Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
Insects ; 15(5)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38786901

RESUMO

The overuse of synthetic insecticides has led to various negative consequences, including insecticide resistance, environmental pollution, and harm to public health. This may be ameliorated by using insecticides derived from botanical sources. The primary objective of this study was to evaluate the anti-mosquito activity of the essential oil (EO) of Citrus reticulata Blanco cv. Chachiensis (Chachi) (referred to as CRB) at immature, semi-mature, and mature stages. The chemical compositions of the CRB EO were analyzed using GC-MS. The main components were identified to be D-limonene and γ-terpinene. The contents of D-limonene at the immature, semi-mature, and mature stages were 62.35%, 76.72%, and 73.15%, respectively; the corresponding contents of γ-terpinene were 14.26%, 11.04%, and 11.27%, respectively. In addition, the corresponding contents of a characteristic component, methyl 2-aminobenzoate, were 4.95%, 1.93%, and 2.15%, respectively. CRB EO exhibited significant larvicidal activity against Aedes albopictus (Ae. albopictus, Diptera: Culicidae), with the 50% lethal doses being 65.32, 61.47, and 65.91 mg/L for immature, semi-mature, and mature CRB EO, respectively. CRB EO was able to inhibit acetylcholinesterase and three detoxification enzymes, significantly reduce the diversity of internal microbiota in mosquitoes, and decrease the relative abundance of core species within the microbiota. The present results may provide novel insights into the utilization of plant-derived essential oils in anti-mosquitoes.

2.
Nat Prod Res ; : 1-9, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766845

RESUMO

The targeted organisms include mosquito vectors, bacterial pathogens and non-targeted organisms. Preliminary mosquito larvicidal activity was conducted using cell-free supernatants (CFSs) from 11 gut bacteria. Among them, the bacterium SS11 exhibited promising results and was identified as Kurthia gibsonii based on its 16S rRNA sequence (1350 bp). The diethyl ether extract (DEE) of K. gibsonii demonstrated significant larvicidal effects, with LC50 values of 5.59 µL/mL and 8.59 µL/mL for 3rd instar larvae of Aedes aegypti and 2nd instar larvae of Anopheles stephensi, respectively. Analysis of the DEE using FT-IR, and GC-MS revealed the presence of 16 functional groups, and 7 bioactive compounds, respectively. A molecular docking study identified GC-MS compounds against odorant receptors from A. aegypti and odorant-binding proteins from A. stephensi was performed to assess the interaction and binding affinity. Overall, these findings suggest that the bioactive compounds 2, 4, 6-tribromoaniline from the DEE of K. gibsonii hold potential as an environmentally compatible alternative for biocontrol purposes, and compounds 9-tricosene and didecyl phthalate can be used for mosquito traps.

3.
Chemosphere ; 358: 142240, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705417

RESUMO

The Aedes aegypti mosquito is a vector for various arboviruses, including dengue and yellow fever. Insecticides, such as pyrethroids and organophosphates, are widely used to manage and control these insects. However, mosquitoes have developed resistance to these chemicals. Therefore, this study aimed to investigate the effects of the commercial formulation of fipronil (Tuit® Florestal; 80% purity) on the survival, behavior, morphology, and proteins related to signaling pathways of the midgut in A. aegypti larvae under controlled laboratory conditions. Significant reductions in immature survival were observed in all concentrations of fipronil tested. Low insecticide concentration (0.5 ppb) led to decreased locomotor activity in the larvae and caused disorganization of the epithelial tissue in the midgut. Moreover, exposure to the insecticide decreased the activity of detoxifying enzymes such as catalase, superoxide dismutase, and glutathione-S-transferase. On the other hand, the insecticide increased protein oxidation and nitric oxide levels. The detection of LC3, caspase-3, and JNK proteins, related to autophagy and apoptosis, increased after exposure. However, there was a decrease in the positive cells for ERK 1/2. Furthermore, the treatment with fipronil decreased the number of positive cells for the proteins FMRF, Prospero, PH3, Wg, Armadillo, Notch, and Delta, which are related to cell proliferation and differentiation. These findings demonstrate that even at low concentrations, fipronil exerts larvicidal effects on A. aegypti by affecting behavior and enzymatic detoxification, inducing protein oxidation, free radical generation, midgut damage and cell death, and inhibiting cell proliferation and differentiation. Thus, this insecticide may represent a viable alternative for controlling the spread of this vector.


Assuntos
Aedes , Inseticidas , Larva , Pirazóis , Animais , Aedes/efeitos dos fármacos , Aedes/crescimento & desenvolvimento , Aedes/fisiologia , Pirazóis/toxicidade , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/fisiologia , Sistema Digestório/efeitos dos fármacos
4.
Molecules ; 29(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675598

RESUMO

Plant extracts and essential oils can be alternative environmentally friendly agents to combat pathogenic microbes and malaria vectors. Myrrh is an aromatic oligum resin that is extracted from the stem of Commiphora spp. It is used in medicine as an insecticide, cytotoxic, and aromatic. The current study assessed the effect of Commiphora myrrha resin extracts on the biological potency of the third larval stage of Aedes aegypti, as well as its antioxidant and cytotoxic properties against two types of tumor cells (HepG-2 and Hela cell lines). It also used GC-MS to determine the chemical composition of the C. myrrha resin extracts. Fifty components from the extracted plant were tentatively identified using the GC-MS method, with curzerene (33.57%) typically listed as the primary ingredient, but other compounds also make up a significant portion of the mixture, including 1-Methoxy-3,4,5,7-tetramethylnaphthalene (15.50%), ß-Elemene (5.80%), 2-Methoxyfuranodiene (5.42%), 2-Isopropyl-4,7-Dimethyl-1-Naphthol (4.71%), and germacrene B (4.35%). The resin extracts obtained from C. myrrha exhibited significant efficacy in DPPH antioxidant activity, as evidenced by an IC50 value of 26.86 mg/L and a radical scavenging activity percentage of 75.06%. The 50% methanol extract derived from C. myrrha resins exhibited heightened potential for anticancer activity. It demonstrated substantial cytotoxicity against HepG-2 and Hela cells, with IC50 values of 39.73 and 29.41 µg mL-1, respectively. Notably, the extract showed non-cytotoxic activity against WI-38 normal cells, with an IC50 value exceeding 100 µg mL-1. Moreover, the selectivity index for HepG-2 cancer cells (2.52) was lower compared to Hela cancer cells (3.40). Additionally, MeOH resin extracts were more efficient against the different growth stages of the mosquito A. aegypti, with lower LC50, LC90, and LC95 values of 251.83, 923.76, and 1293.35 mg/L, respectively. In comparison to untreated groups (1454 eggs/10 females), the average daily number of eggs deposited (424 eggs/L) decreases at higher doses (1000 mg/L). Finally, we advise continued study into the possible use of C. myrrha resins against additional pests that have medical and veterinary value, and novel chemicals from this extract should be isolated and purified for use in medicines.


Assuntos
Antioxidantes , Commiphora , Cromatografia Gasosa-Espectrometria de Massas , Larva , Extratos Vegetais , Resinas Vegetais , Commiphora/química , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Antioxidantes/farmacologia , Antioxidantes/química , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células HeLa , Resinas Vegetais/química , Larva/efeitos dos fármacos , Células Hep G2 , Inseticidas/farmacologia , Inseticidas/química , Inseticidas/isolamento & purificação , Aedes/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
5.
Phytochemistry ; 222: 114092, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604323

RESUMO

Phytochemical study of the fruits of Chisocheton erythrocarpus (Hiern) allowed the identification of eight undescribed limonoids, namely erythrocarpines O - V (1-6, 7a and 7b), along with seven known compounds. The structures of these compounds were elucidated based on spectroscopic and HRMS data, along with electronic circular dichroism to configure the absolute configuration. Erythrocarpines O and P are γ-hydroxybutenolide analogs of mexicanolide-type limonoids while erythrocarpine Q - V are phragmalin-type limonoids possessing a 1,29-oxymethylene bridge with either benzoyl or cinnamoyl moiety in their structures. Mosquito larvicidal activity revealed that crude DCM extract of C. erythrocarpus possessed a good larvicidal effect against Aedes aegypti larvae in 48 h (LC50 = 153.0 ppm). Subsequent larvicidal activity of isolated compounds indicated that erythrocarpine G (10) and 14-deoxyxyloccensin K (11) were responsible for the enhanced larvicidal effect of the extract, reporting LC50 values of 18.55 ppm and 41.16 ppm, respectively. Moreover, residual activity testing of the crude DCM extract revealed that the duration of its larvicidal effects is up to 14 days, where it maintained a 98 % larval mortality throughout the test period, under laboratory conditions.


Assuntos
Aedes , Frutas , Inseticidas , Larva , Limoninas , Meliaceae , Animais , Larva/efeitos dos fármacos , Limoninas/farmacologia , Limoninas/isolamento & purificação , Limoninas/química , Inseticidas/farmacologia , Inseticidas/química , Inseticidas/isolamento & purificação , Frutas/química , Aedes/efeitos dos fármacos , Meliaceae/química , Estrutura Molecular , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga
6.
Exp Parasitol ; 261: 108766, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677581

RESUMO

Control of mosquito vectors, which have caused a global disease burden, has employed various methods. However, the challenges posed by current physical and chemical methods have raised concerns about vector control programs, leading to the search for alternative methods that are less toxic, eco-friendly, and cost-effective. This study investigated the larvicidal potential of aqueous, methanol, and ethylacetate extracts of Guava (Psidium guajava) against Aedes aegypti and Culex quinquefasciatus larvae. Functional group and phytochemical characterization were performed using Fourier-Transform Infrared Spectroscopy (FTIR) and GC-MS analysis to identify the bioactive compounds in the extracts. Larval bioassays were conducted using WHO standard procedures at concentrations of 12.5, 25, 50, 125, and 250 mg/L, and mortality was recorded after 24, 48, and 72 h. Additionally, antioxidant enzyme profiles in the larvae were studied. All of the solvent extracts showed larvicidal activity, with the methanol extract exhibiting the highest mortality against Ae. aegypti and Cx. quinquefasciatus larvae, followed by aqueous and ethylacetate extracts. FTIR spectroscopic analysis revealed the presence of OH, C-H of methyl and methylene, CO and CC. The GC-MS analysis indicated that the methanol, aqueous, and ethylacetate extracts all had 27, 34, and 43 phytoactive compounds that were effective at causing larvicidal effects, respectively. Different concentrations of each extract significantly modulated the levels of superoxide dismutase, catalase, glutathione peroxidase, and reduced glutathione in larvae. This study's findings indicate the potential for developing environmentally friendly vector control products using the bioactive components of extracts from P. guajava leaves.


Assuntos
Aedes , Antioxidantes , Culex , Cromatografia Gasosa-Espectrometria de Massas , Larva , Mosquitos Vetores , Extratos Vegetais , Psidium , Animais , Psidium/química , Aedes/efeitos dos fármacos , Aedes/enzimologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Larva/efeitos dos fármacos , Culex/efeitos dos fármacos , Culex/enzimologia , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/química , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/enzimologia , Espectroscopia de Infravermelho com Transformada de Fourier , Filariose Linfática/prevenção & controle , Inseticidas/farmacologia , Catalase/metabolismo , Folhas de Planta/química , Superóxido Dismutase/metabolismo , Controle de Mosquitos , Dengue/prevenção & controle , Dengue/transmissão , Bioensaio , Glutationa Peroxidase/metabolismo , Insetos Vetores/efeitos dos fármacos
7.
Toxicon ; 243: 107737, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38677379

RESUMO

Botanical essential oils are natural insecticides derived from plants, offering eco-friendly alternatives to synthetic chemicals for pest control. In this study, the essential oils were extracted from Acacia nilotica seed cotyledons, and their toxicity was tested against insect pests. Furthermore, the chemical components of the essential oils were identified through gas chromatography-mass spectrometry (GC-MS) analysis. The essential oil extracted from A. nilotica seeds exhibited the highest mortality rates of 60% and 98% in Culex quinquefasciatus, and 60% and 96.66% mortality in Plutella xylostella at 24 and 48 h after treatment, respectively. The essential oils resulted in a lower LC50 of 159.263 ppm/mL, and LC90 of 320.930 ppm/mL within 24 h. In 48 h, the LC50 was 52.070 ppm/mL and the LC90 was 195.123 ppm/mL for C. quinquefasciatus. In the essential oil treatment of P. xylostella, the lower LC50 was 165.900 ppm/mL, and the LC90 was 343.840 ppm/mL 24 h after the treatment. At 48 h post-treatment, the LC50 decreased to 62.965 ppm/mL, and the LC90 decreased to 236.795 ppm/mL in P. xylostella. The study investigated the impact of essential oils on insect enzymes 24 h after treatment. The study revealed significant changes in the levels of insect enzymes, including a decrease in acetylcholinesterase enzymes and an increase in glutathione S-transferase compared to the control group. Essential oils had minimal effects, resulting in mortality rates of 30.66% and 46% at 24 and 48 h after treatment on Artemia salina. After 48 h, minimal toxic effects of essential oils were observed on E. eugeniae, with a mortality rate of 11.33%. The GC-MS analysis of A. nilotica seed-derived essential oils revealed ten major chemical constituents, including 6-hydroxymellein, phthalic acid, trichloroacetic acid, hexadecane, acetamide, heptacosane, eicosane, pentadecane, 1,3,4-eugenol, and chrodrimanin B. Among these constituents, Heptacosane is the major chemical component, and this molecule has a high potential for involvement in insecticidal activity.


Assuntos
Acacia , Inseticidas , Simulação de Acoplamento Molecular , Óleos Voláteis , Animais , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Acacia/química , Inseticidas/química , Inseticidas/toxicidade , Culex/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Mariposas/efeitos dos fármacos , Sementes/química
8.
Nat Prod Res ; : 1-12, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538562

RESUMO

The chemical composition and biological activities of the essential oils obtained from Serbian Artemisia species (A. alba, A. absinthium, A. annua, A. vulgaris, and A. scoparia) were analysed. The essential oil was obtained by merging several samples (same plant species, different localities) and the chemical composition was compared with pre-merging results. In the merged A. scoparia sample four components were not found in any pre-merging sample and one of those is present in the highest percentage (capillin 35.7%). The least toxic essential oil in Artemia salina test was A. annua, followed by A. alba (both showing medium toxicity), while A. absinthium, A. vulgaris, and A. scoparia showed strong toxicity. All tested samples showed activity against Drosophila melanogaster larvae in descending order ΣAS > ΣAN > ΣAV > ΣAB > ΣAA. The essential oil of A. scoparia has exceptional larvicidal activity (in concentrations of 2% and 1% causes complete mortality).

9.
Chem Biodivers ; 21(4): e202301774, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38386290

RESUMO

This study is primarily focused on the synthesis of silver and copper oxide nanoparticles utilizing the extract of Ipomoea staphylina plant and their larvicidal activity against specific larvae. Notably, Anopheles stephensi and Aedes aegypti are significant disease vectors responsible for transmitting diseases such as malaria, dengue fever, Zika virus, and chikungunya (Anopheles stephensi), and dengue and Zika (Aedes aegypti). These mosquitoes have a substantial impact on urban areas, influencing disease transmission dynamics. In an effort to control these larvae, we have pursued the synthesis of a herbal-based nanomedicine derived from I. staphylina, a valuable herb in traditional medicine. Our successful synthesis of silver and CuO nanoparticles followed environmentally sustainable green chemistry methodologies. The I. staphylina plant extract played a dual role as a reducing agent and dopant, aligning with principles of sustainability. We employed X-ray diffraction (XRD) analysis to validate the nanoparticle structure and size, while field-emission scanning electron microscopy (FE-SEM) revealed well-defined nanostructures. Elemental composition was determined through energy-dispersive X-ray (EDX) analysis, and UV-visible spectroscopy provided insights into the bandgap energy (3.15 eV for silver, 1.2 eV for CuO nanoparticles). These nanoparticles exhibited robust larvicidal activity, with CuO nanoparticles surpassing silver nanoparticles in terms of LC50 and LC90 values. Moreover, the developmental toxicity of CuO and Ag NPs was evaluated in zebrafish embryos as part of non-target eco-toxicological studies conducted in a standard laboratory environment. These findings underscore the potential utility of these nanoparticles as highly effective and environmentally friendly natural pesticides, offering cost-effectiveness and ecological benefits.


Assuntos
Aedes , Anopheles , Culex , Inseticidas , Nanopartículas Metálicas , Zika virus , Animais , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Larva , Cobre/farmacologia , Peixe-Zebra , Mosquitos Vetores , Inseticidas/química , Extratos Vegetais/química , Folhas de Planta/química , Óxidos
10.
J Agric Food Chem ; 72(2): 1292-1301, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38178001

RESUMO

Pests represent an important impediment to efficient agricultural production and pose a threat to global food security. On the basis of our prior research focused on identifying insecticidal leads targeting insect ryanodine receptors (RyRs), we aimed to identify evodiamine scaffold-based novel insecticides. Thus, a variety of evodiamine-based derivatives were designed, synthesized, and assessed for their insecticidal activity against the larvae of Mythimna separata (M. separata) and Plutella xylostella (P. xylostella). The preliminary bioassay results revealed that more than half of the target compounds exhibited superior activity compared to evodiamine, matrine, and rotenone against M. separata. Among these, compound 21m displayed the most potent larvicidal efficiency, with a remarkable mortality rate of 93.3% at 2.5 mg/L, a substantial improvement over evodiamine (10.0% at 10 mg/L), matrine (10.0% at 200 mg/L), and rotenone (30.0% at 200 mg/L). In the case of P. xylostella, compounds 21m and 21o displayed heightened larvicidal activity, boasting LC50 values of 9.37 × 10-2 and 0.13 mg/L, respectively, surpassing that of evodiamine (13.41 mg/L), matrine (291.78 mg/L), and rotenone (18.39 mg/L). A structure-activity relationship analysis unveiled that evodiamine-based derivatives featuring a cyclopropyl sulfonyl group at the nitrogen atom of the B ring and a fluorine atom in the E ring exhibited more potent larvicidal effects. This finding was substantiated by calcium imaging experiments and molecular docking, which suggested that 21m could target insect RyRs, including resistant mutant RyRs of P. xylostella (G4946E and I4790M), with higher affinity than chlorantraniliprole (CHL). Additionally, cytotoxicity assays highlighted that the potent compounds 21i, 21m, and 21o displayed favorable selectivity and low toxicity toward nontarget organisms. Consequently, compound 21m emerges as a promising candidate for further development as an insecticide targeting insect RyRs.


Assuntos
Inseticidas , Mariposas , Quinazolinas , Animais , Inseticidas/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina , Rotenona , Simulação de Acoplamento Molecular , Matrinas , Larva , Sulfonamidas
11.
Chem Biodivers ; 21(2): e202301560, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38251927

RESUMO

Several infectious diseases are transmitted and spread by mosquitoes, and millions of people die annually from them. The mosquito, Culex pipiens is a responsible for the emergence of various Virus in Egypt. So, we devote our work to evaluate the larvicidal efficacy against C. pipiens of some new heterocyclic compounds containing chlorine motifs. The implementation was emanated from using 2-cyano-N'-(2-(2,4-dichlorophenoxy)acetyl)acetohydrazide (3) as scaffold to synthesize some new heterocyclic compounds. The structures of the synthesized compounds were interpreted scrupulously by spectroscopic and elemental analyses. Thereafter, the larvicidal activity against C. pipiens of thirteen synthesized compounds was estimated. Noteworthy, cyanoacetohydrazide derivative 3 and 3-iminobenzochromene derivative 12 showed a fabulous potent efficacy with LC50 equal to 3.2 and 3.5 ppm against C. pipiens, respectively, and are worth being further evaluated in the field of pest control.


Assuntos
Culex , Compostos Heterocíclicos , Hidrazinas , Inseticidas , Humanos , Animais , Inseticidas/farmacologia , Inseticidas/química , Larva , Compostos Heterocíclicos/farmacologia , Extratos Vegetais/química
12.
Nat Prod Res ; : 1-16, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38247329

RESUMO

This study is the first to explore the essential oil of Ononis angustissima Lam. subsp. filifolia Murb., a subspecies growing in the Algerian northeastern Sahara. The chemical composition was evaluated by GC/GC-EIMS. Antioxidant activity was evaluated using two methods. Thirty-four (91.6%) individual components were identified. The main constituents were linalool (12.6%), hexahydrofarnesylacetone (8.4%), ß-eudesmol (6.6%), α-cadinol (6.4%) and T-cadinol (6.1%). The findings provide a chemical basis for understanding relationships between North African subspecies, supporting botanical and genetic classification. The oil exhibited moderate scavenging activity against DPPH radicals (IC50 = 102.30 µg/ml) and high activity in the ß-carotene bleaching assay (91.346%). Antimicrobial tests revealed effectiveness against Gram-positive bacteria (Staphylococcus aureus ATCC 25923 and ATCC 43300), limited impact on Gram-negative bacteria (Pseudomonas aeruginosa ATCC 27853 and Escherichia coli ATCC 25922), and good inhibition against Aspergillus niger and Scedosporium apiospermum. A notable larvicidal activity was observed against Date Moth, particularly on L2 larvae.

13.
Phytochem Anal ; 35(3): 507-520, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38035714

RESUMO

INTRODUCTION: Pomegranate (Punica granatum L.) peels are rich in various bioactive compounds. Characterization of these compounds is crucial for the utilization of peel waste in industrial processing. OBJECTIVE: The study aimed (1) to establish and compare the metabolic profiles of the peel of seven pomegranate cultivars and (2) to identify bioactive compounds contributing to the larvicidal activity against the third instar larvae of Culex pipiens. MATERIALS AND METHODS: UPLC-ESI-MS/MS was utilized to analyze peel methanol extracts of different pomegranate cultivars. The larvicidal activity was determined by calculating the larval mortality among the third instar larvae of C. pipiens. Multivariate data analysis was conducted to identify the metabolites that exhibited a larvicidal effect. RESULTS: A total of 24 metabolites, including hydrolyzable tannins, flavonoids, and alkaloids, were tentatively identified in both negative and positive ionization modes. The extract of cultivar 'Black' exhibited the most potent larvicidal effect with LC50 values of 185.15, 156.84, and 138.12 ppm/mL after 24, 48, and 72 h of treatment, respectively. By applying chemometric techniques, the larvicidal activity could be directly correlated to the bioactive compounds punicalagin, quercetin-O-rhamnoside, quercetin-O-pentoside, and galloyl-HHDP-glucose. CONCLUSION: The present study implemented UPLC-ESI-MS/MS and chemometric techniques as potential tools for metabolomics analysis and differentiation between peels of different pomegranate cultivars. In addition, cultivar 'Black' extract could be a promising natural insecticide against mosquitoes since it is rich in bioactive compounds with larvicidal activity.


Assuntos
Culex , Extratos Vegetais , Punica granatum , Animais , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem , Quercetina , Cromatografia Líquida , Espectrometria de Massa com Cromatografia Líquida , Larva
14.
J Invertebr Pathol ; 203: 108045, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38135245

RESUMO

Nanomaterials are successful due to their numerous applications in various domains such as cancer treatment, environmental applications, drug and gene delivery. Selenium is a metalloid element with broad biological activities and low toxicity especially at the nanoscale. Several studies have shown that nanoparticles synthesized from microbial and plant extracts are effective against important pests and pathogens. This study describes the bio fabrication of selenium nanoparticles using cell free extract of Xenorhabdus cabanillasii (XC-SeNPs) and assessed their mosquito larvicidal properties. Crystallographic structure and size of XC-SeNPs were determined with UV-a spectrophotometer, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), Energy-dispersive X-ray spectroscopy (EDAX), Zeta potential and Transmission electron microscopy (TEM). The significant surface plasmon resonance at 275 nm indicated the synthesis of XC-SeNPs from the pure cell-free extract of X. cabanillasii. The XRD result exhibits the crystalline nature of XC-SeNPs. The Zeta potential analysis confirmed that the surface charge of XC-SeNPs was -24.17 mV. TEM analysis revealed that synthesized XC-SeNPs were monodispersed, spherically shaped, and sized about 80-200 nm range. In addition, the larvicidal potentials of the bio-fabricated XC-SeNPs were assessed against the 4th-instar Ae. aegypti. XC-SeNPs displayed a dose-dependent larvicidal effect; the larval mortality was 13.3 % at the minimum evaluated concentration and increased to 72 % at higher dose treatments. The LC50 and LC90 concentration of XC-SeNPs against mosquito larvae were 79.4 and 722.4 ppm, respectively.


Assuntos
Aedes , Inseticidas , Selênio , Xenorhabdus , Febre Amarela , Animais , Inseticidas/farmacologia , Inseticidas/química , Larva , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Selênio/análise , Selênio/farmacologia
15.
Parasitol Int ; 98: 102820, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37884077

RESUMO

Aedes aegypti, a mosquito, is responsible for the spread of many diseases, including dengue, zika, and chikungunya. However, due to this mosquito's developed resistance to conventional pesticides, effectively controlling it has proven to be challenging. This study aimed to evaluate the insecticidal potential of the essential oil from the leaves of Eugenia stipitata against Ae. aegypti, offering a natural and sustainable alternative for mosquito control. Tests were conducted using third-stage larvae to evaluate larvicidal activity and pupae collected up to 14 h after transformation to investigate pupicidal activity. Throughout the bioassays, the organisms were exposed to various essential oil concentrations. The findings demonstrated that the essential oil of E. stipitata exhibited larvicidal action, resulting in 100% larval mortality after 24 h and an LC50 value of 0.34 mg/mL. The effectiveness of essential oil as a pupicidal agent was also demonstrated by its LC50 value of 2.33 mg/mL and 100% larval mortality in 24 h. It can be concluded that the essential oil of E. stipitata holds promise as a natural pest control agent. Its use may reduce the reliance on conventional chemical pesticides, providing a more sustainable and effective strategy to combat diseases spread by mosquitoes.


Assuntos
Aedes , Inseticidas , Óleos Voláteis , Infecção por Zika virus , Zika virus , Animais , Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Folhas de Planta/química , Larva , Extratos Vegetais/química
16.
Acta Trop ; 249: 107067, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984549

RESUMO

Insecticide resistance is a threat to vector control worldwide. In the Philippines, dengue burden remains significant, thus prioritizing the need to develop eco-friendly control strategies and tools against mosquito vectors. Various Allium species have been found to possess larvicidal activity against dengue-carrying mosquitoes. In this study, the larvicidal activity of the crude extract of Allium ampeloprasum L. (Asparagales: Amaryllidaceae) was studied in concentrations ranging from 1 to 10,000 mg/L against the third (L3) and fourth (L4) larval instars of Aedes aegypti L. Larval mortality at 48 h were subjected to probit analysis and Kruskal-Wallis H test to estimate lethal concentrations and to determine significant means among the groups, respectively. Results show that the crude extract of A. ampeloprasum L. demonstrated larvicidal activity against the L3 and L4 Ae. aegypti L. Concentrations corresponding to 50% mortality (Lethal Concentration 50 [LC50]) among L3 and L4 larvae were estimated at 2,829.16 and 13,014.06 mg/L, respectively. Moreover, 90% mortality (LC90) in the L3 and L4 larvae were estimated at 9,749.75 and 57,836.58 mg/L, respectively. Only 1,000 and 10,000 mg/L for L3, and the 10,000 mg/L for L4, had comparable larvicidal action to the commercial larvicide used as a positive control. The results support the presence of bioactive compounds with larvicidal properties, thus suggesting A. ampeloprasum L. as a potential source of active ingredients for the development of a plant-based larvicide.


Assuntos
Aedes , Allium , Amaryllidaceae , Dengue , Inseticidas , Animais , Cebolas , Larva , Folhas de Planta , Inseticidas/farmacologia , Extratos Vegetais/farmacologia
17.
BMC Chem ; 17(1): 155, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980500

RESUMO

This paper deals with the evaluation of novel imidazole molecules for their antimicrobial and larvicidal activities. A series of imidazole derivatives 1(a-f) and 2(a-e) were prepared by the Mannich base technique using a Cu(II) catalyst. The Cu(phen)Cl2 catalyst was found to be more effective than other methods. FTIR, elemental analyses, mass spectrometry, 1H NMR, and 13C NMR spectroscopy were performed to elucidate the structures of the synthesised compounds. Antimicrobial and larvicidal activities were investigated for all compounds. The antibacterial activity of compounds (2d) and (2a) were highly active in S.aureus (MIC: 0.25 µg/mL) and K.pneumoniae (MIC: 0.25 µg/mL) compared to ciprofloxacin. Compound (1c) was significantly more effective than clotrimazole in C.albicans (MIC: 0.25 µg/mL). Molecular docking studies of compound 2d showed a higher binding affinity for the 1BDD protein (- 3.4 kcal/mol) than ciprofloxacin (- 4.4 kcal/mol). Compound 1c had a higher binding affinity (- 6.0 kcal/mol) than clotrimazole (- 3.1 kcal/mol) with greater frontier molecular orbital energy and reactivity properties of compound 1c (∆E gap = 0.13 eV). The activity of compound 1a (LD50: 34.9 µg/mL) was more effective in the Culex quinquefasciatus than permethrin (LD50: 35.4 µg/mL) and its molecular docking binding affinity for 3OGN protein (- 6.1 kcal/mol). These newly synthesised compounds can act as lead molecules for the development of larvicides and antibiotic agents.

18.
Front Plant Sci ; 14: 1220339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711311

RESUMO

Aedes mosquitoes are the major cause of several vector-borne diseases in tropical and subtropical regions. Synthetic pesticides against these mosquitoes have certain limitations; hence, natural, eco-friendly, and safe larvicides obtained from plant resources are used to overcome these. In the present study, the larvicidal efficiency of Commiphora wightii against the fourth instar stage of the dengue fever mosquito Aedes aegypti (Linnaeus, 1762) was studied. The gum resin of C. wightii was collected using the borehole tapping method, and hexane extracts in different concentrations were prepared. The fourth-instar larvae were exposed to the extracts, and percent mortality, as well as LC20, LC50, and LC90, was calculated. Volatile compounds of the hexane gum extract were analyzed by Headspace GC/MS, and the sequence of the acetylcholine, Gamma-aminobutyric acid (GABA) receptor, and octopamine receptor subunit of A. aegypti was obtained. It was found that the hexane gum extract was toxic and lethal for larvae at different concentrations. Minimum mortality was observed at 164 µg mL-1 (10%/h), while maximum mortality was at 276 µg mL-1 (50%/h). The lethal concentrations LC20, LC50, and LC90 were 197.38 µg mL-1, 294.13 µg mL-1, and 540.15 µg mL-1, respectively. The GC/MS analysis confirmed the presence of diterpenes, monoterpenes, monoterpene alcohol, and sesquiterpenes in the gum samples, which are lethal for larvae due to their inhibitory activity on the acetylcholinesterase enzyme, GABA receptor, and octopamine receptor subunit. The use of commonly occurring plant gum for the control of mosquitoes was explored, and it was found that the gum of C. wightii had larvicidal activities and could be potentially insecticidal.

19.
Trop Med Infect Dis ; 8(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37755901

RESUMO

Dengue, Chikungunya and Zika are arboviruses, transmitted by the mosquito Aedes aegypti, that cause high mortality and serious health consequences in human populations. Efforts to control Ae. aegypti are important for preventing outbreaks of these diseases. Essential oil constituents are known to exhibit many activities, such as their use as larvicides. Given their potential, the present study aimed to characterize the larvicidal effect of dihydrojasmone, p-cymene, carvacrol, thymol, farnesol and nerolidol on the larvae of Ae. aegypti and their interference over the morphology of the mosquitos. The essential oil constituents were dissolved in dimethylsulfoxide at concentrations of 1-100 µg/mL and were applied in the breeding environment of third-stage larvae. The larvae from bioassays were fixed, dehydrated and embedded. Ultrathin sections were contrasted using 5% uranyl acetate and 1% lead citrate for observation through transmission electron microscopy. The oil with the highest larvicidal efficiency was found to be nerolidol, followed by farnesol, p-cymene, carvacrol, thymol and dihydrojasmone, with an LC50 of 11, 21, 23, 40, 45 and 66 µg/mL, respectively. The treated Ae. aegypti larvae caused alteration to the tegument or internal portions of larvae. The present study demonstrated which of these oils-dihydrojasmone, farnesol, thymol, p-cymene, carvacrol and nerolidol-have effective larvicidal activity.

20.
J Agric Food Chem ; 71(29): 11016-11025, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37442997

RESUMO

Marine natural products have attracted more and more attention in drug research and development due to their unique structure, diverse biological activities, and novel mode of action. Using antiviral alkaloid aldisine as the lead compound and drawing on the hydrogen bond effect widely used in drug design, derivatives containing oxime and hydrazone moieties were designed and synthesized by introducing functional groups with hydrogen-bond receptors or donors into molecules. The configuration of derivatives was systematically studied through nuclear Overhauser effect (NOE) spectroscopy and single crystal analysis. The antiviral activity test result showed that most derivatives had antiviral activity against tobacco mosaic virus (TMV), and some compounds had better activity than the commercial antiviral drug ribavirin, especially compounds 2 and 24, which had comparable activity to the most effective commercial antiviral drug ningnanmycin. Preliminary mode of action studies showed that compound 2 could affect the assembly of rod-shaped TMVs by promoting the aggregation and fragmentation of TMV coat proteins. Molecular docking experiments demonstrated that the introduction of oxime and hydrazone moieties could indeed increase the hydrogen bond between molecules and target proteins. In addition, we conducted fungicidal and larvicidal activities study of these derivatives. Most of these derivatives had good larvicidal activities against Mythimna separata and Plutella xylostella and showed broad-spectrum fungicidal activities.


Assuntos
Oximas , Vírus do Mosaico do Tabaco , Relação Estrutura-Atividade , Estrutura Molecular , Oximas/farmacologia , Simulação de Acoplamento Molecular , Ligação de Hidrogênio , Antivirais/química , Hidrazinas/farmacologia , Hidrazonas/química , Desenho de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...