Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 392
Filtrar
1.
Environ Pollut ; 356: 124322, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844036

RESUMO

Arsenic is a hazardous element found in water sources, and removing it is crucial for ensuring a safe environment and water quality. Iron-based metal oxides efficiently remove arsenic; however, their small particle sizes make separation from water difficult after arsenic removal. Furthermore, the growing global issue of polymer waste further complicates environmental concerns. Combining three-dimensional (3D) printing and adsorption technology by incorporating nanosized functional materials into supporting polymers offers a potential solution to address both challenges. In this study, we developed a 3D-printed adsorption material through the incorporation of synthesized Fe-Ni bimetallic particles into a supporting polymer using selective laser sintering (SLS) technology. This adsorbent's properties were examined through scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and zeta potential. Furthermore, its performance in removing As(III) and As(V), even at trace levels, was assessed under varied conditions. The 3D-printed adsorbent demonstrated excellent removal of As(III) at pH 6, and As(V) at pH 4, lowering their concentration below 10 µg/L, thereby adhering to the limit established by the World Health Organization (WHO). Both As(III) and As(V) fitted the Freundlich isotherm and pseudo-second-order model, suggesting potential heterogeneous and chemisorption processes. FT-IR indicated that the exchange of the -OH group of Fe-OH with oxyanions of As(III) and As(V) could be the adsorption mechanism. Additionally, thermodynamic evaluation unveiled an endothermic and non-spontaneous adsorption reaction. The 3D-printed adsorbent exhibited excellent reusability across recurring adsorption cycles. The combination of SLS 3D printing with Fe-Ni bimetallic particles produces structures that retain their functionality in removing both arsenic species present in water. This indicates the potential of the 3D-printed adsorbent for effective treatment of arsenic-contaminated water, offering remedies to challenges like handling small particle sizes, mitigating polymer waste, and addressing environmental concerns.

2.
Polymers (Basel) ; 16(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38932100

RESUMO

With increasing demands for data transfer, the production of components with low dielectric loss is crucial for the development of advanced antennas, which are needed to meet the requirements of next-generation communication technologies. This study investigates the impact of a variation in energy density on the part properties of a low-loss cyclic olefin copolymer (COC) in the SLS process as a way to manufacture complex low-dielectric-loss structures. Through a systematic variation in the laser energy, its impact on the part density, geometric accuracy, surface quality, and dielectric properties of the fabricated parts is assessed. This study demonstrates notable improvements in material handling and the quality of the manufactured parts while also identifying areas for further enhancement, particularly in mitigating thermo-oxidative aging. This research not only underscores the potential of COC in the realm of additive manufacturing but also sets the stage for future studies aimed at optimizing process parameters and enhancing material formulations to overcome current limitations.

3.
Polymers (Basel) ; 16(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38794558

RESUMO

In this paper, a comprehensive study of the mechanical properties of selective laser sintered polyamide components is presented, for various different process parameters as well as environmental testing conditions. For the optimization of the static and dynamic mechanical load behavior, different process parameters, e.g., laser power, scan speed, and build temperature, were varied, defining an optimal parameter combination. First, the influence of the different process parameters was tested, leading to a constant energy density for different combinations. Due to similarities in mechanical load behavior, the energy density was identified as a decisive factor, mostly independent of the input parameters. Thus, secondly, the energy density was varied by the different parameters, exhibiting large differences for all levels of fatigue behavior. An optimal parameter combination of 18 W for the laser power and a scan speed of 2666 mm/s was determined, as a higher energy density led to the best results in static and dynamic testing. According to this, the variation in build temperature was investigated, leading to improvements in tensile strength and fatigue strength at higher build temperatures. Furthermore, different ambient temperatures during testing were evaluated, as the temperature-dependent behavior of polymers is of high importance for industrial applications. An increased ambient temperature as well as active cooling during testing was examined, having a significant impact on the high cycle fatigue regime and on the endurance limit.

4.
3D Print Addit Manuf ; 11(2): e896-e905, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38689906

RESUMO

As a branch of laser powder bed fusion, selective laser sintering (SLS) with femtosecond (fs) lasers and metal nanoparticles (NPs) can achieve high precision and dense submicron features with reduced residual stress, due to the extremely short pulse duration. Successful sintering of metal NPs with fs laser is challenging due to the ablation caused by hot electron effects. In this study, a double-pulse sintering strategy with a pair of time-delayed fs-laser pulses is proposed for controlling the electron temperature while still maintaining a high enough lattice temperature. We demonstrate that when delay time is slightly longer than the electron-phonon coupling time of Cu NPs, the ablation area was drastically reduced and the power window for successful sintering was extended by about two times. Simultaneously, the heat-affected zone can be reduced by 66% (area). This new strategy can be adopted for all the SLS processes with fs laser and unlock the power of SLS with fs lasers for future applications.

5.
3D Print Addit Manuf ; 11(2): 419-433, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38689903

RESUMO

An increasing demand for additively manufactured polymer composites with optimized mechanical properties is manifesting in different industries such as aerospace, biomedical, and automotive. Laser sintering (LS) is an additive manufacturing method that has the potential to produce reinforced polymers, which can meet the stringent requirements of these industries. For the development of a commercially viable LS nylon-based composite material, previous research studies worldwide have focused on adding glass beads to the powder material with the goal to produce fully dense parts with properties more representative of injection molded (IM) thermoplastic composites. This led to the development of a commercially available glass bead-filled polyamide 12 (PA12) powder. Although this powder has been on the market for quite a while, an in-depth comparison of the mechanical behavior of laser sintered versus IM glass bead-filled PA12 is lacking. In this study, laser-sintered glass bead-filled PA12 samples were built in different orientations and compared to IM counterparts. After sample production, the mechanical performance of the produced LS and IM parts was tested and compared to evaluate the quasistatic and dynamic mechanical performance and failure mechanisms at different load levels. In addition, the glass bead-filled PA12 properties were also compared to those of standard (unfilled) LS PA12 to assess whether glass beads actually improve the mechanical performance and fatigue lifetime of the final LS samples, as suggested in literature. Results in this work present and explain the increased stiffness but decreased fatigue life of glass bead-filled polyamide parts made by LS and IM. This research can be regarded as a "benchmark" study, in which samples produced from commercially available, filled and unfilled, PA12 powder grades are compared for both LS and conventional production techniques.

6.
Cells ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38667271

RESUMO

Even with the best infection control protocols in place, the risk of a hospital-acquired infection of the surface of an implanted device remains significant. A bacterial biofilm can form and has the potential to escape the host immune system and develop resistance to conventional antibiotics, ultimately causing the implant to fail, seriously impacting patient well-being. Here, we demonstrate a 4 log reduction in the infection rate by the common pathogen S. aureus of 3D-printed polyaryl ether ketone (PAEK) polymeric surfaces by covalently binding the antimicrobial peptide Mel4 to the surface using plasma immersion ion implantation (PIII) treatment. The surfaces with added texture created by 3D-printed processes such as fused deposition-modelled polyether ether ketone (PEEK) and selective laser-sintered polyether ketone (PEK) can be equally well protected as conventionally manufactured materials. Unbound Mel4 in solution at relevant concentrations is non-cytotoxic to osteoblastic cell line Saos-2. Mel4 in combination with PIII aids Saos-2 cells to attach to the surface, increasing the adhesion by 88% compared to untreated materials without Mel4. A reduction in mineralisation on the Mel4-containing surfaces relative to surfaces without peptide was found, attributed to the acellular portion of mineral deposition.


Assuntos
Peptídeos Antimicrobianos , Benzofenonas , Polímeros , Impressão Tridimensional , Próteses e Implantes , Staphylococcus aureus , Humanos , Staphylococcus aureus/efeitos dos fármacos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/metabolismo , Próteses e Implantes/efeitos adversos , Polímeros/química , Polímeros/farmacologia , Biofilmes/efeitos dos fármacos , Cetonas/química , Cetonas/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Propriedades de Superfície , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Ortopedia
7.
Int J Pharm ; 657: 124161, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677394

RESUMO

Laser sintering, known as powder bed fusion-laser beam (PBF-LB), offers promising potential for the fabrication of patient-specific drugs. The aim of this study was to provide an insight into the PBF-LB process with regard to the process parameters, in particular the laser hatching distance, and its influence on the properties of zolpidem tartrate (ZT) tablets. PHARMACOAT® 603 was used as the polymer, while Candurin® Gold Sheen and AEROSIL® 200 were added to facilitate 3D printing. The particle size distribution of the powder blend showed that the layer height should be set to 100 µm, while the laser hatching distance was varied in five different steps (50, 100, 150, 200 and 250 µm), keeping the temperature and laser scanning speed constant. Increasing the laser hatching distance and decreasing the laser energy input led to a decrease in the colour intensity, mass, density and hardness of the ZT tablets, while the disintegration and dissolution rate were faster due to the more fragile bonds between the particles. The laser hatching distance also influenced the ZT dosage, indicating the importance of this process parameter in the production of presonalized drugs. The absence of drug-polymer interactions and the amorphization of the ZT were confirmed.


Assuntos
Lasers , Tamanho da Partícula , Pós , Impressão Tridimensional , Comprimidos , Zolpidem , Zolpidem/química , Zolpidem/administração & dosagem , Tecnologia Farmacêutica/métodos , Liberação Controlada de Fármacos , Solubilidade , Composição de Medicamentos/métodos , Dureza
8.
Polymers (Basel) ; 16(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38543336

RESUMO

Hydroxyapatite/polycaprolactone (HA/PCL) composites have been extensively explored in laser powder bed fusion (L-PBF) for bone tissue engineering. However, conventional mechanical mixing methods for preparing composite powders often yield inhomogeneous compositions and suboptimal flowability. In this study, HA/PCL powders were prepared and optimized for L-PBF using the modified emulsion solvent evaporation method. The morphology, flowability and thermal and rheological properties of the powders were systematically investigated, along with the mechanical and biological properties of the fabricated specimens. The HA/PCL powders exhibited spherical morphologies with a homogeneous distribution of HA within the particles. The addition of small amounts of HA (5 wt% and 10 wt%) enhanced the processability and increased the maximum values of the elastic modulus and yield strength of the specimens from 129.8 MPa to 166.2 MPa and 20.2 MPa to 25.1 MPa, respectively, while also improving their biocompatibility. However, excessive addition resulted in compromised sinterability, thereby affecting both mechanical and biological properties.

9.
J Prosthodont ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38513224

RESUMO

PURPOSE: To assess vertical and horizontal fit, screw removal torque, and stress analysis (considered biomechanical aspects) of full-arch implant frameworks manufactured in Ti-6Al-4V through milling, and additive manufacturing Direct Metal Laser Sintering (DMLS) and Electron Beam Melting (EBM), and the effect of the thermo-mechanical treatment Hot Isostatic Pressing (HIP) as a post-treatment after manufacturing. MATERIAL AND METHODS: Maxillary full-arch implant frameworks were made by milling, DMLS, and EBM. The biomechanical assessments were screw removal torque, strain-gauge analyses, and vertical and horizontal marginal fits. The vertical fit was assessed by the single-screw test and with all screws tightened. All frameworks were submitted to a standardized HIP cycle (920°C, 1000 bar pressure, 2 h), and the tests were repeated (α = 0.05). RESULTS: At the initial time, milled frameworks presented higher screw removal torque values, and DMLS and EBM frameworks presented lower levels of strain. Using the single-screw test, milled and DMLS frameworks presented higher vertical fit values, and with all screws tightened and horizontally, higher fit values were found for milled frameworks, followed by DMLS and EBM. After HIP, milling and EBM frameworks presented higher screw removal torque values; the lowest strain values were found for EBM. Using the single-screw test, milled and DMLS frameworks presented higher vertical fit values, and with all screws tightened and horizontally no differences were found. CONCLUSIONS: DMLS and EBM full-arch frameworks presented adequate values of screw removal torque, strain, and marginal fit, although the worst values of marginal fit were found for EBM frameworks. The HIP cycle enhanced the screw removal torque of milled and EBM frameworks and reduced the strain values of milled frameworks. The HIP represents a reliable post-treatment for Ti-6Al-4V dental prostheses produced by milling and EBM technologies.

10.
Materials (Basel) ; 17(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473538

RESUMO

To address the issues of insufficient strength and poor precision in polystyrene forming parts during the selective laser sintering process, a ternary composite of polystyrene/glass fiber/hollow glass microbeads was prepared through co-modification by incorporating glass fiber and hollow glass microbeads into polystyrene using a mechanical mixing method. The bending strength and dimensional accuracy of the sintered composites were investigated by conducting an orthogonal test and analysis of variance to study the effects of laser power, scanning speed, scanning spacing, and delamination thickness. The process parameters were optimized and selected to determine the optimal combination. The results demonstrated that when considering bending strength and Z-dimensional accuracy as evaluation criteria for terpolymer sintered parts, the optimum process parameters are as follows: laser power of 24 W, scanning speed of 1600 mm/s, scanning spacing of 0.24 mm, and delamination thickness of 0.22 mm. Under these optimal process parameters, the bending strength of sintered parts reaches 6.12 MPa with a relative error in the Z-dimension of only 0.87%. The bending strength of pure polystyrene sintered parts is enhanced by 15.69% under the same conditions, while the relative error in the Z-dimension is reduced by 63.45%. It improves the forming strength and precision of polystyrene in the selective laser sintering process and achieves the effect of enhancement and modification, which provides a reference and a new direction for exploring polystyrene-based high-performance composites and expands the application scope of selective laser sintering technology.

11.
J Biomed Mater Res A ; 112(7): 1015-1024, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38348580

RESUMO

A direct and comprehensive comparative study on different 3D printing modalities was performed. We employed two representative 3D printing modalities, laser- and extrusion-based, which are currently used to produce patient-specific medical implants for clinical translation, to assess how these two different 3D printing modalities affect printing outcomes. The same solid and porous constructs were created from the same biomaterial, a blend of 96% poly-ε-caprolactone (PCL) and 4% hydroxyapatite (HA), using two different 3D printing modalities. Constructs were analyzed to assess their printing characteristics, including morphological, mechanical, and biological properties. We also performed an in vitro accelerated degradation study to compare their degradation behaviors. Despite the same input material, the 3D constructs created from different 3D printing modalities showed distinct differences in morphology, surface roughness and internal void fraction, which resulted in different mechanical properties and cell responses. In addition, the constructs exhibited different degradation rates depending on the 3D printing modalities. Given that each 3D printing modality has inherent characteristics that impact printing outcomes and ultimately implant performance, understanding the characteristics is crucial in selecting the 3D printing modality to create reliable biomedical implants.


Assuntos
Durapatita , Lasers , Poliésteres , Impressão Tridimensional , Poliésteres/química , Durapatita/química , Teste de Materiais , Porosidade , Animais , Humanos , Materiais Biocompatíveis/química , Alicerces Teciduais/química , Camundongos
12.
Healthcare (Basel) ; 12(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338217

RESUMO

The digital transformation has revolutionized various sectors, including dentistry. Dentistry has emerged as a pioneer in embracing digital technologies, leading to advancements in surgical and prosthetic oral healthcare. Immediate loading for full-arch edentulous dental implants, once debated, is now widely accepted. This case report describes a 74-year-old patient with dental mobility and significant bone loss who was rehabilitated using a Toronto Bridge protocol on four dental implants with immediate loading. Digital planning, surgical guides, 3D printing, and precision techniques were employed. The surgery involved implant placement and prosthetic procedures. The patient reported minimal post-operative discomfort, and after four months, the definitive prosthesis was successfully placed. This case demonstrates the efficacy of immediate loading in complex dental scenarios with digital innovation, resulting in improved patient outcomes. The full digital workflow, including 3D printing and the use of modern materials, enhances the efficiency and predictability of oral rehabilitation, marking a transformative era in dental care. The integration of digital technology in all phases of treatment, from diagnosis to finalization, makes this approach safer, reliable, and efficient, thereby benefiting both patients and clinicians.

13.
Int J Paediatr Dent ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38217333

RESUMO

BACKGROUND: Exploring the integration of 3D-printing technology in space maintainer (SM) manufacturing could offer innovative solutions and insights for enhancing SMs. AIM: To compare the clinical success, retention, and periodontal effect of traditional band-loop (TBL) SMs with 3D-printed SMs. DESIGN: Seventy children (mean age: 6.99 ± 1.18) were divided into two groups. Laser sintering (LS) group (n = 34): Patients were scanned with an intraoral scanner. SMs were produced with LS 3D-printing method from a titanium-based metal powder. T group (n = 36): Impressions were taken with alginate. SMs were produced by adjusting the bands and soldering the wires on the model. The retention and effects on oral hygiene of the SMs were evaluated at the sixth month. Preference for impression technique was assessed by a five-question survey. RESULTS: Thirty-eight percent of T SMs and 66% of LS SMs failed (p = .007). The mean survival time was significantly higher in the T group (p = .035). No difference was found between the initial and control full-mouth Gingival Index (GI) and Plaque Index (PI) values of the two groups. Both groups had increased GI/PI values in abutment teeth. Patients in the LS group interpreted their impression experience more positively. CONCLUSION: It is important to provide oral hygiene education before applying fixed SMs and utilize more digital workflow in paediatric dentistry.

14.
AAPS PharmSciTech ; 25(1): 20, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267637

RESUMO

The aim of this paper was to investigate the effects of formulation parameters on the physicochemical and pharmacokinetic (PK) behavior of amorphous printlets of lopinavir (LPV) manufactured by selective laser sintering 3D printing method (SLS). The formulation variables investigated were disintegrants (magnesium aluminum silicate at 5-10%, microcrystalline cellulose at 10-20%) and the polymer (Kollicoat® IR at 42-57%), while keeping printing parameters constant. Differential scanning calorimetry, X-ray powder diffraction, and Fourier-transform infrared analysis confirmed the transformation of the crystalline drug into an amorphous form. A direct correlation was found between the disintegrant concentration and dissolution. The dissolved drug ranged from 71.1 ± 5.7% to 99.3 ± 2.7% within 120 min. A comparative PK study in rabbits showed significant differences in the rate and extent of absorption between printlets and compressed tablets. The values for Tmax, Cmax, and AUC were 4 times faster, and 2.5 and 1.7 times higher in the printlets compared to the compressed tablets, respectively. In conclusion, the SLS printing method can be used to create an amorphous delivery system through a single continuous process.


Assuntos
Excipientes , Lasers , Animais , Coelhos , Preparações Farmacêuticas , Disponibilidade Biológica , Lopinavir , Impressão Tridimensional
15.
Int J Pharm ; 652: 123741, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181989

RESUMO

Artificial intelligence (AI) is a revolutionary technology that is finding wide application across numerous sectors. Large language models (LLMs) are an emerging subset technology of AI and have been developed to communicate using human languages. At their core, LLMs are trained with vast amounts of information extracted from the internet, including text and images. Their ability to create human-like, expert text in almost any subject means they are increasingly being used as an aid to presentation, particularly in scientific writing. However, we wondered whether LLMs could go further, generating original scientific research and preparing the results for publication. We taskedGPT-4, an LLM, to write an original pharmaceutics manuscript, on a topic that is itself novel. It was able to conceive a research hypothesis, define an experimental protocol, produce photo-realistic images of 3D printed tablets, generate believable analytical data from a range of instruments and write a convincing publication-ready manuscript with evidence of critical interpretation. The model achieved all this is less than 1 h. Moreover, the generated data were multi-modal in nature, including thermal analyses, vibrational spectroscopy and dissolution testing, demonstrating multi-disciplinary expertise in the LLM. One area in which the model failed, however, was in referencing to the literature. Since the generated experimental results appeared believable though, we suggest that LLMs could certainly play a role in scientific research but with human input, interpretation and data validation. We discuss the potential benefits and current bottlenecks for realising this ambition here.


Assuntos
Inteligência Artificial , Biofarmácia , Humanos , Vibração
16.
J Control Release ; 365: 348-357, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972762

RESUMO

Three-dimensional (3D) printing is revolutionising the way that medicines are manufactured today, paving the way towards more personalised medicine. However, there is limited in vivo data on 3D printed dosage forms, and no studies to date have been performed investigating the intestinal behaviour of these drug products in humans, hindering the complete translation of 3D printed medications into clinical practice. Furthermore, it is unknown whether conventional in vitro release tests can accurately predict the in vivo performance of 3D printed formulations in humans. In this study, selective laser sintering (SLS) 3D printing technology has been used to produce two placebo torus-shaped tablets (printlets) using different laser scanning speeds. The printlets were administered to 6 human volunteers, and in vivo disintegration times were assessed using magnetic resonance imaging (MRI). In vitro disintegration tests were performed using a standard USP disintegration apparatus, as well as an alternative method based on the use of reduced media volume and minimal agitation. Printlets fabricated at a laser scanning speed of 90 mm/s exhibited an average in vitro disintegration time of 7.2 ± 1 min (measured using the USP apparatus) and 25.5 ± 4.1 min (measured using the alternative method). In contrast, printlets manufactured at a higher laser scanning speed of 130 mm/s had an in vitro disintegration time of 2.8 ± 0.8 min (USP apparatus) and 18.8 ± 1.9 min (alternative method). When tested in humans, printlets fabricated at a laser scanning speed of 90 mm/s showed an average disintegration time of 17.3 ± 7.2 min, while those manufactured at a laser scanning speed of 130 mm/s exhibited a shorter disintegration time of 12.7 ± 6.8 min. Although the disintegration times obtained using the alternative method more closely resembled those obtained in vivo, no clear correlation was observed between the in vitro and in vivo disintegration times, highlighting the need to develop better in vitro methodology for 3D printed drug products.


Assuntos
Lasers , Impressão Tridimensional , Humanos , Comprimidos , Composição de Medicamentos , Imageamento por Ressonância Magnética , Tecnologia Farmacêutica/métodos , Liberação Controlada de Fármacos
17.
Eur J Prosthodont Restor Dent ; 32(1): 65-74, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37812515

RESUMO

This case report compares a conventional and a digital workflow for manufacturing metal frameworks for maxillary and mandibular removable partial dentures (RPDs). Two sets of maxillary and mandible RPDs were produced. The metal framework of one set of RPDs was produced conventionally using the lost wax casting technique. Intraoralscanning and computer-aided designing (CAD) were used to fabricate the metal frameworks of the other set of RPDs using direct metal laser sintering (DMLS) technology. The accuracy of fit of the two sets of RPDs was evaluated after 3 months using replica models. Patient satisfaction was assessed. Two years later, the fit accuracy of the DMLS prosthesis and patient satisfaction were re-evaluated. The accuracy of fit in the maxillary RPD with the DLMS manufactured metal framework showed better results in all areas except areas of rests (457 vs. 421 µm) and the major connector (850 vs. 512 µm). The mandibular RPD with DLMS manufactured metal framework showed only in the areas of the reciprocal arm and major connector better fit accuracy compared to the conventional RPD. The patient satisfaction with the DLMS manufactured RPDs was rated equally to the conventional one. The use of digital technologies in manufacturing RPDs seems promising regarding accuracy and patient satisfaction.


Assuntos
Desenho Assistido por Computador , Prótese Parcial Removível , Humanos , Satisfação do Paciente , Mandíbula , Maxila
18.
Adv Mater ; : e2307546, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38145802

RESUMO

Although additive manufacturing enables controllable structural design and customized performance for magnetoelectric sensors, their design and fabrication still require careful matching of the size and modulus between the magnetic and conductive components. Achieving magnetoelectric integration remains challenging, and the rigid coils limit the flexibility of the sensors. To overcome these obstacles, this study proposes a composite process combining selective laser sintering (SLS) and 3D transfer printing for fabricating flexible liquid metal-coated magnetoelectric sensors. The liquid metal forms a conformal conductive network on the SLS-printed magnetic lattice structure. Deformation of the structure alters the magnetic flux passing through it, thereby generating voltage. A reverse model segmentation and summation method is established to calculate the theoretical magnetic flux. The impact of the volume fraction, unit size, and height of the sensors on the voltage is studied, and optimization of these factors yields a maximum voltage of 45.6 µV. The sensor has excellent sensing performance with a sensitivity of 10.9 kPa-1 and a minimum detection pressure of 0.1 kPa. The voltage can be generated through various external forces. This work presents a significant advancement in fabricating liquid metal-based magnetoelectric sensors by improving their structural flexibility, magnetoelectric integration, and design freedom.

19.
ACS Biomater Sci Eng ; 9(12): 6734-6744, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37939039

RESUMO

Poly(vinyl alcohol) (PVA) exhibits a wide range of potential applications in the biomedical field due to its favorable mechanical properties and biocompatibility. However, few studies have been carried out on selective laser sintering (SLS) of PVA due to its poor thermal processability. In this study, in order to impart PVA powder the excellent thermal processability, the molecular complexation technology was performed to destroy the strong hydrogen bonds in PVA and thus significantly reduced the PVA melting point and crystallinity to 190.9 °C and 27.9%, respectively. The modified PVA (MPVA) was then compounded with hydroxyapatite (HA) to prepare PVA/HA composite powders suitable for SLS 3D printing. The final SLS 3D-printed MPVA/HA composite porous scaffolds show high precision and interconnected pores with a porosity as high as 68.3%. The in vitro cell culture experiments revealed that the sintered composite scaffolds could significantly promote the adhesion and proliferation of osteoblasts and facilitate bone regeneration, and the quantitative real-time polymerase chain reaction results further demonstrate that the printed MPVA/20HA scaffold could significantly enhance the expression levels of both early osteogenic-specific marker of alkaline phosphatase stain and runt-related transcription factor 2. Meanwhile, in in vivo experiments, it is encouragingly found that the resultant MPVA/20HA SLS 3D-printed part has an obvious effect on promoting the growth of new bone tissue as well as a better bone regeneration capability. This work could provide a promising strategy for fabrication of PVA scaffolds through SLS 3D printing, exhibiting a great potential for clinical applications in bone tissue engineering.


Assuntos
Durapatita , Alicerces Teciduais , Durapatita/farmacologia , Durapatita/química , Alicerces Teciduais/química , Porosidade , Álcool de Polivinil/química , Etanol , Impressão Tridimensional
20.
Polymers (Basel) ; 15(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38006128

RESUMO

Recently, piezoresistive sensors made by 3D printing have gained considerable interest in the field of wearable electronics due to their ultralight nature, high compressibility, robustness, and excellent electromechanical properties. In this work, building on previous results on the Selective Laser Sintering (SLS) of porous systems based on thermoplastic polyurethane (TPU) and graphene (GE)/carbon nanotubes (MWCNT) as carbon conductive fillers, the effect of variables such as thickness, diameter, and porosity of 3D printed disks is thoroughly studied with the aim of optimizing their piezoresistive performance. The resulting system is a disk with a diameter of 13 mm and a thickness of 0.3 mm endowed with optimal reproducibility, sensitivity, and linearity of the electrical signal. Dynamic compressive strength tests conducted on the proposed 3D printed sensors reveal a linear piezoresistive response in the range of 0.1-2 N compressive load. In addition, the optimized system is characterized at a high load frequency (2 Hz), and the stability and sensitivity of the electrical signal are evaluated. Finally, an application test demonstrates the ability of this system to be used as a real-time wearable pressure sensor for applications in prosthetics, consumer products, and personalized health-monitoring systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...