/efeitos dos fármacos , Lamiaceae/química , Inseticidas , Canfanos , Norbornanos
14.
Fitoterapia ; 175: 105937, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565381

RESUMO

Misuse of synthetic pesticides and antimicrobials in agriculture and the food industry has resulted in food contamination, promoting resistant pests and pathogen strains and hazards for humanity and the environment. Therefore, ever-increasing concern about synthetic chemicals has stimulated interest in eco-friendly compounds. Ferulago angulata (Schltdl.) Boiss. and Ferula assa-foetida L., as medicinal species with restricted natural distribution and unknown biological potential, aimed at investigation of their essential oil (EO) biological properties, were subjected. Z-ß-Ocimene and Z-1-Propenyl-sec-butyl disulfide molecules were identified as the major composition of the essential oil of the fruits of F. angulata and F. assa-foetida, respectively. In vitro antimicrobial activity and membrane destruction investigation by scanning electron microscopy imaging illustrated that F. angulata EO had potent antibacterial activity. Besides, the EOs of both plants exhibited significant anti-yeast activity against Candida albicans. In relation to insecticidal activity, both EOs indicated appropriate potential against Ephestia kuehniella; however, the F. assa-foetida EO had more toxicity on the studied pest. Among several insecticidal-related targets, acetylcholinesterase was identified as the main target of EO based on the molecular docking approach. Hence, in line with in vitro results, in silico evaluation determined that F. assa-foetida has a higher potential for inhibiting acetylcholinesterase and, consequently, better insecticide properties. Overall, in addition to the antioxidant properties of both EO, F. angulata EO could serve as an effective prevention against microbial spoilage and foodborne pathogens, and F. assa-foetida EO holds promise as a multi-purpose and natural biocide for yeast contamination and pest management particularly against E. kuehniella.


Assuntos
Ferula , Inseticidas , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Ferula/química , Inseticidas/farmacologia , Inseticidas/isolamento & purificação , Inseticidas/química , Animais , Candida albicans/efeitos dos fármacos , Frutas/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/isolamento & purificação , Simulação de Acoplamento Molecular , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Simulação por Computador , Antifúngicos/farmacologia , Antifúngicos/isolamento & purificação , Antifúngicos/química
15.
Exp Parasitol ; 261: 108766, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677581

RESUMO

Control of mosquito vectors, which have caused a global disease burden, has employed various methods. However, the challenges posed by current physical and chemical methods have raised concerns about vector control programs, leading to the search for alternative methods that are less toxic, eco-friendly, and cost-effective. This study investigated the larvicidal potential of aqueous, methanol, and ethylacetate extracts of Guava (Psidium guajava) against Aedes aegypti and Culex quinquefasciatus larvae. Functional group and phytochemical characterization were performed using Fourier-Transform Infrared Spectroscopy (FTIR) and GC-MS analysis to identify the bioactive compounds in the extracts. Larval bioassays were conducted using WHO standard procedures at concentrations of 12.5, 25, 50, 125, and 250 mg/L, and mortality was recorded after 24, 48, and 72 h. Additionally, antioxidant enzyme profiles in the larvae were studied. All of the solvent extracts showed larvicidal activity, with the methanol extract exhibiting the highest mortality against Ae. aegypti and Cx. quinquefasciatus larvae, followed by aqueous and ethylacetate extracts. FTIR spectroscopic analysis revealed the presence of OH, C-H of methyl and methylene, CO and CC. The GC-MS analysis indicated that the methanol, aqueous, and ethylacetate extracts all had 27, 34, and 43 phytoactive compounds that were effective at causing larvicidal effects, respectively. Different concentrations of each extract significantly modulated the levels of superoxide dismutase, catalase, glutathione peroxidase, and reduced glutathione in larvae. This study's findings indicate the potential for developing environmentally friendly vector control products using the bioactive components of extracts from P. guajava leaves.


Assuntos
Aedes , Antioxidantes , Culex , Cromatografia Gasosa-Espectrometria de Massas , Larva , Mosquitos Vetores , Extratos Vegetais , Psidium , Animais , Psidium/química , Aedes/efeitos dos fármacos , Aedes/enzimologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Larva/efeitos dos fármacos , Culex/efeitos dos fármacos , Culex/enzimologia , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/química , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/enzimologia , Espectroscopia de Infravermelho com Transformada de Fourier , Filariose Linfática/prevenção & controle , Inseticidas/farmacologia , Catalase/metabolismo , Folhas de Planta/química , Superóxido Dismutase/metabolismo , Controle de Mosquitos , Dengue/prevenção & controle , Dengue/transmissão , Bioensaio , Glutationa Peroxidase/metabolismo , Insetos Vetores/efeitos dos fármacos
16.
Toxicon ; 243: 107737, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38677379

RESUMO

Botanical essential oils are natural insecticides derived from plants, offering eco-friendly alternatives to synthetic chemicals for pest control. In this study, the essential oils were extracted from Acacia nilotica seed cotyledons, and their toxicity was tested against insect pests. Furthermore, the chemical components of the essential oils were identified through gas chromatography-mass spectrometry (GC-MS) analysis. The essential oil extracted from A. nilotica seeds exhibited the highest mortality rates of 60% and 98% in Culex quinquefasciatus, and 60% and 96.66% mortality in Plutella xylostella at 24 and 48 h after treatment, respectively. The essential oils resulted in a lower LC50 of 159.263 ppm/mL, and LC90 of 320.930 ppm/mL within 24 h. In 48 h, the LC50 was 52.070 ppm/mL and the LC90 was 195.123 ppm/mL for C. quinquefasciatus. In the essential oil treatment of P. xylostella, the lower LC50 was 165.900 ppm/mL, and the LC90 was 343.840 ppm/mL 24 h after the treatment. At 48 h post-treatment, the LC50 decreased to 62.965 ppm/mL, and the LC90 decreased to 236.795 ppm/mL in P. xylostella. The study investigated the impact of essential oils on insect enzymes 24 h after treatment. The study revealed significant changes in the levels of insect enzymes, including a decrease in acetylcholinesterase enzymes and an increase in glutathione S-transferase compared to the control group. Essential oils had minimal effects, resulting in mortality rates of 30.66% and 46% at 24 and 48 h after treatment on Artemia salina. After 48 h, minimal toxic effects of essential oils were observed on E. eugeniae, with a mortality rate of 11.33%. The GC-MS analysis of A. nilotica seed-derived essential oils revealed ten major chemical constituents, including 6-hydroxymellein, phthalic acid, trichloroacetic acid, hexadecane, acetamide, heptacosane, eicosane, pentadecane, 1,3,4-eugenol, and chrodrimanin B. Among these constituents, Heptacosane is the major chemical component, and this molecule has a high potential for involvement in insecticidal activity.


Assuntos
Acacia , Inseticidas , Simulação de Acoplamento Molecular , Óleos Voláteis , Animais , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Acacia/química , Inseticidas/química , Inseticidas/toxicidade , Culex/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Mariposas/efeitos dos fármacos , Sementes/química
17.
Molecules ; 29(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675598

RESUMO

Plant extracts and essential oils can be alternative environmentally friendly agents to combat pathogenic microbes and malaria vectors. Myrrh is an aromatic oligum resin that is extracted from the stem of Commiphora spp. It is used in medicine as an insecticide, cytotoxic, and aromatic. The current study assessed the effect of Commiphora myrrha resin extracts on the biological potency of the third larval stage of Aedes aegypti, as well as its antioxidant and cytotoxic properties against two types of tumor cells (HepG-2 and Hela cell lines). It also used GC-MS to determine the chemical composition of the C. myrrha resin extracts. Fifty components from the extracted plant were tentatively identified using the GC-MS method, with curzerene (33.57%) typically listed as the primary ingredient, but other compounds also make up a significant portion of the mixture, including 1-Methoxy-3,4,5,7-tetramethylnaphthalene (15.50%), ß-Elemene (5.80%), 2-Methoxyfuranodiene (5.42%), 2-Isopropyl-4,7-Dimethyl-1-Naphthol (4.71%), and germacrene B (4.35%). The resin extracts obtained from C. myrrha exhibited significant efficacy in DPPH antioxidant activity, as evidenced by an IC50 value of 26.86 mg/L and a radical scavenging activity percentage of 75.06%. The 50% methanol extract derived from C. myrrha resins exhibited heightened potential for anticancer activity. It demonstrated substantial cytotoxicity against HepG-2 and Hela cells, with IC50 values of 39.73 and 29.41 µg mL-1, respectively. Notably, the extract showed non-cytotoxic activity against WI-38 normal cells, with an IC50 value exceeding 100 µg mL-1. Moreover, the selectivity index for HepG-2 cancer cells (2.52) was lower compared to Hela cancer cells (3.40). Additionally, MeOH resin extracts were more efficient against the different growth stages of the mosquito A. aegypti, with lower LC50, LC90, and LC95 values of 251.83, 923.76, and 1293.35 mg/L, respectively. In comparison to untreated groups (1454 eggs/10 females), the average daily number of eggs deposited (424 eggs/L) decreases at higher doses (1000 mg/L). Finally, we advise continued study into the possible use of C. myrrha resins against additional pests that have medical and veterinary value, and novel chemicals from this extract should be isolated and purified for use in medicines.


Assuntos
Antioxidantes , Commiphora , Cromatografia Gasosa-Espectrometria de Massas , Larva , Extratos Vegetais , Resinas Vegetais , Commiphora/química , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Antioxidantes/farmacologia , Antioxidantes/química , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células HeLa , Resinas Vegetais/química , Larva/efeitos dos fármacos , Células Hep G2 , Inseticidas/farmacologia , Inseticidas/química , Inseticidas/isolamento & purificação , Aedes/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
18.
Pest Manag Sci ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619291

RESUMO

BACKGROUND: In the perpetual struggle to manage mosquito populations, there has been increasing demand for the development of biopesticides to supplant/complement current products. The insecticidal potential of Xenorhabdus and Photorhabdus has long been recognized and is of interest for the control of important mosquitoes like Aedes albopictus which vectors over 20 different arboviruses of global public health concern. RESULTS: The larvicidal effects of cell-free supernatants, cell growth cultures and cell mass of an extensive list of Xenorhabdus and Photorhabdus spp. was investigated. They were quite effective against Ae. albopictus causing larval mortality ranging between 52-100%. Three Photorhabdus spp. and 13 Xenorhabdus spp. release larvicidal compounds in cell-free supernatants. Cell growth culture of all tested species exhibited larvicidal activity, except for Xenorhabdus sp. TS4. Twenty-one Xenorhabdus and Photorhabdus bacterial cells (pellet) exhibited oral toxicity (59-91%) against exposed larvae. The effect of bacterial supernatants on the mosquito eggs were also assessed. Bacterial supernatants inhibited the hatching of mosquito eggs; when unhatched eggs were transferred to clean water, they all hatched. Using the easyPACId approach, the larvicidal compounds in bacterial supernatant were identified as fabclavine from X. szentirmaii and xencoumacin from X. nematophila (causing 98 and 70% mortality, respectively, after 48 h). Xenorhabdus cabanillasii and X. hominickii fabclavines were as effective as commercial Bacillus thuringiensis subsp. israelensis and spinosad products within 5 days post-application (dpa). CONCLUSION: Fabclavine and xenocoumacin can be developed into novel biolarvicides, can be used as a model to synthesize other compounds or/and can be combined with other commercial biolarvicides. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

19.
Phytochemistry ; 222: 114092, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604323

RESUMO

Phytochemical study of the fruits of Chisocheton erythrocarpus (Hiern) allowed the identification of eight undescribed limonoids, namely erythrocarpines O - V (1-6, 7a and 7b), along with seven known compounds. The structures of these compounds were elucidated based on spectroscopic and HRMS data, along with electronic circular dichroism to configure the absolute configuration. Erythrocarpines O and P are γ-hydroxybutenolide analogs of mexicanolide-type limonoids while erythrocarpine Q - V are phragmalin-type limonoids possessing a 1,29-oxymethylene bridge with either benzoyl or cinnamoyl moiety in their structures. Mosquito larvicidal activity revealed that crude DCM extract of C. erythrocarpus possessed a good larvicidal effect against Aedes aegypti larvae in 48 h (LC50 = 153.0 ppm). Subsequent larvicidal activity of isolated compounds indicated that erythrocarpine G (10) and 14-deoxyxyloccensin K (11) were responsible for the enhanced larvicidal effect of the extract, reporting LC50 values of 18.55 ppm and 41.16 ppm, respectively. Moreover, residual activity testing of the crude DCM extract revealed that the duration of its larvicidal effects is up to 14 days, where it maintained a 98 % larval mortality throughout the test period, under laboratory conditions.


Assuntos
Aedes , Frutas , Inseticidas , Larva , Limoninas , Meliaceae , Animais , Larva/efeitos dos fármacos , Limoninas/farmacologia , Limoninas/isolamento & purificação , Limoninas/química , Inseticidas/farmacologia , Inseticidas/química , Inseticidas/isolamento & purificação , Frutas/química , Aedes/efeitos dos fármacos , Meliaceae/química , Estrutura Molecular , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga
20.
Biology (Basel) ; 13(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38534451

RESUMO

Mosquitoes are the most notorious arthropod vectors of viral and parasitic diseases for which approximately half the world's population, ~4,000,000,000, is at risk. Integrated pest management programs (IPMPs) have achieved some success in mitigating the regional transmission and persistence of these diseases. However, as many vector-borne diseases remain pervasive, it is obvious that IPMP successes have not been absolute in eradicating the threat imposed by mosquitoes. Moreover, the expanding mosquito geographic ranges caused by factors related to climate change and globalization (travel, trade, and migration), and the evolution of resistance to synthetic pesticides, present ongoing challenges to reducing or eliminating the local and global burden of these diseases, especially in economically and medically disadvantaged societies. Abatement strategies include the control of vector populations with synthetic pesticides and eco-friendly technologies. These "green" technologies include SIT, IIT, RIDL, CRISPR/Cas9 gene drive, and biological control that specifically targets the aquatic larval stages of mosquitoes. Regarding the latter, the most effective continues to be the widespread use of Lysinibacillus sphaericus (Ls) and Bacillus thuringiensis subsp. israelensis (Bti). Here, we present a review of the health issues elicited by vector mosquitoes, control strategies, and lastly, focus on the biology of Ls and Bti, with an emphasis on the latter, to which no resistance has been observed in the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...