Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(7): 634, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900402

RESUMO

The present study investigates the seasonal variations in leaf ecophysiological traits and strategies employed by co-occurring evergreen and deciduous tree species within a white oak forest (Quercus leucotrichophora A. Camus) ecosystem in the central Himalaya. Seasonal variations in physiological, morphological, and chemical traits were observed from leaf initiation until senescence in co-occurring deciduous and evergreen tree species. We compared various parameters, including net photosynthetic capacity (Aarea and Amass), leaf stomatal conductance (gswarea and gswmass), transpiration rate (Earea and Emass), specific leaf area (SLA), mid-day water potential (Ψmd), leaf nitrogen (N) and phosphorus (P) concentration, leaf total chlorophyll concentration, photosynthetic nitrogen- and phosphorus-use efficiency (PNUE and PPUE), and water use efficiency (WUE) across four evergreen and four deciduous tree species. Our findings reveal that evergreen and deciduous trees exhibit divergent strategies in coping with seasonal changes, which are crucial for their survival and growth. Deciduous trees consistently exhibited significantly higher photosynthetic rates, transpiration rates, mass-based N and P concentrations (Nmass and Pmass), mass-based chlorophyll concentration (Chlmass), SLA, and leaf Ψmd, while maintaining lower leaf structural investments throughout the year compared to evergreen trees. These findings indicate that deciduous trees achieve greater assimilation rates per unit mass and higher nutrient-use efficiency. Physiological, morphological, and leaf N and P concentrations were higher in the summer (fully expanded leaf) than in the fall (senesced leaf). These insights provide valuable contributions to our understanding of tree species coexistence and their ecological roles in temperate forest ecosystems, with implications for forest management and conservation in the Himalayan region.


Assuntos
Florestas , Nitrogênio , Fotossíntese , Folhas de Planta , Quercus , Estações do Ano , Árvores , Folhas de Planta/fisiologia , Quercus/fisiologia , Árvores/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Clorofila/metabolismo , Monitoramento Ambiental , Índia , Ecossistema , Água/metabolismo
2.
Plants (Basel) ; 13(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38475565

RESUMO

Phenological gaps exert a significant influence on the growth of dwarf bamboos. However, how dwarf bamboos respond to and exploit these phenological gaps remain enigmatic. The light environment, soil nutrients, leaf morphology, maximum photosynthetic rate, foliage dynamics, and branching characteristics of Sasa kurilensis were examined under the canopies of Fagus crenata and Magnolia obovata. The goal was to elucidate the adaptive responses of S. kurilensis to phenological gaps in the forest understory. The findings suggest that phenological gaps under an M. obovata canopy augment the available biomass of S. kurilensis, enhancing leaf area, leaf thickness, and carbon content per unit area. However, these gaps do not appreciably influence the maximum photosynthetic rate, total leaf number, leaf lifespan, branch number, and average branch length. These findings underscore the significant impact of annually recurring phenological gaps on various aspects of S. kurilensis growth, such as its aboveground biomass, leaf morphology, and leaf biochemical characteristics. It appears that leaf morphology is a pivotal trait in the response of S. kurilensis to phenological gaps. Given the potential ubiquity of the influence of phenological gaps on dwarf bamboos across most deciduous broadleaf forests, this canopy phenomenon should not be overlooked.

3.
Rev. biol. trop ; 71(1)dic. 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1449503

RESUMO

Introduction: Defined seasonality in savanna species can stimulate physiological responses that maximize photosynthetic metabolism and productivity. However, those physiological responses are also linked to the phenological status of the whole plant, including leaf phenophases. Objective: To study how physiological traits influence phenophase timing among congeneric and co-occurring savanna species. Methods: We evaluated the leaf phenology and physiological traits of populations of Byrsonima intermedia, B. coccolobifolia, and B. verbascifolia. Physiological measurements were performed at the onset of the dry and rainy seasons and again late in the season. Results: B. intermedia and B. coccolobifolia were classified as brevideciduous and B. verbascifolia as evergreen. The maximum quantum yield for B. intermedia and B. coccolobifolia were lowest during the dry season. At the onset of the dry period, the highest chloroplastidic pigment levels were observed, which decreased as the season advanced, total chlorophyll/carotenoid ratios were lowest, and carotenoid contents were highest. We detected low starch content values at the start of the rainy season, coinciding with the resumption of plant growth. Two months into this season, the leaves were at their peak structural and functional maturity, with high water-soluble polysaccharide values and photosynthetic rates, and were storing large amounts of starch. Conclusions: Physiological and leaf phenological strategies of the Byrsonima species were related to drought resistance and acclimatization to the seasonality of savanna water resources. The oscillations of the parameters quantified during the year indicated a strong relationship with water seasonality and with the phenological status of the leaves.


