Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Biosensors (Basel) ; 14(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38920596

RESUMO

Olaquindox (OLA) and quinocetone (QCT) have been prohibited in aquatic products due to their significant toxicity and side effects. In this study, rapid and visual europium nanoparticle (EuNP)-based lateral flow strip biosensors (LFSBs) were developed for the simultaneous quantitative detection of OLA, QCT, and 3-methyl-quinoxaline-2-carboxylic acid (MQCA) in fish feed and tissue. The EuNP-LFSBs enabled sensitive detection for OLA, QCT, and MQCA with a limit of detection of 0.067, 0.017, and 0.099 ng/mL (R2 ≥ 0.9776) within 10 min. The average recovery of the EuNP-LFSBs was 95.13%, and relative standard deviations were below 9.38%. The method was verified by high-performance liquid chromatography (HPLC), and the test results were consistent. Therefore, the proposed LFSBs serve as a powerful tool to monitor quinoxalines in fish feeds and their residues in fish tissues.


Assuntos
Ração Animal , Antibacterianos , Técnicas Biossensoriais , Európio , Peixes , Quinoxalinas , Quinoxalinas/análise , Animais , Antibacterianos/análise , Ração Animal/análise , Nanopartículas , Cromatografia Líquida de Alta Pressão , Nanopartículas Metálicas
2.
J Med Virol ; 96(6): e29721, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899377

RESUMO

Globally, hepatitis B virus (HBV) affects over 250 million people, whereas hepatitis C virus (HCV) affects approximately 70 million people, posing major public health challenges. Despite the availability of vaccines and treatments, a lack of comprehensive diagnostic coverage has left many cases undiagnosed and untreated. To address the need for sensitive, specific, and accessible diagnostics, this study introduced a multiplex loop-mediated isothermal amplification assay with lateral flow detection for simultaneous HBV and HCV testing. This assay achieved exceptional sensitivity and was capable of detecting HBV and HCV concurrently in a single tube and on a single strip within 25 min, achieving the required clinical sensitivity (10 and 103 genomic copies/reaction for HBV and HCV, respectively). The method was validated in clinical samples of various viral genotypes, achieving an equivalent limit of detection. Additionally, a custom portable heating device was developed for field use. The assay developed here, capable of direct viral detection on the strip, shows promise in supplanting current methods that solely identify antibodies and necessitate additional qPCR for viral activity assessment. This economical and rapid assay aligns with point-of-care testing needs, offering significant advancements in enhancing viral hepatitis diagnostics in settings with limited resources.


Assuntos
Hepacivirus , Vírus da Hepatite B , Hepatite B , Hepatite C , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos , Humanos , Hepatite B/diagnóstico , Hepatite B/virologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Hepacivirus/genética , Hepacivirus/isolamento & purificação , Hepatite C/diagnóstico , Hepatite C/virologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentação , Genótipo
3.
Foods ; 13(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891003

RESUMO

Vibrio parahaemolyticus (V. parahaemolyticus) is one of the important seafood-borne pathogens that cause a serious gastrointestinal disorder in humans. Recently, biosensors have attracted serious attention for precisely detecting and tracking risk factors in foods. However, a major consideration when fabricating biosensors is to match the low cost of portable devices to broaden its application. In this study, a 3D-printed integrated handheld biosensor (IHB) that combines RPA-CRISPR/Cas12a, a lateral flow strip (LFS), and a handheld device was developed for the ultrasensitive detection of V. parahaemolyticus. Using the preamplification of RPA on tlh gene of V. parahaemolyticus, a specific duplex DNA product was obtained to activate the trans-cleavage activity of CRISPR/Cas12a, which was then utilized to cleave the ssDNA probe. The ssDNA probe was then detected by the LFS, which was negatively correlated with the content of amplified RPA products of the tlh gene. The IHB showed high selectivity and excellent sensitivity for V. parahaemolyticus detection, and the limit of detection was 4.9 CFU/mL. The IHB also demonstrated great promise for the screening of V. parahaemolyticus in samples and had the potential to be applied to the rapid screening of other pathogen risks for seafood and marine environmental safety.

