Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.346
Filtrar
1.
Clin Nutr ESPEN ; 63: 332-345, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964655

RESUMO

BACKGROUND & AIMS: Legumes intake is known to be associated with several health benefits the origins of which is still a matter of debate. This paper addresses a pilot small cohort to probe for metabolic aspects of the interplay between legumes intake, human metabolism and gut microbiota. METHODS: Untargeted nuclear magnetic resonance (NMR) metabolomics of blood plasma and fecal extracts was carried out, in tandem with qPCR analysis of feces, to assess the impact of an 8-week pilot legumes diet intervention on the fecal and plasma metabolomes and gut microbiota of 19 subjects. RESULTS: While the high inter-individual variability hindered the detection of statistically significant changes in the gut microbiome, increased fecal glucose and decreased threonine levels were noted. Correlation analysis between the microbiome and fecal metabolome lead to putative hypotheses regarding the metabolic activities of prevalent bacteria groups (Clostridium leptum subgroup, Roseburia spp., and Faecalibacterium prausnitzii). These included elevated fecal glucose as a preferential energy source, the involvement of valerate/isovalerate and reduced protein degradation in gut microbiota. Plasma metabolomics advanced mannose and betaine as potential markers of legume intake and unveiled a decrease in formate and ketone bodies, the latter suggesting improved energy utilization through legume carbohydrates. Amino acid metabolism was also apparently affected, as suggested by lowered urea, histidine and threonine levels. CONCLUSIONS: Despite the high inter-individual gut microbiome variability characterizing the small cohort addressed, combination of microbiological measurements and untargeted metabolomics unveiled several metabolic effects putatively related to legumes intake. If confirmed in larger cohorts, our findings will support the inclusion of legumes in diets and contribute valuable new insight into the origins of associated health benefits.

2.
Crit Rev Food Sci Nutr ; : 1-17, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973295

RESUMO

With the increased environmental concerns and health awareness among consumers, there has been a notable interest in plant-based dairy alternatives. The plant-based yogurt market has experienced rapid expansion in recent years. Due to challenges related to cultivation, higher cost of production and lower protein content researchers have explored the viability of pulse-based yogurt which has arisen as an economically and nutritionally abundant solution. This review aims to examine the feasibility of utilizing pulse protein for yogurt production. The nutritional, antinutritional, and functional characteristics of various pulses were discussed in detail, alongside the modifications in these properties during the various stages of yogurt manufacturing. The review also sheds light on pivotal findings from existing literature and outlines challenges associated with the production of pulse-based yogurt. Pulses have emerged as promising base materials for yogurt manufacturing due to their favorable nutritional and functional characteristics. Further, the fermentation process can effectively reduce antinutritional components and enhance digestibility. Nonetheless, variations in sensorial and rheological properties were noted when different types of pulses were employed. This issue can be addressed by employing suitable combinations to achieve the desired properties in pulse-based yogurt.

3.
Planta ; 260(2): 38, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951258

RESUMO

MAIN CONCLUSION: Our findings shed light on the regulation of anthocyanin and proanthocyanidin biosynthesis in chickpea seed coats. Expression of R2R3-MYB transcription factors CaLAP1 and CaLAP2 enhanced the anthocyanins and proanthocyanidins content in chickpea. The seed coat color is a major economic trait in leguminous crop chickpea (Cicer arietinum). Anthocyanins and proanthocyanidins (PAs) are two classes of flavonoids that mainly contribute to the flower, seed coat and color of Desi chickpea cultivars. Throughout the land plant lineage, the accumulation of anthocyanins and PAs is regulated by MYB and bHLH transcription factors (TFs), which form an MBW (MYB, bHLH, and WD40) complex. Here, we report two R2R3-MYB TFs in chickpea belonging to the anthocyanin-specific subgroup-6, CaLAP1 (Legume Anthocyanin Production 1), and CaLAP2 (Legume Anthocyanin Production 2), which are mainly expressed in the flowers and developmental stages of the seeds. CaLAP1 and CaLAP2 interact with TT8-like CabHLH1 and WD40, forming the MBW complex, and bind to the promoter sequences of anthocyanin- and PA biosynthetic genes CaCHS6, CaDFR2, CaANS, and CaANR, leading to anthocyanins and PA accumulation in the seed coat of chickpea. Moreover, these CaLAPs partially complement the anthocyanin-deficient phenotype in the Arabidopsis thaliana sextuple mutant seedlings. Overexpression of CaLAPs in chickpea resulted in significantly higher expression of anthocyanin and PA biosynthetic genes leading to a darker seed coat color with higher accumulation of anthocyanin and PA. Our findings show that CaLAPs positively modulate anthocyanin and PA content in seed coats, which might influence plant development and resistance to various biotic and abiotic stresses.


Assuntos
Antocianinas , Cicer , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Proantocianidinas , Sementes , Fatores de Transcrição , Cicer/genética , Cicer/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Antocianinas/biossíntese , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proantocianidinas/biossíntese , Proantocianidinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plantas Geneticamente Modificadas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Flores/crescimento & desenvolvimento
4.
Microorganisms ; 12(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38930482

RESUMO

Due to its adsorption with aluminum and iron hydroxides, phosphorus viability is low in acidic soils; thus, the aim of this study was to isolate and identify bacteria from the rhizosphere of four legumes growing in acidic soils of the Cumbaza Sub-basin, San Martín, Peru, as well as to characterize their ability to solubilize aluminum phosphate and iron phosphate. The isolation process was conducted on TSA medium and the isolates were classified based on their origin and morphocolonial characteristics, with the bacillary shape being the most frequent, followed by cocci. To assess the solubilization of aluminum and iron phosphates, the liquid medium GELP was employed. Sixteen strains were selected, among which three stood out for their effectiveness in solubilizing AlPO4 (Sfcv-098-02, 22.65 mg L-1; Sfc-093-04, 26.50 mg L-1; and Sfcv-041-01-2, 55.98 mg L-1) and one for its ability to solubilize FePO4 (Sfcr-043-02, 32.61 mg L-1). These four strains were molecularly characterized, being identified as Enterobacter sp., Pseudomonas sp., and Staphylococcus sp. Additionally, a decrease in pH was observed in the reactions, with values ranging from 5.23 to 3.29, which enhanced the phosphate of solubilization. This suggests that the selected bacteria could be used to improve phosphorus availability in agricultural soils.

5.
Genes (Basel) ; 15(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38927700

RESUMO

Cowpeas (Vigna unguiculata L. Walp) have been credible constituents of nutritious food and forage in human and animal diets since the Neolithic era. The modern technique of Diversity Array Technology (DArTseq) is both cost-effective and rapid in producing thousands of high-throughputs, genotyped, single nucleotide polymorphisms (SNPs) in wide-genomic analyses of genetic diversity. The aim of this study was to assess the heterogeneity in cowpea genotypes using DArTseq-derived SNPs. A total of 92 cowpea genotypes were selected, and their fourteen-day-old leaves were freeze-dried for five days. DNA was extracted using the CTAB protocol, genotyped using DArTseq, and analysed using DArTsoft14. A total of 33,920 DArTseq-derived SNPs were recalled for filtering analysis, with a final total of 16,960 SNPs. The analyses were computed using vcfR, poppr, and ape in R Studio v1.2.5001-3 software. The heatmap revealed that the TVU 9596 (SB26), Orelu (SB72), 90K-284-2 (SB55), RV 403 (SB17), and RV 498 (SB16) genotypes were heterogenous. The mean values for polymorphic information content, observed heterozygosity, expected heterozygosity, major allele frequency, and the inbreeding coefficient were 0.345, 0.386, 0.345, 0.729, and 0.113, respectively. Moreover, they validated the diversity of the evaluated cowpea genotypes, which could be used for potential breeding programmes and management of cowpea germplasm.


Assuntos
Genótipo , Polimorfismo de Nucleotídeo Único , Vigna , Vigna/genética , Heterogeneidade Genética , Técnicas de Genotipagem/métodos
6.
Plant Dis ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902882

RESUMO

Soybean cyst nematode (SCN), Heterodera glycines, poses a significant threat to global soybean production. Heilongjiang, the largest soybean-producing province in China, contributes over 40% to the country's total yield. This province has much longer history of SCN infestation. To assess the current situation in Heilongjiang, we conducted a survey to determine the SCN population density and virulence phenotypes during 2021-2022 and compared the data with a previous study in 2015. A total of 377 soil samples from 48 counties representing eleven major soybean-planting regions were collected. The prevalence of SCN increased from 55.4% in 2015 to 59% in the current survey. The population densities ranged from 80 to 26,700 eggs and juveniles per 100 cm3 of soil. Virulence phenotypes were evaluated for 60 representative SCN populations using the HG type test, revealing nine different HG types. The most common virulence phenotypes were HG types 7 and 0, accounting for 56.7% and 20% of all SCN populations, respectively. The prevalence of populations with a reproductive index (FI) greater than 10% on PI548316 increased from 64.5% in 2015 to 71.7%. However, the FI on the commonly used resistance sources PI 548402 (Peking) and PI 437654 remained low at 3.3%. These findings highlight the increasing prevalence and changing virulence phenotypes of SCN in Heilongjiang. They also emphasize the importance of rotating soybean varieties with different resistance sources and urgently identifying new sources of resistance to combat SCN.

7.
Plants (Basel) ; 13(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38891282

RESUMO

Physical dormancy of seeds is a form of dormancy due to the presence of an impermeable seed coat layer, and it represents a feature for plants to adapt to environmental changes over an extended period of phylogenetic evolution. However, in agricultural practice, physical dormancy is problematic. because it prevents timely and uniform seed germination. Therefore, physical dormancy is an important agronomical trait to target in breeding and domestication, especially for many leguminous crops. Compared to the well-characterized physiological dormancy, research progress on physical dormancy at the molecular level has been limited until recent years, due to the lack of suitable research materials. This review focuses on the structure of seed coat, factors affecting physical dormancy, genes controlling physical dormancy, and plants suitable for studying physical dormancy at the molecular level. Our goal is to provide a plethora of information for further molecular research on physical dormancy.

8.
Crit Rev Food Sci Nutr ; : 1-17, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881295

RESUMO

In recent years, a global shift has been observed toward reducing the consumption of animal-derived foods in favor of healthier and more sustainable dietary choices. This has led to a steady growth in the market for plant-based milk alternatives (PBMAs). Projections suggest that this market will reach a value of USD 69.8 billion by 2030. Legumes, being traditional and nutritious ingredients for PMBAs, are rich in proteins, dietary fibers, and other nutrients, with potential health benefits such as anticancer and cardiovascular disease prevention. In this review, the application of 12 legumes in plant-based milk alternatives was thoroughly discussed for the first time. However, compared to milk, processing of legume-based beverages can lead to deficiencies such as nutritional imbalance, off-flavor, and emulsion stratification. Considering the potential and challenges associated with legume-based beverages, this review aims to provide a scientific comparison between legume-based beverages and cow's milk in terms of nutritional quality, organoleptic attributes and stability, and to summarize ways to improve the deficiencies of legume-based beverages in terms of raw materials and processing method improvements. In conclusion, the legume-based beverage industry will be better enhanced and developed by improving the issues.

9.
BMC Plant Biol ; 24(1): 582, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898415

RESUMO

BACKGROUND: Crop-associated microorganisms play a crucial role in soil nutrient cycling, and crop growth, and health. Fine-scale patterns in soil microbial community diversity and composition are commonly regulated by plant species or genotype. Despite extensive reports in different crop or its cultivar effects on the microbial community, it is uncertain how rhizoma peanut (RP, Arachis glabrata Benth.), a perennial warm-season legume forage that is well-adapted in the southern USA, affects soil microbial community across different cultivars. RESULTS: This study explored the influence of seven different RP cultivars on the taxonomic composition, diversity, and functional groups of soil fungal communities through a field trial in Marianna, Florida, Southern USA, using next-generation sequencing technique. Our results showed that the taxonomic diversity and composition of the fungal community differed significantly across RP cultivars. Alpha diversity (Shannon, Simpson, and Pielou's evenness) was significantly higher in Ecoturf but lower in UF_Peace and Florigraze compared to other cultivars (p < 0.001). Phylogenetic diversity (Faith's PD) was lowest in Latitude compared to other cultivars (p < 0.0001). The dominant phyla were Ascomycota (13.34%), Mortierellomycota (3.82%), and Basidiomycota (2.99%), which were significantly greater in Florigraze, UF_Peace, and Ecoturf, respectively. The relative abundance of Neocosmospora was markedly high (21.45%) in UF_Tito and showed large variations across cultivars. The relative abundance of the dominant genera was significantly greater in Arbrook than in other cultivars. There were also significant differences in the co-occurrence network, showing different keystone taxa and more positive correlations than the negative correlations across cultivars. FUNGuild analysis showed that the relative abundance of functional guilds including pathogenic, saprotrophic, endophytic, mycorrhizal and parasitic fungi significantly differed among cultivars. Ecoturf had the greatest relative abundance of mycorrhizal fungal group (5.10 ± 0.44), whereas UF_Peace had the greatest relative abundance of endophytic (4.52 ± 0.56) and parasitic fungi (1.67 ± 0.30) compared to other cultivars. CONCLUSIONS: Our findings provide evidence of crop cultivar's effect in shaping fine-scale fungal community patterns in legume-based forage systems.


Assuntos
Arachis , Microbiologia do Solo , Arachis/microbiologia , Arachis/genética , Micobioma , Fungos/fisiologia , Fungos/genética , Florida , Rizoma/microbiologia , Filogenia
10.
IUCrdata ; 9(Pt 5): x240480, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38846556

RESUMO

The title compound {systematic name: (2S)-2-aza-niumyl-3-[(2-carb-oxy-ethane)-sulfon-yl]propano-ate}, C6H11NO6S, forms enanti-opure crystals in the monoclinic space group P21 and exists as a zwitterion, with a protonated α-amino group and a deprotonated α-carboxyl group. Both the carboxyl groups and the amino group are involved in an extensive multicentered inter-molecular hydrogen-bonding scheme. In the crystal, the diperiodic network of hydrogen bonds propagates parallel to (101) and involves inter-connected heterodromic R 4 3(10) rings. Electrostatic forces are major contributors to the structure energy, which was estimated by DFT calculations as E total = -333.5 kJ mol-1.

11.
Foods ; 13(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928789

RESUMO

Chickpeas are more sustainable than other food systems and have high a nutritional value, especially regarding their vitamin composition. One of the main vitamins in chickpeas is vitamin B6, which is very important for several human metabolic functions. Since chickpeas are consumed after cooking, our goal was to better understand the role of leaching (diffusion) and thermal degradation of vitamin B6 in chickpeas during hydrothermal processing. Kinetics were conducted at four temperatures, ranging from 25 to 85 °C, carried out for 4 h in an excess of water for the diffusion kinetics, or in hermetic bags for the thermal degradation kinetics. Thermal degradation was modeled according to a first-order reaction, and diffusion was modeled according to a modified version of Fick's second law. Diffusivity constants varied from 4.76 × 10-14 m2/s at 25 °C to 2.07 × 10-10 m2/s at 85 °C; the temperature had an impact on both the diffusivity constant and the residual vitamin B6. The kinetic constant ranged from 9.35 × 10-6 at 25 °C to 54.9 × 10-6 s-1 at 85 °C, with a lower impact of the temperature. In conclusion, vitamin B6 is relatively stable to heat degradation; loss is mainly due to diffusion, especially during shorter treatment times.

12.
Front Nutr ; 11: 1351443, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933879

RESUMO

Purpose: Nowadays, the promotion of a circular economy is fundamental to reduce food losses and waste. In this context, the possibility of using food supply chains non-compliant residues emerges. Much interest has been directed toward legume residues, in general and, in particular, to the possibility of combining different plant-matrices to improve nutritional profile, providing high-quality products. Methods: Five different formulations of breads, with a combination of seeds and cereals, were fortified with chickpea and pea protein concentrates. Samples were analyzed and compared with their relative control recipe to determine differences in composition, actual protein quality and integrity, and protein digestibility (performed with the INFOGEST method). Results: Samples showed a clear improvement in the nutritional profile with higher values of proteins, from averagely 12.9 (control breads) to 29.6% (fortified breads) (17.7-24.7 g/100 g of dry matter respectively), and an improvement in amino acidic profile, with a better balancing of essential amino acids (lysine and sulfur amino acid contents), without affecting protein integrity. Regarding in vitro gastro-intestinal digestibility, sample C (19% chickpea proteins) showed the best results, having a comparable protein digestibility to its control bread-48.8 ± 1.1% versus 51.7 ± 2.3%, respectively. Conclusion: The results showed how the fortification with chickpea and/or pea protein concentrate improved the nutritional profile of bread. These prototypes seem to be a valid strategy to also increase the introduction of high biological value proteins. Furthermore, the not-expected lower digestibility suggested the possible presence of residual anti-nutritional factors in the protein concentrates interfering with protein digestibility. Therefore, it seems of fundamental importance to further investigate these aspects.

13.
Plant Dis ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38932447

RESUMO

Soybean cyst nematode is a major pest of soybean crops, causing significant yield losses and economic impact. Current management strategies primarily rely on resistant varieties, cover crops, and seed treatments. However, there is a growing interest in developing sustainable, ecologically based approaches to integrate SCN risk reduction into soybean production systems. This study aimed to evaluate the efficacy of various compost and manure amendments in suppressing SCN populations and promoting soybean productivity. An in vitro egg hatching assay was conducted to screen the inhibitory effects of different compost and manure extracts on SCN egg hatching. Results indicated that poultry manure, Layer Ash Blend®, and swine manure extracts significantly inhibited SCN hatching compared to other treatments across multiple time points. Greenhouse trials further validated the effectiveness of Layer Manure®, poultry manure, High Carbon Dairy Doo®, and Seed Starter 101® in suppressing SCN cysts, eggs, and juveniles. A field microplot trial confirmed the practical promise of Layer Ash Blend® and poultry manure in SCN management, with significant reductions in SCN populations and increased soybean yields. The study also investigated the impact of these amendments on promoting the population of bacterivorous and frugivorous nematodes, contributing to a biological diverse soil ecosystem. Overall, the results indicate that amending SCN-infested soil with specific compost or manure formulations can effectively suppress nematode populations while improving soybean productivity. These findings contribute to the development of sustainable strategies for SCN management in soybean production systems.

14.
J Agric Food Chem ; 72(25): 14114-14125, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38867659

RESUMO

In this study, the role of E3 ubiquitin ligase GmSNE3 in halosulfuron methyl (HSM) inhibiting soybean nodulation was investigated. GmSNE3 was strongly induced by HSM stress, and the overexpression of GmSNE3 significantly reduced the number of soybean nodules. Further investigation found that GmSNE3 could interact with a nodulation signaling pathway 1 protein (GmNSP1a) and GmSNE3 could mediate the degradation of GmNSP1a. Importantly, GmSNE3-mediated degradation of GmNSP1a could be promoted by HSM stress. Moreover, HSM stress and the overexpression of GmSNE3 resulted in a substantial decrease in the expression of the downstream target genes of GmNSP1a. These results revealed that HSM promotes the ubiquitin-mediated degradation of GmNSP1a by inducing GmSNE3, thereby inhibiting the regulatory effect of GmNSP1a on its downstream target genes and ultimately leading to a reduction in nodulation. Our findings will promote a better understanding of the toxic mechanism of herbicides on the symbiotic nodulation between legumes and rhizobia.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Herbicidas , Proteínas de Plantas , Nodulação , Compostos de Sulfonilureia , Ubiquitina-Proteína Ligases , Glycine max/genética , Glycine max/metabolismo , Glycine max/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Herbicidas/farmacologia , Nodulação/genética , Nodulação/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Compostos de Sulfonilureia/farmacologia
15.
Sci Rep ; 14(1): 11139, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750151

RESUMO

Fertilizers application are widely used to get a higher yield in agricultural fields. Nutrient management can be improved by cultivating leguminous species in order to obtain a better understanding of the mechanisms that increase the amount of available phosphorus (P) and potassium (K) through fertilizer treatments. A pot experiment was conducted to identify the leguminous species (i.e., chickpea and pea) under various fertilizer treatments. Experimental design is as follows: T0 (control: no fertilizer was applied), T1: P applied at the level of (90 kg ha-1), T2: (K applied at the level of 90 kg ha-1), and T3: (PK applied both at 90 kg ha-1). All fertilizer treatments significantly (p < 0.05) improved the nutrient accumulation abilities and enzymes activities. The T3 treatment showed highest N uptake in chickpea was 37.0%, compared to T0. While T3 developed greater N uptake in pea by 151.4% than the control. However, T3 treatment also increased microbial biomass phosphorus in both species i.e., 95.7% and 81.5% in chickpeas and peas, respectively, compared to T0 treatment. In chickpeas, T1 treatment stimulated NAGase activities by 52.4%, and T2 developed URase activities by 50.1% higher than control. In contrast, T3 treatment enhanced both BGase and Phase enzyme activities, i.e., 55.8% and 33.9%, respectively, compared to the T0 treatment. Only the T3 treatment improved the activities of enzymes in the pea species (i.e., BGase was 149.7%, URase was 111.9%, Phase was 81.1%, and NAGase was 70.0%) compared to the control. Therefore, adding combined P and K fertilizer applications to the soil can increase the activity of enzymes in both legume species, and changes in microbial biomass P and soil nutrient availability make it easier for plants to uptake the nutrients.


Assuntos
Biomassa , Cicer , Fertilizantes , Fósforo , Microbiologia do Solo , Solo , Fósforo/metabolismo , Solo/química , Cicer/metabolismo , Cicer/crescimento & desenvolvimento , Fabaceae/metabolismo , Fabaceae/crescimento & desenvolvimento , Potássio/metabolismo , Pisum sativum/metabolismo , Pisum sativum/crescimento & desenvolvimento , Nitrogênio/metabolismo , Nutrientes/metabolismo
16.
Front Nutr ; 11: 1385232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769988

RESUMO

In recent decades, scarcity of available resources, population growth and the widening in the consumption of processed foods and of animal origin have made the current food system unsustainable. High-income countries have shifted towards food consumption patterns which is causing an increasingly process of environmental degradation and depletion of natural resources, with the increased incidence of malnutrition due to excess (obesity and non-communicable disease) and due to chronic food deprivation. An urgent challenge is, therefore, to move towards more healthy and sustainable eating choices and reorientating food production and distribution to obtain a human and planetary health benefit. In this regard, legumes represent a less expensive source of nutrients for low-income countries, and a sustainable healthier option than animal-based proteins in developed countries. Although legumes are the basis of many traditional dishes worldwide, and in recent years they have also been used in the formulation of new food products, their consumption is still scarce. Common beans, which are among the most consumed pulses worldwide, have been the focus of many studies to boost their nutritional properties, to find strategies to facilitate cultivation under biotic/abiotic stress, to increase yield, reduce antinutrients contents and rise the micronutrient level. The versatility of beans could be the key for the increase of their consumption, as it allows to include them in a vast range of food preparations, to create new formulations and to reinvent traditional legume-based recipes with optimal nutritional healthy characteristics.

17.
Curr Issues Mol Biol ; 46(5): 4203-4233, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38785525

RESUMO

The global demand for sustainable and nutritious food sources has catalyzed interest in legumes, known for their rich repertoire of health-promoting compounds. This review delves into the diverse array of bioactive peptides, protein subunits, isoflavones, antinutritional factors, and saponins found in the primary legume protein sources-soybeans, peas, chickpeas, and mung beans. The current state of research on these compounds is critically evaluated, with an emphasis on the potential health benefits, ranging from antioxidant and anticancer properties to the management of chronic diseases such as diabetes and hypertension. The extensively studied soybean is highlighted and the relatively unexplored potential of other legumes is also included, pointing to a significant, underutilized resource for developing health-enhancing foods. The review advocates for future interdisciplinary research to further unravel the mechanisms of action of these bioactive compounds and to explore their synergistic effects. The ultimate goal is to leverage the full spectrum of benefits offered by legumes, not only to advance human health but also to contribute to the sustainability of food systems. By providing a comprehensive overview of the nutraceutical potential of legumes, this manuscript sets a foundation for future investigations aimed at optimizing the use of legumes in the global pursuit of health and nutritional security.

18.
Gels ; 10(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38786226

RESUMO

This study aimed to investigate the gelling behavior of faba bean (FB) and chickpea (CP) flour between 10 and 20% (w/w) concentration at pH 3.0, 5.0, and 7.0. Both sources formed at pH 3.0 and 5.0 self-standing gels with 12% (w/w) of flour, while 16% (w/w) of flour was required to obtain a gel at pH 7.0. During gelling between 40 and 70 °C, a sharp increase of the elastic modulus G' was observed in both flours, mainly due to water absorption and swelling of the starch, one of the major constituents in the ingredients. Increasing the temperature at 95 °C, G' increased due to the denaturation of globulins and therefore the exposure of their internal part, which allowed more hydrophobic interactions and the formation of the gel. After cooling, both FB and CP gels displayed a solid-like behavior (tan δ ranging between 0.11 and 0.18) with G' values at pH 3.0 and 5.0 significantly (p < 0.05) higher than those at pH 7.0, due to the lower electrostatic repulsions at pHs far from the isoelectric point. The rheological properties were supported by the water binding capacity values, confirming the better gels' strength described by rheological analysis. These results will enhance our understanding of the role of legume flours in formulating innovative and sustainable food products as alternatives to animal ones.

19.
Foods ; 13(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38790832

RESUMO

Cereal grains and pulses are staple foods worldwide, being the primary supply of energy, protein, and fiber in human diets. The current practice of milling and fractionation yields large quantities of byproducts and waste, which are largely downgraded and end up as animal feeds or fertilizers. This adversely affects food security and the environment, and definitely implies an urgent need for a sustainable grain processing system to rectify the current issues, particularly the management of waste and excessive use of water and energy. The current review intends to discuss the limitations and flaws of the existing practice of grain milling and fractionation, along with potential solutions to make it more sustainable, with an emphasis on wheat and peas as common fractionation crops. This review discusses a proposed sustainable grain processing system for the fractionation of wheat or peas into flour, protein, starch, and value-added components. The proposed system is a hybrid model that combines dry and wet fractionation processes in conjunction with the implementation of three principles, namely, integration, recycling, and upcycling, to improve component separation efficiency and value addition and minimize grain milling waste. The three principles are critical in making grain processing more efficient in terms of the management of waste and resources. Overall, this review provides potential solutions for how to make the grain processing system more sustainable.

20.
Plants (Basel) ; 13(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732424

RESUMO

In an era dominated by conventional agricultural practices, underutilized legumes termed "Forgotten Gems" represent a reservoir of untapped benefits with the unique opportunity to diversify agricultural landscapes and enhance global food systems. Underutilized crops are resistant to abiotic environmental conditions such as drought and adapt better to harsh soil and climatic conditions. Underutilized legumes are high in protein and secondary metabolites, highlighting their role in providing critical nutrients and correcting nutritional inadequacies. Their ability to increase dietary variety and food security emerges as a critical component of their importance. Compared to mainstream crops, underutilized legumes have been shown to reduce the environmental impact of climate change. Their capacity for nitrogen fixation and positive impact on soil health make them sustainable contributors to biodiversity conservation and environmental balance. This paper identifies challenges and proposes strategic solutions, showcasing the transformative impact of underutilized legumes on agriculture, nutrition, and sustainability. These "Forgotten Gems" should be recognized, integrated into mainstream agricultural practices, and celebrated for their potential to revolutionize global food production while promoting environmental sustainability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...