Introducción: La marcada estacionalidad en las especies de sabana puede estimular respuestas fisiológicas que maximicen el metabolismo fotosintético y la productividad. Sin embargo, esas respuestas fisiológicas están vinculadas al estado fenológico de toda la planta, incluidas las fenofases de las hojas. Objetivo: Estudiar cómo los rasgos fisiológicos influyen en el tiempo de la fenofase entre especies de sabana congenéricas y concurrentes. Métodos: Evaluamos la fenología y características fisiológicas de poblaciones de Byrsonima intermedia, B. coccolobifolia y B. verbascifolia. Las mediciones fisiológicas se realizaron al inicio de la estación seca y lluviosa, y de nuevo al final de la estación. Resultados: B. intermedia y B. coccolobifolia se clasificaron como brevicaducifolias y B. verbascifolia como perennifolias. El rendimiento cuántico máximo para B. intermedia y B. coccolobifolia fueron más bajos durante la época seca. Al inicio del período seco, se observaron niveles de pigmentos cloroplastídicos más altos, aunque los niveles de clorofila disminuyeron a medida que avanzaba la estación seca, las proporciones clorofila/carotenoides totales fueron más bajas y los contenidos de carotenoides más altos. Detectamos valores bajos de contenido de almidón al inicio de la época lluviosa, que coincide con la reanudación del crecimiento de la planta. A dos meses de esta época, las hojas estaban en su máxima madurez estructural y funcional, con altos valores de polisacáridos solubles en agua y tasas fotosintéticas, y almacenaban grandes cantidades de almidón. Conclusiones: Las estrategias fisiológicas y fenológicas de las hojas de las especies de Byrsonima estaban relacionadas con la resistencia a la sequía y la aclimatación a la estacionalidad de los recursos hídricos de la sabana. Las oscilaciones de los parámetros cuantificados durante el año indicaron una fuerte relación con la estacionalidad hídrica y con los estados fenológicos de las hojas.

4.
Ecol Evol ; 13(8): e10362, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37533970

RESUMO

The Acadian Forest Region is a temperate-boreal transitional zone in eastern North America which provides a unique opportunity for understanding the potential effects of climate change on both forest types. Leaf phenology, the timing of leaf life cycle changes, is an important indicator of the biological effects of climate change, which can be observed with stationary timelapse cameras known as phenocams. Using four growing seasons of observations for the species Acer rubrum (red maple), Betula papyrifera (paper/white birch) and Abies balsamea (balsam fir) from the Acadian Phenocam Network as well as multiple growing season observations from the North American PhenoCam Network we parameterized eight leaf emergence and six leaf senescence models for each species which span a range in process and driver representation. With climate models from the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5) we simulated future leaf emergence, senescence and season length (senescence minus emergence) for these species at sites within the Acadian Phenocam Network. Model performances were similar across models and leaf emergence model RMSE ranged from about 1 to 2 weeks across species and models, while leaf senescence model RMSE ranged from about 2 to 4 weeks. The simulations suggest that by the late 21st century, leaf senescence may become continuously delayed for boreal species like Betula papyrifera and Abies balsamea, though remain relatively stable for temperate species like Acer rubrum. In contrast, the projected advancement in leaf emergence was similar across boreal and temperate species. This has important implications for carbon uptake, nutrient resorption, ecology and ecotourism for the Acadian Forest Region. More work is needed to improve predictions of leaf phenology for the Acadian Forest Region, especially with respect to senescence. Phenocams have the potential to rapidly advance process-based model development and predictions of leaf phenology in the context of climate change.

5.
Front Plant Sci ; 14: 1154232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152132

RESUMO

Stem respiration (R s) plays a vital role in ecosystem carbon cycling. However, the measured efflux on the stem surface (E s) is not always in situ R s but only part of it. A previously proposed mass balance framework (MBF) attempted to explore the multiple partitioning pathways of R s, including sap-flow-transported and internal storage of R s, in addition to E s. This study proposed stem photosynthesis as an additional partitioning pathway to the MBF. Correspondingly, a double-chamber apparatus was designed and applied on newly sprouted Moso bamboo (Phyllostachys edulis) in leafless and leaved stages. R s of newly sprouted bamboo were twice as high in the leafless stage (7.41 ± 2.66 µmol m-2 s-1) than in the leaved stage (3.47 ± 2.43 µmol m-2 s-1). E s accounted for ~80% of R s, while sap flow may take away ~2% of R s in both leafless and leaved stages. Culm photosynthesis accounted for ~9% and 13% of R s, respectively. Carbon sequestration from culm photosynthesis accounted for approximately 2% of the aboveground bamboo biomass in the leafless stage. High culm photosynthesis but low sap flow during the leafless stage and vice versa during the leaved stage make bamboo an outstanding choice for exploring the MBF.

6.
New Phytol ; 237(6): 2069-2087, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36527230

RESUMO

The representation of stomatal regulation of transpiration and CO2 assimilation is key to forecasting terrestrial ecosystem responses to global change. Given its importance in determining the relationship between forest productivity and climate, accurate and mechanistic model representation of the relationship between stomatal conductance (gs ) and assimilation is crucial. We assess possible physiological and mechanistic controls on the estimation of the g1 (stomatal slope, inversely proportional to water use efficiency) and g0 (stomatal intercept) parameters, using diurnal gas exchange surveys and leaf-level response curves of six tropical broadleaf evergreen tree species. g1 estimated from ex situ response curves averaged 50% less than g1 estimated from survey data. While g0 and g1 varied between leaves of different phenological stages, the trend was not consistent among species. We identified a diurnal trend associated with g1 and g0 that significantly improved model projections of diurnal trends in transpiration. The accuracy of modeled gs can be improved by accounting for variation in stomatal behavior across diurnal periods, and between measurement approaches, rather than focusing on phenological variation in stomatal behavior. Additional investigation into the primary mechanisms responsible for diurnal variation in g1 will be required to account for this phenomenon in land-surface models.


Assuntos
Ecossistema , Água , Água/fisiologia , Fotossíntese/fisiologia , Florestas , Folhas de Planta/fisiologia , Árvores/fisiologia , Transpiração Vegetal , Estômatos de Plantas/fisiologia
7.
Glob Chang Biol ; 29(2): 308-323, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36102197

RESUMO

Warming temperatures are increasing rainfall extremes, yet arthropod responses to climatic fluctuations remain poorly understood. Here, we used spatiotemporal variation in tropical montane climate as a natural experiment to compare the importance of biotic versus abiotic drivers in regulating arthropod biomass. We combined intensive field data on arthropods, leaf phenology and in situ weather across a 1700-3100 m elevation and rainfall gradient, along with desiccation-resistance experiments and multi-decadal modelling. We found limited support for biotic drivers with weak increases in some herbivorous taxa on shrubs with new leaves, but no landscape-scale effects of leaf phenology, which tracked light and cloud cover. Instead, rainfall explained extensive interannual variability with maximum biomass at intermediate rainfall (130 mm month-1 ) as both 3 months of high and low rainfall reduced arthropods by half. Based on 50 years of regional rainfall, our dynamic arthropod model predicted shifts in the timing of biomass maxima within cloud forests before plant communities transition to seasonally deciduous dry forests (mean annual rainfall 1000-2500 mm vs. <800 mm). Rainfall magnitude was the primary driver, but during high solar insolation, the 'drying power of air' (VPDmax ) reduced biomass within days contributing to drought related to the El Niño-Southern Oscillation (ENSO). Highlighting risks from drought, experiments demonstrated community-wide susceptibility to desiccation except for some caterpillars in which melanin-based coloration appeared to reduce the effects of evaporative drying. Overall, we provide multiple lines of evidence that several months of heavy rain or drought reduce arthropod biomass independently of deep-rooted plants with the potential to destabilize insectivore food webs.


El aumento de las temperaturas está incrementando los extremos de precipitación, pero las respuestas de los artrópodos a las fluctuaciones climáticas siguen siendo poco conocidas. Aquí, utilizamos la variación espaciotemporal en el clima montano tropical como un experimento natural para comparar la importancia de los factores bióticos versus abióticos en la regulación de la biomasa de artrópodos. Combinamos datos de campo intensivos de artrópodos, fenología de las hojas y clima in situ a lo largo de un gradiente altitudinal de 1700 a 3100 m y un gradiente de precipitación, junto con experimentos de resistencia a la desecación y modelos multi-decenales. Encontramos evidencia limitada para los factores bióticos con aumentos débiles en algunos taxones de herbívoros en arbustos con hojas nuevas, pero no hubo efectos a escala de paisaje en la fenología de la hoja, que rastreaba la luz y la cubierta de nubes. En cambio, las precipitaciones explicaron la amplia variabilidad interanual con una biomasa máxima en precipitaciones intermedias (130 mm mes−1 ), ya que los tres meses de precipitaciones altas y bajas redujeron los artrópodos a la mitad. Basándose en 50 años de precipitación regional, nuestro modelo dinámico de artrópodos predijo cambios en el momento de los máximos de biomasa dentro del bosque nuboso antes de que las comunidades de plantas hicieran la transición al bosque seco estacional caducifolio (precipitación media anual 1000-2500 mm vs. <800 mm). La magnitud de las lluvias fue el principal factor, pero durante la alta insolación solar, el "poder de secado del aire" (VPDmax ) redujo la biomasa en cuestión de días, lo que contribuyó a la sequía relacionada con El Niño-Southern Oscillation (ENSO). Destacando los riesgos de la sequía, los experimentos demostraron la susceptibilidad de toda la comunidad a la desecación, excepto en el caso de algunas orugas en las que la coloración a base de melanina parece reducir los efectos de la desecación por evaporación. En resumen, proporcionamos múltiples líneas de evidencia de que varios meses de fuertes lluvias o sequías reducen la biomasa de artrópodos independientemente de las plantas de raíces profundas con el potencial de desestabilizar las redes alimentarias de los insectívoros.


Assuntos
Artrópodes , Árvores , Animais , Árvores/fisiologia , Clima Tropical , El Niño Oscilação Sul , Florestas , Folhas de Planta/fisiologia , Estações do Ano
8.
Front Plant Sci ; 13: 1035191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407605

RESUMO

It is still unknown whether the previous summer season drought and fertilization will affect the winter non-structural carbohydrate (NSC) reserves, spring leaf development, and mortality of trees in the next year. We, therefore, conducted an experiment with Quercus pubescens (downy oaks) saplings grown under four drought levels from field capacity (well-watered; ~25% volumetric water content) to wilting point (extreme drought; ~6%), in combination with two fertilizer treatments (0 vs. 50 kg/ha/year blended) for one growing season to answer this question. We measured the pre- and post-winter NSC, and calculated the over-winter NSC consumption in storage tissues (i.e. shoots and roots) following drought and fertilization treatment, and recorded the spring leaf phenology, leaf biomass, and mortality next year. The results showed that, irrespective of drought intensity, carbon reserves were abundant in storage tissues, especially in roots. Extreme drought did not significantly alter NSC levels in tissues, but delayed the spring leaf expansion and reduced the leaf biomass. Previous season fertilization promoted shoot NSC use in extreme drought-stressed saplings over winter (showing reduced carbon reserves in shoots after winter), but it also showed positive effects on survival next year. We conclude that: (1) drought-stressed downy oak saplings seem to be able to maintain sufficient mobile carbohydrates for survival, (2) fertilization can alleviate the negative effects of extreme drought on survival and recovery growth of tree saplings.

9.
New Phytol ; 235(3): 815-820, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35770485
10.
Plant Divers ; 44(2): 163-169, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35505985

RESUMO

Plants deploy various ecological strategies in response to environmental heterogeneity. In many forest ecosystems, plants have been reported to have notable inter- and intra-specific trait variation, as well as clear phylogenetic signals, indicating that these species possess a degree of phenotypic plasticity to cope with habitat variation in the community. Savanna communities, however, grow in an open canopy structure and exhibit little species diversification, likely as a result of strong environmental stress. In this study, we hypothesized that the phylogenetic signals of savanna species would be weak, the intraspecific trait variation (ITV) would be low, and the contribution of intraspecific variation to total trait variance would be reduced, owing to low species richness, multiple stresses and relatively homogenous community structure. To test these hypotheses, we sampled dominant woody species in a dry-hot savanna in southwestern China, focusing on leaf traits related to adaptability of plants to harsh conditions (year-round intense radiation, low soil fertility and seasonal droughts). We found weak phylogenetic signals in leaf traits and low ITV (at both individual and canopy-layer levels). Intraspecific variation (including leaf-, layer- and individual-scales) contributed little to the total trait variance, whereas interspecific variation and variation in leaf phenology explained substantial variance. Our study suggests that intraspecific trait variation is reduced in savanna community. Furthermore, our findings indicate that classifying species by leaf phenology may help better understand how species coexist under similar habitats with strong stresses.

11.
Plant Physiol Biochem ; 179: 158-167, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35358866

RESUMO

Climate warming and surface ozone (O3) pollution are important global environmental issues today. However, the combined impacts of air warming and O3 on phenology and its functional traits of urban trees are still poorly understood. Here, an experiment was performed to explore the variations of the spring phenological and functional traits in leaves of Populus alba 'Berolinensis' and Forsythia suspensa under ambient air (15.8 °C, 35.7 ppb), increased air temperature (IT, ambient air temperature + 2 °C, 17.9 °C), elevated O3 (EO, ambient air O3 concentrations + 40 ppb, 77.4 ppb), and their combined treatments (17.7 °C, 74.5 ppb). Our results showed that: IT advanced the beginning of leaf bud expansion phase of P. alba 'Berolinensis' and F. suspensa for 6 d and 5 d, respectively, increased leaf unfolding rate, leaf area and dry weight, and enhanced photosynthesis and antioxidative enzyme activities. EO delayed the beginning of leaf bud expansion phase of P. alba 'Berolinensis' for 5 d, decreased leaf area and biomass, and inhibited photosynthesis and caused oxidative damage of plant leaves. Compared to EO, the combined treatment advanced the spring phenophase, increased growth and induced the higher level of photosynthetic rate and antioxidative enzymes activities in plant leaves, which indicated that the positive effects of increased temperature (17.7 °C) alleviated the inhibition of growth and photosynthesis induced by ozone. Our findings can provide a theoretical reference for predicting the adaptation of functional traits of the two trees blossomed early under warming and O3 pollution at spring phenological stage.


Assuntos
Ozônio , Árvores , Clima , Ozônio/farmacologia , Folhas de Planta/fisiologia , Estações do Ano
12.
New Phytol ; 235(3): 953-964, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35179794

RESUMO

There is a long-standing idea that the timing of leaf production in seasonally cold climates is linked to xylem anatomy, specifically vessel diameter because of the hydraulic requirements of expanding leaves. We tested for a relationship between the timing of leaf out and vessel diameter in 220 plants in three common gardens accounting for species' phylogenetic relationships. We investigated how vessel diameter related to wood porosity, plant height and leaf length. We also used dye perfusion tests to determine whether plants relied on xylem produced during the previous growing season at the time of leaf out. In all three gardens, there was later leaf out in species with wider vessels. Ring-porous species had the widest vessels, exhibited latest leaf out and relied less on xylem made during the previous growing season than diffuse-porous species. Wood anatomy and leaf phenology did not exhibit a phylogenetic signal. The timing of leaf out is correlated with wood anatomy across species regardless of species' geographic origin and phylogenetic relationships. This correlation could be a result of developmental and physiological links between leaves and wood or tied to a larger safety efficiency trade-off.


Assuntos
Madeira , Xilema , Filogenia , Folhas de Planta/fisiologia , Estações do Ano , Água , Madeira/fisiologia , Xilema/fisiologia
13.
Ecol Lett ; 25(4): 900-912, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35098634

RESUMO

Successful control and prevention of biological invasions depend on identifying traits of non-native species that promote fitness advantages in competition with native species. Here, we show that, among 76 native and non-native woody plants of deciduous forests of North America, invaders express a unique functional syndrome that combines high metabolic rate with robust leaves of longer lifespan and a greater duration of annual carbon gain, behaviours enabled by seasonally plastic xylem structure and rapid production of thin roots. This trait combination was absent in all native species examined and suggests the success of forest invaders is driven by a novel resource-use strategy. Furthermore, two traits alone-annual leaf duration and nuclear DNA content-separated native and invasive species with 93% accuracy, supporting the use of functional traits in invader risk assessments. A trait syndrome reflecting both fast growth capacity and understorey persistence may be a key driver of forest invasions.


Assuntos
Florestas , Árvores , Carbono/metabolismo , Espécies Introduzidas , Folhas de Planta , Árvores/genética
14.
Glob Chang Biol ; 27(22): 5806-5817, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34431180

RESUMO

Spring phenology of temperate forest trees has advanced substantially over the last decades due to climate warming, but this advancement is slowing down despite continuous temperature rise. The decline in spring advancement is often attributed to winter warming, which could reduce chilling and thus delay dormancy release. However, mechanistic evidence of a phenological response to warmer winter temperatures is missing. We aimed to understand the contrasting effects of warming on plants leaf phenology and to disentangle temperature effects during different seasons. With a series of monthly experimental warming by ca. 2.4°C from late summer until spring, we quantified phenological responses of forest tree to warming for each month separately, using seedlings of four common European tree species. To reveal the underlying mechanism, we tracked the development of dormancy depth under ambient conditions as well as directly after each experimental warming. In addition, we quantified the temperature response of leaf senescence. As expected, warmer spring temperatures led to earlier leaf-out. The advancing effect of warming started already in January and increased towards the time of flushing, reaching 2.5 days/°C. Most interestingly, however, warming in October had the opposite effect and delayed spring phenology by 2.4 days/°C on average; despite six months between the warming and the flushing. The switch between the delaying and advancing effect occurred already in December. We conclude that not warmer winters but rather the shortening of winter, i.e., warming in autumn, is a major reason for the decline in spring phenology.


Assuntos
Mudança Climática , Clima , Folhas de Planta , Estações do Ano , Temperatura , Árvores
15.
Plants (Basel) ; 10(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418961

RESUMO

To discuss the diversity of morphological traits and life strategies of trees, the functional relationship between leaf expansion and vessel formation must be clarified. We compared the temporal relationship among tree species with different leaf habits and vessel arrangements. Twigs, leaves, and trunk core samples were periodically acquired from 35 sample trees of nine species in a temperate forest in Japan. We quantitatively estimated leaf expansion using a nonlinear regression model and observed thin sections of twigs and trunks with a light microscope. Almost all of the first-formed vessels in twigs, which formed adjacent to the annual ring border, were lignified with a leaf area between 0% and 70% of the maximum in all species. The first-formed vessels in trunks lignified between 0% and 95% of the maximum leaf area in ring-porous deciduous Quercus serrata and ring-(radial-)porous evergreen Castanopsis cuspidate. Their lignification occurred earlier than in diffuse-porous deciduous Liquidambar styraciflua, diffuse-porous evergreen Cinnamomum camphora and Symplocos prunifolia, and radial-porous evergreen Quercus glauca and Quercus myrsinifolia. The timing varied in semi-ring-porous deciduous Acanthopanax sciadophylloides and diffuse-porous evergreen Ilex pedunculosa. The observed differences in the timing of vessel formation after leaf appearance were reflected in their differing vessel porosities and were connected to the different life strategies among tree species.

16.
Front Plant Sci ; 12: 716071, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126403

RESUMO

Climate change greatly affects spring and autumn plant phenology around the world consequently, and significantly impacts ecosystem function and the social economy. However, autumn plant phenology, especially autumn flowering phenology, has not been studied so far. In this study, we examined the spatiotemporal pattern of Osmanthus fragrans phenology, including both leaf phenology (the date of bud-bust, BBD; first leaf unfolding, FLD; and 50% of leaf unfolding, 50 LD) and flowering phenology (the date of first flowering, FFD; peak of flowering, PFD; and end of flowering, EFD). Stepwise multiple linear regressions were employed to analyze the relationships between phenophases and climatic factors in the long term phenological data collected by the Chinese Phenological Observation Network from 1973 to 1996. The results showed that spring leaf phenophases and autumn flowering phenophases were strongly affected by latitude. BBD, FLD, and 50LD of O. fragrans were delayed by 3.98, 3.93, and 4.40 days as per degree of latitude increased, while FFD, PFD and EFD in O. fragrans advanced 3.11, 3.26, and 2.99 days, respectively. During the entire study period, BBD was significantly delayed across the region, whereas no significant trends were observed either in FLD or 50LD. Notably, all flowering phenophases of O. fragrans were delayed. Both leaf and flowering phenophases negatively correlated with growing degree-days (GDD) and cold degree-days (CDD), respectively. BBD and FLD were negatively correlated with total annual precipitation. In addition to the effects of climate on autumn flowering phenology, we found that earlier spring leaf phenophases led to delayed autumn flowering phenophases. Our results suggest that future climate change and global warming might delay the phenological sequence of O. fragrans. Our findings also advanced the flowering mechanism study of autumn flowering plants, and facilitated the accurate prediction of future phenology and climate change.

17.
Int J Biometeorol ; 65(3): 369-379, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31352524

RESUMO

Leaf phenology is a major driver of ecosystem functioning in temperate forests and a robust indicator of climate change. Both the inter-annual and inter-population variability of leaf phenology have received much attention in the literature; in contrast, the within-population variability of leaf phenology has been far less studied. Beyond its impact on individual tree physiological processes, the within-population variability of leaf phenology can affect the estimation of the average budburst or leaf senescence dates at the population scale. Here, we monitored the progress of spring and autumn leaf phenology over 14 tree populations (9 tree species) in six European forests over the period of 2011 to 2018 (yielding 16 site-years of data for spring, 14 for autumn). We monitored 27 to 512 (with a median of 62) individuals per population. We quantified the within-population variability of leaf phenology as the standard deviation of the distribution of individual dates of budburst or leaf senescence (SDBBi and SDLSi, respectively). Given the natural variability of phenological dates occurring in our tree populations, we estimated from the data that a minimum sample size of 28 (resp. 23) individuals, are required to estimate SDBBi (resp. SDLSi) with a precision of 3 (resp. 7) days. The within-population of leaf senescence (average SDLSi = 8.5 days) was on average two times larger than for budburst (average SDBBi = 4.0 days). We evidenced that warmer temperature during the budburst period and a late average budburst date were associated with a lower SDBBi, as a result of a quicker spread of budburst in tree populations, with a strong species effect. Regarding autumn phenology, we observed that later senescence and warm temperatures during the senescence period were linked with a high SDLSi, with a strong species effect. The shares of variance explained by our models were modest suggesting that other factors likely influence the within-population variation in leaf phenology. For instance, a detailed analysis revealed that summer temperatures were negatively correlated with a lower SDLSi.


Assuntos
Ecossistema , Árvores , Humanos , Folhas de Planta , Estações do Ano , Temperatura
18.
Sci Total Environ ; 762: 143177, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33187697

RESUMO

Temperature is the primary factor controlling plant phenology. As temperature changes with latitude, leaf phenology in spring always shows a significant latitudinal pattern. However, under asymmetric warming at the low and high latitudes, the variability of the spring leaf phenology with latitude is becoming unclear. Based on the 23,094 observations of the leaf unfolding date (LUD) for woody species located in eastern China within latitudes 23-49°N, we analyzed the variability of LUD and its latitudinal sensitivity (Slat, days °N-1, expressed in delayed days per degree in latitude) during 1963-2008. The results showed an earlier LUD at the mid- (-2.2 days decade-1) and high (-2.5 days decade-1) latitude regions, while a stable LUD at the low-latitude regions during 1963-2008. However, the temperature sensitivity of LUD (ST, days °C-1, expressed in advanced days per degree in temperature) remained stable across the latitudes although a slight decreasing trend from 1963 to 2008. As a result, the non-uniform optimal preseason warming with latitude (Tlat, °C °N-1, expressed in the increase of temperature per degree in latitude) decreased Slat from 2.38 (days °N-1) in 1963 to 1.55 (days °N-1) in 2008. Further analyses indicated that the Growing Degree Hours (GDH) played a critical role in these processes, although the Chilling Hours (CH) showed significant variability after 1991. Our results provide evidence that the change in the balance of CH and GDH across latitude induced declining Slat over the last 40 years in eastern China. Furthermore, it may continue under the future climate warming scenarios and ultimately has important consequences on the structure and function of ecosystems.

19.
Am J Bot ; 107(11): 1491-1503, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33190268

RESUMO

PREMISE: Leaf phenology is an essential developmental process in trees and an important component in understanding climate change. However, little is known about the regulation of leaf phenology in tropical trees. METHODS: To understand the regulation by temperature of leaf phenology in tropical trees, we performed daily observations of leaf production under rainfall-independent conditions using saplings of Shorea leprosula and Neobalanocarpus heimii, both species of Dipterocarpaceae, a dominant tree family of Southeast Asia. We analyzed the time-series data obtained using empirical dynamic modeling (EDM) and conducted growth chamber experiments. RESULTS: Leaf production by dipterocarps fluctuated in the absence of fluctuation in rainfall, and the peaks of leaf production were more frequent than those of day length, suggesting that leaf production cannot be fully explained by these environmental factors, although they have been proposed as regulators of leaf phenology in dipterocarps. Instead, EDM suggested a causal relationship between temperature and leaf production in dipterocarps. Leaf production by N. heimii saplings in chambers significantly increased when temperature was increased after long-term low-temperature treatment. This increase in leaf production was observed even when only nighttime temperature was elevated, suggesting that the effect of temperature on development is not mediated by photosynthesis. CONCLUSIONS: Because seasonal variation in temperature in the tropics is small, effects on leaf phenology have been overlooked. However, our results suggest that temperature is a regulator of leaf phenology in dipterocarps. This information will contribute to better understanding of the effects of climate change in the tropics.


Assuntos
Dipterocarpaceae , Sudeste Asiático , Folhas de Planta , Estações do Ano , Temperatura , Árvores
20.
Oecologia ; 194(1-2): 221-236, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32965523

RESUMO

Deciduous and evergreen trees are usually considered the main coexisting functional groups in seasonally dry tropical forests (SDTF). We compared leaf and stem traits of 22 woody species in the Brazilian Caatinga to investigate whether deciduous (DC) and evergreen (EV) species have divergent water-use strategies. Our hypothesis was that DC trees compensate for their short leaf longevity by being less conservative in water use and showing higher variation in the seasonal water potential after leaf shedding. Evergreen species should exhibit a highly conservative water use strategy, which reduces variations in seasonal water potential and the negative effects of desiccation. Our leaf dynamics results indicate that the crown area of DC trees is more sensitive to air and soil drought, whereas EV trees are only sensitive to soil drought. Deciduous species exhibit differences in a set of leaf traits confirming their acquisitive strategy, which contrasts with evergreen species. However, when stomatal traits are considered, we found that DC and EV have similar stomatal regulation strategies (partially isohydric). We also found divergent physiological strategies within DC. For high wood density DC, the xylem water potential (Ψxylem) continued to drop during the dry season. We also found a negative linear relationship between leaf life span (LL) and the transpiration rate per unit of hydraulic conductivity (Λ), indicating that species with high LL are less vulnerable to hydraulic conductivity loss than early-deciduous species. Collectively, our results indicate divergence in the physiology of deciduous species, which suggests that categorizing species based solely on their leaf phenology may be an oversimplification.


Assuntos
Secas , Clima Tropical , Brasil , Florestas , Folhas de Planta , Árvores , Água , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...