4.
Talanta ; 275: 126181, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692047

RESUMO

The detection of biomarkers is of great significance for medical diagnosis, food safety, environmental monitoring, and agriculture. However, bio-detection technology at present often necessitates complex instruments, expensive reagents, specialized expertise, and prolonged procedures, making it challenging to fulfill the demand for rapid, sensitive, user-friendly, and economical testing. In contrast, lateral flow strip (LFS) technology offers simple, fast, and visually accessible detection modality, allowing real-time analysis of clinical specimens, thus finding widespread utility across various domains. Within the realm of LFS, the application of aptamers as molecular recognition probes presents distinct advantages over antibodies, including cost-effectiveness, smaller size, ease of synthesis, and chemical stability. In recent years, aptamer-based LFS has found extensive application in qualitative, semi-quantitative, and quantitative detection across food safety, environmental surveillance, clinical diagnostics, and other domains. This review provided a concise overview of different aptamer screening methodologies, selection strategies, underlying principles, and procedural, elucidating their respective advantages, limitations, and applications. Additionally, we summarized recent strategies and mechanisms for aptamer-based LFS, such as the sandwich and competitive methods. Furthermore, we classified LFSs constructed based on aptamers, considering the rapid advancements in this area, and discussed their applications in biological and chemical detection. Finally, we delved into the current challenges and future directions in the development of aptamer and aptamer-based LFS. Although this review was not thoroughly, it would serve as a valuable reference for understanding the research progress of aptamer-based LFS and aid in the development of new types of aptasensors.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , Humanos , Técnicas Biossensoriais/métodos , Fitas Reagentes/química , Técnica de Seleção de Aptâmeros/métodos , Biomarcadores/análise
5.
Int J Mol Sci ; 25(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732163

RESUMO

The Chinese giant salamander (Andrias davidianus), listed as an endangered species under "secondary protection" in China, faces significant threats due to ecological deterioration and the expansion of human activity. Extensive field investigations are crucial to ascertain the current status in the wild and to implement effective habitat protection measures to safeguard this species and support its population development. Traditional survey methods often fall short due to the elusive nature of the A. davidianus, presenting challenges that are time-consuming and generally ineffective. To overcome these obstacles, this study developed a real-time monitoring method that uses environmental DNA (eDNA) coupled with recombinase polymerase amplification and lateral flow strip (RPA-LFD). We designed five sets of species-specific primers and probes based on mitochondrial genome sequence alignments of A. davidianus and its close relatives. Our results indicated that four of these primer/probe sets accurately identified A. davidianus, distinguishing it from other tested caudata species using both extracted DNA samples and water samples from a tank housing an individual. This method enables the specific detection of A. davidianus genomic DNA at concentrations as low as 0.1 ng/mL within 50 min, without requiring extensive laboratory equipment. Applied in a field survey across four sites in Huangshan City, Anhui Province, where A. davidianus is known to be distributed, the method successfully detected the species at three of the four sites. The development of these primer/probe sets offers a practical tool for field surveying and monitoring, facilitating efforts in population recovery and resource conservation for A. davidianus.


Assuntos
Urodelos , Animais , Urodelos/genética , China , Espécies em Perigo de Extinção , DNA Ambiental/genética , DNA Ambiental/análise , DNA Mitocondrial/genética , Genoma Mitocondrial
6.
Vet Microbiol ; 293: 110073, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579481

RESUMO

African swine fever virus (ASFV) is a large double stranded DNA arbovirus that is highly contagious and seriously endangers domestic and wild pigs. In the past decade, African swine fever (ASF) has spread in many countries in the Caucasus, Russian Federation, Eastern Europe and Asia, causing significant losses to the pig industry. At present, there is a lack of effective vaccine and treatment for ASF. Therefore, the rapid and accurate detection is crucial for ASF prevention and control. In this study, we have developed a portable lateral flow strip (LFS) detection mediated by recombinase polymerase amplification (RPA) and CRISPR/LwCas13a, which is performed at 37 ℃ and visualized by eyes without the need for complex instruments. This RPA-LwCas13a-LFS is based on the ASFV structural protein p17 gene (D117L), with a detection sensitivity up to 2 gene copies. This method is highly specific and has no cross reactivity to 7 other pig viruses. In the detection of two batches of 100 clinical samples, the p17 (D117L) RPA-LwCas13a-LFS had 100% coincidence with conventional quantitative PCR (qPCR). These findings demonstrate the potential of this simple, rapid, sensitive, and specific ASFV detection method for on-site ASFV detection.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Sistemas CRISPR-Cas , Animais , Febre Suína Africana/virologia , Febre Suína Africana/diagnóstico , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/veterinária , Sensibilidade e Especificidade , Suínos , Proteínas Estruturais Virais/análise , Proteínas Estruturais Virais/genética
7.
Biosens Bioelectron ; 257: 116325, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38669843

RESUMO

In dairy industry, expensive yak's milk, camel's milk, and other specialty dairy products are often adulterated with low-cost cow's milk, goat's milk and so on. Currently, the detection of specialty dairy products typically requires laboratory settings and relies on skilled operators. Therefore, there is an urgent need to develop a multi-detection technology and on-site rapid detection technique to enhance the efficiency and accuracy of the detection of specialty dairy products. In this study, we introduced a fully integrated and portable microfluidic detection platform called Sector Self-Driving Microfluidics (SDM), designed to simultaneously detect eight common species-specific components in milk. SDM integrated nucleic acid extraction, purification, loop-mediated isothermal amplification (LAMP), and lateral flow strip (LFS) detection functions into a closed microfluidic system, enabling contamination-free visual detection. The SDM platform used a constant-temperature heating plate, powered by a mobile battery, eliminated the need for additional power support. The SDM platform achieved nucleic acid enrichment and transfer through magnetic force and liquid flow driven by capillary forces, operating without external pumps. The standalone SDM platform could detect dairy components with as low as 1% content within 1 h. Validation with 35 commercially available samples demonstrated 100% specificity and accuracy compared to the gold standard real-time PCR. The SDM platform provided the dairy industry with an efficient, convenient, and accurate detection tool, enabling rapid on-site testing at production facilities or sales points. This facilitated real-time monitoring of quality issues during the production process, quickly identifying potential risks and preventing substandard products from entering the market.


Assuntos
Técnicas Biossensoriais , Leite , Técnicas de Amplificação de Ácido Nucleico , Animais , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Leite/química , Bovinos , Contaminação de Alimentos/análise , Dispositivos Lab-On-A-Chip , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/instrumentação , Laticínios/análise , Técnicas de Diagnóstico Molecular
8.
Front Microbiol ; 15: 1371849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486701

RESUMO

Bovine herpes virus 1 (BoHV-1) causes a wide variety of diseases in wild and domestic cattle. The most widely used method for viral identification is real-time PCR, which can only be performed in laboratories using sophisticated instruments by expert personnel. Herein, we developed an ultrasensitive time-resolved fluorescence lateral flow immunochromatographic strip (ICS) assay for detecting BoHV-1 in bovine samples using a monoclonal antibody against BoHV-1 labelled with fluorescent microspheres, which can be applied in any setting. The intact process from sample collection to final result can be achieved in 15 min. The limit of detection of the assay for BoHV-1 was 102 TCID50/100 µL. The coincidence rate of the ICS method and real-time PCR recommended by the World Organization for Animal Health (WOAH) was 100% for negative, 92.30% for positive, and 95.42% for total, as evaluated by the detection of 131 clinical samples. This detection method was specifically targeted to BoHV-1, not exhibiting cross-reactivity with other bovine pathogens including BoHV-5. We developed an ICS assay equipped with a portable instrument that offers a sensitive and specific platform for the rapid and reliable detection of BoHV-1 in the field. The Point-of-Care test of BoHV-1 is suitable for the screening and surveillance of BoHV-1 in dairy herds.

9.
Small Methods ; : e2400095, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466131

RESUMO

Efficient diagnosis of mycobacterial infections can effectively manage and prevent the transmission of infectious diseases. Unfortunately, existing diagnostic strategies are challenged by long assay times, high costs, and highly specialized expertise to distinguish between pulmonary tuberculosis (PTB) and nontuberculous mycobacterial pulmonary diseases (NTM-PDs). Herein, in this study, an optimized 3D paper-based analytical device (µPAD) is incorporated with a closed lateral flow (LF) strip into a loop-mediated isothermal amplification (LAMP) device (3D-µPAD-LF-LAMP) for rapid, low-cost, and visual detection of pathogenic mycobacteria. The platform's microfluidic feature enhanced the nucleic acid amplification, thereby reducing the costs and time as compared to boiling, easyMAG, and QIAGEN techniques. Moreover, the LF unit is specifically designed to minimize aerosol contamination for a user-friendly and visual readout. 3D-µPAD-LF-LAMP is optimized and assessed using standard strains, demonstrating a limit of detection (LOD) down to 10 fg reaction-1 . In a cohort of 815 patients, 3D-µPAD-LF-LAMP displays significantly better sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and diagnostic accuracy than conventional bacterial culture and Xpert techniques. Collectively, 3D-µPAD-LF-LAMP demonstrates enhanced accessibility, efficiency, and practicality for the diagnosis of multiple pathogenic mycobacteria, which can be applied across diverse clinical settings, thereby ultimately improving public health outcomes.

10.
Eur J Clin Microbiol Infect Dis ; 43(4): 735-745, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38361135

RESUMO

PURPOSE: This article aims to establish a rapid visual method for the detection of Streptococcus pyogenes (GAS) based on recombinase polymerase amplification (RPA) and lateral flow strip (LFS). METHODS: Utilizing speB of GAS as a template, RPA primers were designed, and basic RPA reactions were performed. To reduce the formation of primer dimers, base mismatch was introduced into primers. The probe was designed according to the forward primer, and the RPA-LFS system was established. According to the color results of the reaction system, the optimum reaction temperature and time were determined. Thirteen common clinical standard strains and 14 clinical samples of GAS were used to detect the selectivity of this method. The detection limit of this method was detected by using tenfold gradient dilution of GAS genome as template. One hundred fifty-six clinical samples were collected and compared with qPCR method and culture method. Kappa index and clinical application evaluation of the RPA-LFS were carried out. RESULTS: The enhanced RPA-LFS method demonstrates the ability to complete the amplification process within 6 min at 33 °C. This method exhibits a high analytic sensitivity, with the lowest detection limit of 0.908 ng, and does not exhibit cross-reaction with other pathogenic bacteria. CONCLUSIONS: The utilization of RPA and LFS allows for efficient and rapid testing of GAS, thereby serving as a valuable method for point-of-care testing.


Assuntos
Recombinases , Streptococcus pyogenes , Humanos , Streptococcus pyogenes/genética , Sensibilidade e Especificidade , Temperatura , Técnicas de Amplificação de Ácido Nucleico/métodos
11.
Biosens Bioelectron ; 249: 116046, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241798

RESUMO

Pathogenic bacteria infections pose a significant threat to global public health, making the development of rapid and reliable detection methods urgent. Here, we developed a surface-enhanced Raman scattering (SERS) and colorimetric dual-mode platform, termed smartphone-integrated CRISPR/Cas9-mediated lateral flow strip (SCC-LFS), and applied it to the ultrasensitive detection of Staphylococcus aureus (S. aureus). Strategically, functionalized silver-coated gold nanostar (AuNS@Ag) was prepared and used as the labeling material for LFS assay. In the presence of S. aureus, target gene-induced amplicons can be accurately recognized and unwound by the user-defined CRISPR/Cas9 system, forming intermediate bridges that bind many AuNS@Ag to the test line (T-line) of the strip. As a result, the T-line was colored and a recognizable SERS signal was obtained using a smartphone-integrated portable Raman spectrometer. This design not only maintains the simplicity of visual readout, but also integrates the quantitative capability of SERS, enabling the user to flexibly select the assay mode as needed. With this method, S. aureus down to 1 CFU/mL can be detected by both colorimetric and SERS modes, which is better than most existing methods. By incorporating a rapid extraction procedure, the entire assay can be completed in 45 min. The robustness and practicality of the method were further demonstrated by various real samples, indicating its considerable potential toward reliable screening of S. aureus.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Colorimetria , Smartphone , Sistemas CRISPR-Cas/genética , Análise Espectral Raman/métodos , Infecções Estafilocócicas/diagnóstico , Ouro
12.
J Nanobiotechnology ; 22(1): 5, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38169397

RESUMO

We have successfully generated oligonucleotide aptamers (Apts) and monoclonal antibodies (mAbs) targeting the recombinant nucleocapsid (N) protein of SARS-CoV-2. Apts were obtained through seven rounds of systematic evolution of ligands by exponential enrichment (SELEX), while mAbs were derived from the 6F6E11 hybridoma cell line. Leveraging these Apts and mAbs, we have successfully devised two innovative and remarkably sensitive detection techniques for the rapid identification of SARS-CoV-2 N protein in nasopharyngeal samples: the enzyme-linked aptamer-antibody sandwich assay (ELAAA) and the hybrid lateral flow strip (hybrid-LFS). ELAAA exhibited an impressive detection limit of 0.1 ng/mL, while hybrid-LFS offered a detection range of 0.1 - 0.5 ng/mL. In the evaluation using ten nasopharyngeal samples spiked with known N protein concentrations, ELAAA demonstrated an average recovery rate of 92%. Additionally, during the assessment of five nasopharyngeal samples from infected individuals and ten samples from healthy volunteers, hybrid-LFS displayed excellent sensitivity and specificity. Our study introduces a novel and efficient on-site approach for SARS-CoV-2 detection in nasopharyngeal samples. The reliable hybrid Apt-mAb strategy not only advances virus diagnostic methods but also holds promise in combating the spread of related diseases.


Assuntos
Aptâmeros de Nucleotídeos , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Anticorpos Monoclonais , Sensibilidade e Especificidade
13.
Int J Legal Med ; 138(2): 561-570, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37801116

RESUMO

Species identification of biological specimens can provide the valuable clues and accelerate the speed of prosecution material processing for forensic investigation, especially when the case scene is inaccessible and the physical evidence is cumbersome. Thus, establishing a rapid, simple, and field-adapted species identification method is crucial for forensic scientists, particularly as first-line technology at the crime scene for initial rapid screening. In this study, we established a new field-adapted species identification method by combining multiplex multienzyme isothermal rapid amplification (MIRA), lateral flow dipstick (LFD) system, and universal primers. Universal primers targeting COX I and COX II genes were used in multiplex MIRA-LFD system for seven species identification, and a dedicated MIRA-LFD system primer targeting CYT B gene was used to detect the human material. DNA extraction was performed by collecting DNA directly from the centrifuged supernatant. Our study found that the entire amplification process took only 15 min at 37 °C and the results of LFDs could be visually observed after 10 min. The detection sensitivity of human material could reach 10 pg, which is equivalent to the detection of single cell. Different common animal samples mixed at the ratio of 1 ng:1 ng, 10 ng:1 ng, and 1 ng:10 ng could be detected successfully. Furthermore, the damaged and degraded samples could also be detected. Therefore, the convenient, feasible, and rapid approach for species identification is suitable for popularization as first-line technology at the crime scene for initial rapid screening and provides a great convenient for forensic application.


Assuntos
DNA , Técnicas de Amplificação de Ácido Nucleico , Animais , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade , Primers do DNA/genética , Reação em Cadeia da Polimerase/métodos
14.
Int J Legal Med ; 138(3): 781-786, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38030939

RESUMO

The identification of the type of body fluid in crime scene evidence may be crucial, so that the efforts are high to reduce the complexity of these analyses and to minimize time and costs. Reliable immunochromatographic rapid tests for specific and sensitive identification of blood, saliva, urine and sperm secretions are already routinely used in forensic genetics. The recently introduced Seratec® PMB test is said to detect not only hemoglobin, but also differentiate menstrual blood from other secretions containing blood (cells) by detecting D-dimers. In our experimental set-up, menstrual blood could be reliably detected in mock forensic samples. Here, the result was independent of sample age and extraction buffer volume. It was also successfully demonstrated that all secretions without blood cells were negative for both, hemoglobin (P) and D-dimer (M). However, several blood cell-containing secretions/tissues comprising blood (injury), nasal blood, postmortem blood and wound crust also demonstrated positive results for D-dimer (M) and were therefore false positives. For blood (injury) and nasal blood, this result was reproduced for different extraction buffer volumes. The results of this study clearly demonstrate that the Seratec® PMB test is neither useful nor suitable for use in forensic genetics because of the great risk of false positive results which can lead to false conclusions, especially in sexual offense or violent acts.


Assuntos
Líquidos Corporais , Sêmen , Humanos , Masculino , Sêmen/química , Líquidos Corporais/química , Saliva/química , Secreções Corporais/química , Hemoglobinas/análise , Genética Forense/métodos
15.
Adv Mater ; 36(13): e2309705, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38108547

RESUMO

Screening asymptomatic organisms (humans, animals, plants) with a high-diagnostic accuracy using point-of-care-testing (POCT) technologies, though still visionary holds great potential. Convenient surveillance requires easy-to-use, cost-effective, ultra-portable but highly reliable, in-vitro-diagnostic devices that are ready for use wherever they are needed. Currently, there are not yet such devices available on the market, but there are a couple more promising technologies developed at readiness-level 5: the Clustered-Regularly-Interspaced-Short-Palindromic-Repeats (CRISPR) lateral-flow-strip tests and the Single-Molecule-with-a-large-Transistor (SiMoT) bioelectronic palmar devices. They both hold key features delineated by the World-Health-Organization for POCT systems and an occurrence of false-positive and false-negative errors <1-5% resulting in diagnostic-selectivity and sensitivity >95-99%, while limit-of-detections are of few markers. CRISPR-strip is a molecular assay that, can detect down to few copies of DNA/RNA markers in blood while SiMoT immunometric and molecular test can detect down to a single oligonucleotide, protein marker, or pathogens in 0.1mL of blood, saliva, and olive-sap. These technologies can prospectively enable the systematic and reliable surveillance of asymptomatic ones prior to worsening/proliferation of illnesses allowing for timely diagnosis and swift prognosis. This could establish a proactive healthcare ecosystem that results in effective treatments for all living organisms generating diffuse and well-being at efficient costs.


Assuntos
Sistemas CRISPR-Cas , Saúde Única , Animais , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , RNA
16.
Animals (Basel) ; 13(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067063

RESUMO

African swine fever virus (ASFV) is a large double-stranded DNA virus that is highly infectious and seriously affects domestic pigs and wild boars. African swine fever (ASF) has caused huge economic losses to endemic countries and regions. At present, there is still a lack of effective vaccines and therapeutics. Therefore, rapid and accurate detection is essential for the prevention and control of ASF. The portable DNA endonuclease (Cas12a)-mediated lateral flow strip detection method (Cas12a-LFS) combined with recombinant polymerase amplification (RPA) has been gradually recognized as effective for virus detection including ASFV. In this study, based on the ASFV structural protein p17 gene (D117L), an RPA-Cas12a-LFS detection method was established. The detection method exhibits a sensitivity of up to two gene copies and has no cross-reaction with nine other swine viruses. Thus, the method is highly sensitive and specific. In 68 clinical samples, the coincidence rate of the p17 strip was 100%, compared to the traditional quantitative PCR (qPCR). In conclusion, we have developed a simple, rapid, sensitive, and specific ASFV visual detection method and demonstrated the potential of on-site detection of ASFV.

17.
Arch Microbiol ; 206(1): 28, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112880

RESUMO

Enterococcus faecium is responsible for a highly contagious, drug-resistant nosocomial infection that often causes serious illness. In this study, a rapid and sensitive RPA-LFS (recombinase polymerase amplification-lateral flow strip) method for the detection of E. faecium was established based on specific primers and probes designed using the ddl gene. To verify the specificity and sensitivity of the method, 26 specific strains and 100-106 CFU/µL E. faecium were selected for detection. The results show that the proposed method can specifically detect E. faecium, and the minimum detection limit is 100 CFU/µL. To compare the clinical application of the method with qPCR, 181 clinical samples were collected for testing. RPA-LFS and qPCR had the same practical applicability, and 61 parts of E. faecium were detected in 183 clinical samples. The methods developed in this study not only have the advantages of rapid sensitivity and specificity but also meet the needs of remote areas with scarce medical resources.


Assuntos
Enterococcus faecium , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos , Enterococcus faecium/genética , Sensibilidade e Especificidade , Primers do DNA/genética , Recombinases/genética
18.
Anal Chim Acta ; 1278: 341684, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37709439

RESUMO

Point-of-care testing (POCT) of morphine (MOP) without invasion of privacy is of critical importance for law-enforcement departments to realize on-site rapid screening. In this study, ultrasensitive and non-invasive screening of MOP residues in the fingerprint sweat was easily realized by stepwise Au decoration-assisted double signal amplification and antibody-saving strategies on lateral flow strip (LFS). The construction of LFS was not intrinsically changed compared with traditional LFS except the labeling material on conjugation pad for enhanced signal reporting. The gold nanoparticle-seeded SiO2 was adopted as the labeling materials in place of traditional gold nanoparticles, which acted as the first-round signal amplification and ready for second-round gold deposition-assisted amplification. And the second-round amplification could be completed in just 10 s, which did not alter the intrinsic simplicity of LFS for rapid and on-site screening. With the designed signal amplification principle of LFS, target MOP in the fingerprint sweat can be effectively transferred to the LFS for analysis without invasion of privacy. As low as 0.5 pg MOP in fingerprint sweat can be visually judged with this double signal amplified LFS, the sensitivity of which has been improved at least 10-fold compared with traditional Au-labeled LFS, guaranteeing accurate screening of trace MOP in the fingerprint sweat. Of great importance, the consumption of valuable antibody can be reduced to just 1/20, which greatly reduces the cost of high-throughput screening. This stepwise Au decoration-assisted double signal amplified LFS holds great potential in the ultrasensitive screening of trace analytes in various fields and further widens the application scope of lateral flow strips.


Assuntos
Nanopartículas Metálicas , Suor , Ouro , Dióxido de Silício , Anticorpos , Derivados da Morfina
19.
Food Chem (Oxf) ; 7: 100180, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37664158

RESUMO

Meat adulteration-based food fraud has recently become one of the global major economical, illegal, religious, and public health concerns. In this work, we developed a microarray chip polymerase chain reaction (PCR)-directed microfluidic lateral flow strip (LFS) device that facilitates the accurate and simultaneous identification of beef adulterated with chicken, duck, and pork, especially in processed beef products. To realize this goal, four pairs of amplification primers were designed and applied for specifically amplifying genomic DNA extracted from mixed meat powders in microarray chip. With the prominent advantage of this device lies in the flexible combination and integration of sample loading, detection, and reporting in microstructures, all the DNA amplicons can be individually visualized on the LFS unit, leading to the appearance of test lines (TC line, TD line, TP line, or TB line) as well as the control line (C line) for the species identification and quantification in beef products. Based on this new method, the adulterants were successfully distinguished and identified in mixtures down to 0.01% (wt.%) while the carryover aerogel contamination in routine molecular diagnostic laboratories was effectively avoided. The practicability, accuracy, and reliability of the device were further confirmed by using real-time PCR as a gold standard control on the successful identification of 50 processed ground meat samples sourced from local markets. The method and device proposed herein could be a useful tool for on-site identification of food authentication.

20.
J Nanobiotechnology ; 21(1): 234, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481551

RESUMO

The rapid and accurate identification of methicillin-resistant Staphylococcus aureus at an early antibiotic therapy stage would be benefit to disease diagnosis and antibiotic selection. Herein, we integrated cross-priming amplification (CPA) and CRISPR/Cas 12a (designated as CPA-Cas 12a) systems to establish a sensitive and efficient lateral flow assay to detect methicillin-resistant Staphylococcus aureus. This assay relies on the CPA isothermal nucleic acid amplification strategy which can amplify the DNA extracted from Staphylococcus aureus and accompanying the indiscriminately trans-cleavage process of Cas 12a/CrRNA duplex after recognizing specific sequence. Taking the advantage of reporter and high turnover Cas 12a activity, a dramatic change in response was achieved to produce a significant increase in the analytical sensitivity. The signal conversion and output were realized using a lateral flow strip to achieve field-deployable detection. Furthermore, this bioassay was accommodated with a microfluidic device to realize automatically portable detection. This proposed assay completed within 30 min with the detection limit of 5 CFU mL-1, was verified by testing bacterial suspension and 202 clinical samples. Given the high sensitivity, specificity and efficiency, this colorimetric readout assay through strip could be further promoted to the clinical diagnosis, clinical medication of multidrug-resistant bacteria.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Sistemas CRISPR-Cas , Apresentação Cruzada , Staphylococcus aureus , Antibacterianos/farmacologia , Bioensaio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...