Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Res ; 246: 120725, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857012

RESUMO

Lead service lines (LSLs), when present, are the largest source of lead in drinking water, and their removal is necessary to reduce public exposure to lead from drinking water. Unfortunately, the composition of many service lines (SLs) is uncertain. The town of Bennington, Vermont, for example, has unreliable SL records, making it challenging to build an inventory and conduct an LSL replacement program. In 2017, Bennington commenced a project to identify SL materials and replace all LSLs. 159 control homes, consisting of 99 LSL and 60 non-LSL sites, were chosen for record reviews, visual SL observations, fully flushed (FF) and sequential profile water sampling, and test excavations to evaluate method accuracies. Of the 159 control homes, records for 90 % of the 99 known LSL homes were accurate. Whereas 3 % of the 60 non-lead SL homes' records accurately identified SL material. Fully flushed and sequential profile samples (SPSs) were 73 % and 95 % accurate for identifying LSLs and 95 % and 83 % accurate for identifying non-LSLs, respectively. Results were 100 % accurate when visual observations, FF samples, and test excavation were used in a stepwise approach. A stepwise approach consisting of visual SL observations, FF samples, and SPSs achieved a 98 % accuracy at identifying LSLs and a 67 % cost reduction compared to performing test excavations at each home. Findings from this control group study are critical for state, tribal, and local officials to inform their decisions about the selected approach to identify unknown SLs.


Assuntos
Água Potável , Poluentes Químicos da Água , Abastecimento de Água , Chumbo/análise , Poluentes Químicos da Água/análise , Cidades
2.
Sci Total Environ ; 879: 162975, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36965725

RESUMO

Water conservation measures are increasing in response to regulatory requirements addressing the need for lower environmental footprint and in response to water shortages. In households with lead service lines (LSLs), lowering consumption can adversely impact lead release as it will increase stagnation. Using a lead dissolution model and data from extensive pilot studies on excavated LSLs, the impact of adaptation to different water conservation strategies on dissolved lead contamination at the kitchen tap is assessed under three water qualities and three LSL lengths (3, 14 and 30 m) using hydraulic and water quality modelling. Consumers' behavioural variability is also assessed based on integration of EPANET and results of the stochastic water demand model SIMDEUM. Demand reduction increased the dissolved lead concentrations (Pbdiss) at the end of the LSL with mean values ranging from 28.4 to 63.3 µg/L (without corrosion control) and from 4.6 to 9.9 µg/L with corrosion control (addition of orthophosphate and pH adjustment). Adding orthophosphate (1 mg P/L) to the water reduces the mean Pbdiss values at the kitchen tap from 7.1 µg/L to 1.2 µg/L for a high water demand scenario and from 31.2 to 4.9 µg/L for a low water demand scenario. Finally, the Integrated Exposure Uptake Biokinetic (IEUBK) model is used to predict the potential blood lead levels (BLLs) for children aged 0-84 months. Results showed that the orthophosphate addition of only 1 mg P/L can significantly decrease the proportion of children with a BLL >5 µg/dL, from 82 % to 17 %, under the most extreme water conservation scenario studied, using the 90th percentile of Pbdiss concentrations during usage at kitchen tap. Wide variations of Pbdiss concentrations at the kitchen tap were calculated at times of use over a week (up to 155 µg/L in lower demand scenarios, without corrosion control) showing evident limitations of single random daytime sampling.


Assuntos
Água Potável , Poluentes Químicos da Água , Criança , Humanos , Qualidade da Água , Engenharia Sanitária , Abastecimento de Água , Chumbo/análise , Ingestão de Líquidos , Poluentes Químicos da Água/análise , Fosfatos
3.
AWWA Water Sci ; 3(5): 1-1255, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34938981

RESUMO

Many water systems are challenged with uncertainty regarding service line material type. This work investigated using a simple drinking water flushed sampling approach and a more complicated and invasive sequential profile sampling approach to predict whether homes had an existing lead service line (LSL). Homes that never had an LSL (control groups) and homes with LSLs (study groups) in two communities having different degrees of corrosion control were sampled. Using control groups' results, community-specific "threshold" lead levels were determined and compared to results from study groups. The flushed sampling maximum lead concentration (FMC) of lead accurately predicted 100% and 60% of LSL sites for the community with poor and good corrosion control, respectively. The weighted average sequential profile lead concentration (WASLC) increased the 40% not identified as LSL sites by fully flushed samples to 100%. The WASLC closely followed by the maximum sequential profile lead concentration were most reliable in identifying LSLs.

4.
Environ Sci Technol ; 55(17): 11491-11500, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34369747

RESUMO

The United States Environmental Protection Agency recently released their most sweeping overhaul to the Lead and Copper Rule in three decades. One of the most significant changes is requiring a fifth-liter (L5) sample at homes with lead service lines (LSLs) rather than the original first-liter (L1) sample for a demonstration of compliance with water lead level (WLL) limits. We analyzed sequential sampling data from three large water systems and compliance data from Michigan utilities-which base compliance on the 90th percentile of the greater of L1 and L5 samples-to evaluate whether L5 WLLs better represent water in contact with LSLs and to explore regulatory impacts of including L5 samples in compliance monitoring. The sequential sampling data demonstrated that it is impossible to use a single sample volume within a sequential profile to universally capture the volume of water in an LSL. While L5 is not always a reliable indicator of water in contact with an LSL, Michigan compliance data showed that the L5 sample is more likely to be from an LSL and can identify utilities that benefit from an improved corrosion control treatment. Michigan compliance data indicate that it is likely that L5 sampling will result in more systems having a higher 90th percentile WLL and that a high proportion of the systems likely to exceed regulatory action levels based on L5 samples can be identified through a retrospective analysis of historic L1 data. The impact of the switch to L5 sampling on the effectiveness of corrosion control treatment over time has yet to be determined.


Assuntos
Água Potável , Poluentes Químicos da Água , Cobre , Água Potável/análise , Chumbo/análise , Estudos Retrospectivos , Estados Unidos , Poluentes Químicos da Água/análise , Abastecimento de Água
5.
Water Res ; 195: 116955, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33714013

RESUMO

Sodium silicate is thought to mitigate lead release via two mechanisms: by increasing pH and by forming a protective silica film. A pilot-scale study using an excavated lead service line (LSL) fed with water from a Great Lakes source was undertaken to: (1) clearly distinguish the pH effect and the silica effect; (2) compare sodium silicate to orthophosphate and pH adjustment; (3) determine the nature of silica accumulation in the pipe scale. The LSL was cut into segments and acclimated with water at pH 7.1. Median dissolved lead was 197 µg/L in the last 8 weeks of acclimation and dropped to 16 µg/L, 54 µg/L, and 85 µg/L following treatment with orthophosphate (dose: 2.6 mg-PO4/L, pH: 7.9), pH adjustment (pH: 7.9) and sodium silicate (dose: 20 mg-SiO2/L, pH: 7.9), respectively. When silica dose was increased from 20 mg-SiO2/L to 25 mg-SiO2/L (pH: 8.1), lead release destabilized and increased (median dissolved lead: 141 µg/L) due to formation of colloidal dispersions composed mainly of lead- and aluminum-rich phases as detected by field flow fractionation used with inductively coupled plasma mass spectrometry. Si was present in the scale at a maximum of 2.2 atomic % after 17 weeks of silica dosing at 20 mg- SiO2/L. Under the conditions tested, sodium silicate did not offer any benefits for reducing lead release from this LSL other than increasing pH. However, sodium silicate resulted in lower levels of biofilm accumulation on pipe walls, as measured by heterotrophic plate counts, when compared to orthophosphate.


Assuntos
Poluentes Químicos da Água , Abastecimento de Água , Concentração de Íons de Hidrogênio , Chumbo , Fosfatos , Silicatos , Dióxido de Silício , Poluentes Químicos da Água/análise
6.
Environ Res ; 181: 108928, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31787215

RESUMO

In February of 2016, the City of Flint, Michigan commenced the FAST start initiative with the aim "to get the lead out of Flint" by replacing lead and galvanized steel service lines throughout the city. An estimated 29,100 parcels are scheduled for service line replacement (SLR) at an expected cost of $172 million. The lead exposure benefits of SLR are evaluated by analyzing Sentinel data on hundreds of repeatedly sampled homes in Flint from February 16, 2016 to July 21, 2017, comparing water lead (WL) in homes with and without lead service lines. Samples taken from homes with lead service lines were significantly more likely to exceed specified thresholds of WL than homes without lead service lines. Second, regardless of service line material type, sampled homes experienced significant reductions in WL with elapsed time from Flint's switchback to water provided by the Detroit Water and Sewage Department. Third, the risk of exceedance of WL > 15 µg/L was uncorrelated with service line material type. These results are robust to sample restrictions, period stratification, time operations, reference group definitions, and statistical modeling procedures. On the question of what is gained from SLR over optimal corrosion control techniques, we simulated age-specific lead uptake (µg/day) and blood lead levels (µg/dL) for children in Flint at 16 and 90 weeks of elapsed time from Flint's switchback to Detroit water. At 90 weeks from the switchback in water source, the quantity of water lead consumed by children in homes with lead service lines decreased 93%, as compared to 16 weeks. Lead exposure benefits of SLR have declined in time, with modest differences in lead uptake across homes with different service lines. In light of results, policy considerations for Flint and nationwide are discussed.


Assuntos
Água Potável , Chumbo , Poluentes Químicos da Água , Criança , Cidades , Humanos , Michigan , Abastecimento de Água
7.
Water Res ; 150: 380-391, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30550868

RESUMO

Partial lead service line replacement (PLSLR) results in the addition of a new galvanic connection and can increase lead concentrations at the tap. Focus has been given to minimizing lead release after PLSLR, but little information is available on the impact of lead remedial actions on copper concentrations, especially before passivation occurs. The impact of water quality (decreased chloride-to-sulfate mass ratio from 0.9 to 0.3; addition of orthoP; pH increase to 8.3) on lead and copper concentrations was investigated after stagnation (30 min-336 h) in a pipe rig comparing full lead service line (LSL), and two configurations of partial LSLs (Cu-Pb and Pb-Cu). Results show different trends for lead and copper: maximum lead concentrations were reached in 16 h while copper concentrations continued to increase over 336 h. Lead release rates were also the highest in the first 16 h of stagnation and were strongly impacted by water quality and the configuration of PLSLR (Cu-Pb vs Pb-Cu). Increasing the sampling flow rate from 5 to 15 LPM drastically increased the particulate lead release (78-fold) in Pb-Cu configurations; this effect was however not observed in 100% Pb or Cu-Pb configurations. High velocity flushing prior to 16 h stagnation decreased total Pb release by a factor of 12-fold for Cu-Pb, 1.6-fold for Pb-Cu and 2.0-fold for 100% Pb. Results support the definition of sampling protocols targeted for the detection of lead and copper sources and the proscription of flushing prior to sampling.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Cobre , Chumbo , Abastecimento de Água
8.
Water Res ; 149: 566-577, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30508757

RESUMO

Long-term (155 weeks) Pb concentrations, following partial lead service lines replacements (PLSLR), were measured in a flow through pilot made of harvested lead service lines (LSL) from the distribution system of the City of Montreal. The present study also investigates how release of Pb from full and partial LSLs is influenced by: pipe diameter, decrease in chloride-to-sulfate mass ratio (CSMR) from 0.9 to 0.3, addition of orthophosphate (1 mg P/L), and increase in pH to 8.3. Pb concentrations were measured after 16 h of stagnation and under flow conditions. In this study, Pb concentrations did not decrease, in the long term, after partial LSL replacement. Moreover, the most effective corrosion control treatment in full LSLs was the addition of orthoP. In contrast, the decrease of the CSMR best reduced lead release from partial LSLs. The impact of pipe configuration therefore influenced the effectiveness of corrosion control treatments. It is noteworthy that the increase in Pb concentrations following PLSLR were attributed to particulate Pb release from the galvanic section of the pipe. The occurrence of galvanic corrosion, caused by the connection between Pb and copper pipes, adds a new source of Pb in the partial LSL. At least, this new source of lead has to be offset by the removal of a long enough section of LSL during PLSLR. Full LSL replacements may be warranted to minimize the exposure of consumers to elevated Pb levels caused by galvanic corrosion in LSLs.


Assuntos
Poluentes Químicos da Água , Abastecimento de Água , Cobre , Corrosão , Chumbo
9.
Artigo em Inglês | MEDLINE | ID: mdl-30036962

RESUMO

Flushing tap water is promoted as a low cost approach to reducing water lead exposures. This study evaluated lead reduction when prevailing flush guidelines (30 s⁻2 min) are implemented in a city compliant with lead-associated water regulations (New Orleans, LA, USA). Water samples (n = 1497) collected from a convenience sample of 376 residential sites (2015⁻2017) were analyzed for lead. Samples were collected at (1) first draw (n = 375) and after incremental flushes of (2) 30⁻45 s (n = 375); (3) 2.5⁻3 min (n = 373), and (4) 5.5⁻6 min (n = 218). There was a small but significant increase in water lead after the 30 s flush (vs. first draw lead). There was no significant lead reduction until the 6 min flush (p < 0.05); but of these samples, 52% still had detectable lead (≥1 ppb). Older homes (pre-1950) and low occupancy sites had significantly higher water lead (p < 0.05). Each sample type had health-based standard exceedances in over 50% of sites sampled (max: 58 ppb). While flushing may be an effective short-term approach to remediate high lead, prevailing flush recommendations are an inconsistently effective exposure prevention measure that may inadvertently increase exposures. Public health messages should be modified to ensure appropriate application of flushing, while acknowledging its short-comings and practical limitations.


Assuntos
Água Potável/química , Chumbo/administração & dosagem , Chumbo/análise , Poluentes Químicos da Água/análise , Cidades , Exposição Dietética/prevenção & controle , Habitação , Nova Orleans , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água , Abastecimento de Água/normas
10.
J Hazard Mater ; 329: 211-221, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28178636

RESUMO

Partial lead service line replacements (PLSLR) were simulated using five recirculating pipe loops treated with either zinc orthophosphate (1mg/L as P), orthophosphate (1mg/L as P) or sodium silicate (10mg/L). Two pipe loops served as â¿¿inhibitor-freeâ¿¿ (Pb-Cu) and â¿¿galvanic freeâ¿¿ (Pb-PVC) controls. Changes in water quality (CSMR [0.2 or 1], conductivity [â¿¿330mS/cm or â¿¿560mS/cm], chlorine [1.4mg/L]) were not observed to provide a significant impact on lead or copper release, although galvanic corrosion was shown to be a driving factor. Generally, both orthophosphate and zinc orthophosphate provided better corrosion control for both total and dissolved lead (30min, 6h, 65h) and copper (30min, 6h), when compared to either the inhibitor-free control or the sodium silicate treated system. This work highlights the importance of understanding the complex interplay of corrosion inhibitors on particulate and dissolved species when considering both lead and copper.

11.
J Hazard Mater ; 311: 151-7, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-26971028

RESUMO

High levels of iron in distributed drinking water often accompany elevated lead release from lead service lines and other plumbing. Lead-iron interactions in drinking water distribution systems are hypothesized to be the result of adsorption and transport of lead by iron oxide particles. This mechanism was explored using point-of-use drinking water samples characterized by size exclusion chromatography with UV and multi-element (ICP-MS) detection. In separations on two different stationary phases, high apparent molecular weight (>669 kDa) elution profiles for (56)Fe and (208)Pb were strongly correlated (average R(2)=0.96, N=73 samples representing 23 single-unit residences). Moreover, (56)Fe and (208)Pb peak areas exhibited an apparent linear dependence (R(2)=0.82), consistent with mobilization of lead via adsorption to colloidal particles rich in iron. A UV254 absorbance peak, coincident with high molecular weight (56)Fe and (208)Pb, implied that natural organic matter was interacting with the hypothesized colloidal species. High molecular weight UV254 peak areas were correlated with both (56)Fe and (208)Pb peak areas (R(2)=0.87 and 0.58, respectively). On average, 45% (std. dev. 10%) of total lead occurred in the size range 0.05-0.45 µm.


Assuntos
Água Potável/química , Ferro/química , Chumbo/química , Poluentes Químicos da Água/química , Adsorção , Cromatografia em Gel
12.
Environ Eng Sci ; 33(1): 53-64, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26989344

RESUMO

In this 48-month pilot study, long-term impacts of copper:lead galvanic connections on lead release to water were assessed without confounding differences in pipe exposure prehistory or disturbances arising from cutting lead pipe. Lead release was tracked from three lead service line configurations, including (1) 100% lead, (2) traditional partial replacement with 50% copper upstream of 50% lead, and (3) 50% lead upstream of 50% copper as a function of flow rate, connection types, and sampling methodologies. Elevated lead from galvanic corrosion worsened with time, with 140% more lead release from configurations representing traditional partial replacement configurations at 14 months compared to earlier data in the first 8 months. Even when sampled consistently at moderate flow rate (8 LPM) and collecting all water passing through service lines, conditions representing traditional partial service line configurations were significantly worse (≈40%) when compared to 100% lead pipe. If sampled at a high flow rate (32 LPM) and collecting 2 L samples from service lines, 100% of samples collected from traditional partial replacement configurations exceeded thresholds posing an acute health risk versus a 0% risk for samples from 100% lead pipe. Temporary removal of lead accumulations near Pb:Cu junctions and lead deposits from other downstream plastic pipes reduced risk of partial replacements relative to that observed for 100% lead. When typical brass compression couplings were used to connect prepassivated lead pipes, lead release spiked up to 10 times higher, confirming prior concerns raised at bench and field scale regarding adverse impacts of crevices and service line disturbances on lead release. To quantify semirandom particulate lead release from service lines in future research, whole-house filters have many advantages compared to other approaches.

13.
Artigo em Inglês | MEDLINE | ID: mdl-26061205

RESUMO

Water quality parameters affecting sodium silicate performance in partial lead service line replacements were examined using a fractional factorial experimental design and static pipe systems. An external copper wire was used to create a galvanic connection between a former lead service line and a new copper pipe. The pipe systems were filled with lab prepared water made to mimic real water quality. Water was changed on a three times per week basis. A 2(4-1) fractional factorial design was used to evaluate the impact of alkalinity (15 mg L(-1) or 250 mg L(-1) as CaCO3), nitrate (1 mg L(-1) or 7 mg L(-1) as N), natural organic matter (1 mg L(-1) or 7 mg L(-1) as dissolved organic carbon), and disinfectant type (1 mg L(-1) chlorine or 3 mg L(-1) monochloramine), resulting in eight treatment conditions. Fractional factorial analysis revealed that alkalinity, natural organic matter and monochloramine had a significant positive effect on galvanic current. Natural organic matter and monochloramine also had a significant positive effect with respect to both total and dissolved lead release. For the treatment conditions examined, 67-98% of the lead released through galvanic currents was stored as corrosion scales and predominantly comprised of particulate lead (96.1-99.9%) for all eight treatments. The use of monochloramine and the presence of natural organic matter (7 mg L(-1)) were not favourable for corrosion control in sodium silicate-treated partial lead service line replacements, although further studies would be required to characterize optimal water quality parameters for specific water quality types. For utilities operating with sodium silicate as a corrosion inhibitor, this work offers further evidence regarding the consideration of chlorine as a secondary disinfectant instead of monochloramine, as well as the value of controlling natural organic matter in distributed water.


Assuntos
Chumbo/análise , Silicatos/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Abastecimento de Água , Corrosão , Chumbo/química , Ontário , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA