Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 264: 116649, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39137522

RESUMO

The advent of wearable sensing platforms capable of continuously monitoring physiological parameters indicative of health status have resulted in a paradigm shift for clinical medicine. The accessibility and adaptability of such portable, unobtrusive devices enables proactive, personalized care based on real-time physiological insights. While wearable sensing platforms exhibit powerful capabilities for continuously monitoring physiological parameters, device fabrication often requires specialized facilities and technical expertise, restricting deployment opportunities and innovation potential. The recent emergence of rapid prototyping approaches to sensor fabrication, such as laser-induced graphene (LIG), provides a pathway for circumventing these barriers through low-cost, scalable fabrication. However, inherent limitations in laser processing restrict the spatial resolution of LIG-based flexible electronic devices to the minimum laser spot size. For a CO2 laser-a commonly reported laser for device production-this corresponds to a feature size of ∼120 µm. Here, we demonstrate a facile, low-cost stencil-masking technique to reduce the minimum resolvable feature size of a LIG-based device from 120 ± 20 µm to 45 ± 3 µm when fabricated by CO2 laser. Characterization of device performance reveals this stencil-masked LIG (s-LIG) method yields a concomitant improvement in electrical properties, which we hypothesize is the result of changes in macrostructure of the patterned LIG. We showcase the performance of this fabrication method via production of common sensors including temperature and multi-electrode electrochemical sensors. We fabricate fine-line microarray electrodes not typically achievable via native CO2 laser processing, demonstrating the potential of the expanded design capabilities. Comparing microarray sensors made with and without the stencil to traditional macro LIG electrodes reveals the s-LIG sensors have significantly reduced capacitance for similar electroactive surface areas. Beyond improving sensor performance, the increased resolution enabled by this metal stencil technique expands capabilities for scalable fabrication of high-performance wearable sensors in low-resource settings without reliance on traditional fabrication pathways.


Assuntos
Técnicas Biossensoriais , Desenho de Equipamento , Grafite , Dispositivos Eletrônicos Vestíveis , Grafite/química , Técnicas Biossensoriais/instrumentação , Humanos , Lasers , Lasers de Gás
2.
Anal Chim Acta ; 1317: 342898, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39030002

RESUMO

BACKGROUND: Nitrofurazone (NFZ) is a widely-used antimicrobial agent in aquaculture. The NFZ residue can be transmitted to humans through the food chain, and cause adverse health effects including carcinogenesis and teratogenesis. Until now, a number of modified electrodes have been developed for NFZ detection, however, there are some issues that need to be improved. For example, the reported detection sensitivity is relatively low, the modification procedure is complicated, and conventional three-electrode system is used. Therefore, it is quite important to develop new NFZ detection method with higher sensitivity, simplicity and practicality. RESULTS: Herein, a kind of integrated three-electrode array consisted with porous graphene is easily prepared through laser engraving of commercial polyimide tape. Five kinds of graphene arrays were prepared at different laser power percentage (i.e. 30 %, 40 %, 50 %, 60 % and 70 %). It is found that their structure, morphology, fluffiness and porosity show great difference, consequently affecting the electrochemical performance of graphene arrays such as conductivity, active area and electron transfer ability. The engraved graphene array at 50 % laser power percentage (LIG-50 array) is superior owing to uniform 3D structure, abundant pores and high stability. More importantly, LIG-50 array is more active for NFZ oxidation, and significantly enhances the detection sensitivity. The linear range of LIG-50 sensor is from 0.2 to 8 µM, and the detection limit is 0.035 µM, which is successfully used in fish meat samples. SIGNIFICANCE: A sensitive, portable and practical electrochemical sensor has been successfully developed for NFZ using laser-engraved graphene array. The demonstration using fish meat samples manifests this new sensor has good accuracy and great potential in application. This study could provide a new possibility for the design and fabrication of other high-performance electrochemical sensor for various applications in the future.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Grafite , Lasers , Nitrofurazona , Nitrofurazona/análise , Grafite/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Limite de Detecção , Animais
3.
Adv Sci (Weinh) ; 11(28): e2310069, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38728620

RESUMO

In point-of-care diagnostics, the continuous monitoring of sweat constituents provides a window into individual's physiological state. For species like horses, with abundant sweat glands, sweat composition can serve as an early health indicator. Considering the salience of such metrics in the domain of high-value animal breeding, a sophisticated wearable sensor patch tailored is introduced for the dynamic assessment of equine sweat, offering insights into pH, potassium ion (K+), and temperature profiles during episodes of heat stress and under normal physiological conditions. The device integrates a laser-engraved graphene (LEG) sensing electrode array, a non-invasive iontophoretic module for stimulated sweat secretion, an adaptable signal processing unit, and an embedded wireless communication framework. Profiting from an admirable Truth Table capable of logical evaluation, the integrated system enabled the early and timely assessment for heat stress, with high accuracy, stability, and reproducibility. The sensor patch has been calibrated to align with the unique dermal and physiological contours of equine anatomy, thereby augmenting its applicability in practical settings. This real-time analysis tool for equine perspiration stands to revolutionize personalized health management approaches for high-value animals, marking a significant stride in the integration of smart technologies within the agricultural sector.


Assuntos
Dispositivos Eletrônicos Vestíveis , Cavalos , Animais , Suor/química , Lasers , Transtornos de Estresse por Calor/diagnóstico , Desenho de Equipamento , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação
4.
Biosensors (Basel) ; 12(10)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36290909

RESUMO

Procalcitonin (PCT) is considered a sepsis and infection biomarker. Herein, an interdigitated electrochemical immunosensor for the determination of PCT has been developed. The interdigitated electrode was made of the laser-engraved graphene electrode decorated with gold (LEGE/Aunano). The scanning electron microscopy indicated the LEGE/Aunano has been fabricated successfully. After that, the anti-PTC antibodies were immobilized on the surface of the electrode by using 3-mercaptopropionic acid. The electrochemical performance of the fabricated immunosensor was studied using electrochemical impedance spectroscopy (EIS). The EIS method was used for the determination of PCT in the concentration range of 2.5-800 pg/mL with a limit of detection of 0.36 pg/mL. The effect of several interfering agents such as the C reactive protein (CRP), immunoglobulin G (IgG), and human serum albumin (HSA) was also studied. The fabricated immunosensor had a good selectivity to the PCT. The stability of the immunosensor was also studied for 1 month. The relative standard deviation (RSD) was obtained to be 5.2%.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Humanos , Ouro/química , Grafite/química , Pró-Calcitonina , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Proteína C-Reativa , Ácido 3-Mercaptopropiônico , Imunoensaio/métodos , Eletrodos , Imunoglobulina G , Albumina Sérica Humana , Técnicas Eletroquímicas/métodos , Limite de Detecção
5.
Appl Surf Sci ; 598: 153867, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35669218

RESUMO

Herein, we report an electrochemical membrane-based aptasensor for the determination of the SARS-CoV-2 receptor-binding domain (SARS-CoV-2-RBD). For this purpose, the nanoporous anodic aluminium oxide membrane (NPAOM) was first fabricated electrochemically. The NPAOM was then functionalized with 3-mercaptopropyl trimethoxysilane (NPAOM-Si-SH). After that, the NPAOM-Si-SH was decorated with gold nanoparticles by using gold ion and sodium borohydride. The NPAOM-Si-S-Aunano was then attached to the surface of the working electrode of a laser-engraved graphene electrode (LEGE). Subsequently, the LEGE/NPAOM-Si-S-Aunano was fixed inside a flow cell that was made by using a three-dimensional (3D) printer, and then thiolated aptamer was transferred into the flow cell using a pump. The electrochemical behavior of the LEGE/NPAOM-Si-S-Aunano-Aptamer was studied using square wave voltammetry (SWV) in the presence of potassium ferrocyanide as a redox probe. The response of the LEGE/NPAOM-Si-S-Aunano-Aptamer to the different concentrations of the SARS-CoV-2-RBD in human saliva sample was investigated in the concentration range of 2.5-40.0 ng/mL. The limit of the detection was found to be 0.8 ng/mL. The LEGE/NPAOM-Si-S-Aunano-Aptamer showed good selectivity to 5.0 ng/mL of SARS-CoV-2-RBD in the presence of five times of the interfering agents like hemagglutinin and neuraminidase as the influenza A virus major surface glycoproteins.

6.
Mikrochim Acta ; 189(5): 188, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35404013

RESUMO

A laser-induced graphene (LIG) surface modified with Prussian blue (iron hexacyanoferrate) is demonstrated as a novel electrochemical sensing platform for the sensitive and selective detection of hydrogen peroxide. Electrochemical Prussian blue (PB) modification on porous graphene films engraved by infrared laser over flexible polyimide was accomplished. Scanning electron microscopy images combined with Raman spectra confirm the formation of porous graphene and homogenous electrodeposition of PB over this porous surface. Electrochemical impedance spectroscopy reveals a substantial decrease in the resistance to charge transfer values (from 395 to 31.4 Ω) after the PB insertion, which confirms the formation of a highly conductive PB-graphene composite. The synergistic properties of PB and porous graphene were investigated for the constant monitoring of hydrogen peroxide at 0.0 V vs. Ag|AgCl|KCl(sat.), under high-flow injections (166 µL s-1) confirming the high stability of the modified surface and fast response within a wide linear range (from 1 to 200 µmol L-1). Satisfactory detection limit (0.26 µmol L-1) and selectivity verified by the analysis of complex samples confirmed the excellent sensing performance of this platform. We highlight that the outstanding sensing characteristics of the developed sensor were superior in comparison with other PB-based or LIG-based electrochemical sensors reported for hydrogen peroxide detection.


Assuntos
Grafite , Técnicas Eletroquímicas/métodos , Eletrodos , Ferrocianetos , Grafite/química , Peróxido de Hidrogênio/análise , Lasers
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA