Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Int J Ophthalmol ; 17(3): 420-434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721513

RESUMO

AIM: To explore whether autophagy functions as a cellular adaptation mechanism in lens epithelial cells (LECs) under hyperosmotic stress. METHODS: LECs were treated with hyperosmotic stress at the concentration of 270, 300, 400, 500, or 600 mOsm for 6, 12, 18, 24h in vitro. Polymerase chain reaction (PCR) was employed for the mRNA expression of autophagy-related genes, while Western blotting detected the targeted protein expression. The transfection of stub-RFP-sens-GFP-LC3 autophagy-related double fluorescence lentivirus was conducted to detect the level of autophagy flux. Scanning electron microscopy was used to detect the existence of autolysosome. Short interfering RNA of autophagy-related gene (ATG) 7, transient receptor potential vanilloid (TRPV) 1 overexpression plasmid, related agonists and inhibitors were employed to their influence on autophagy related pathway. Flow cytometry was employed to test the apoptosis and intracellular Ca2+ level. Mitochondrial membrane potential was measured by JC-1 staining. The cell counting kit-8 assay was used to calculate the cellular viability. The wound healing assay was used to evaluate the wound closure rate. GraphPad 6.0 software was utilized to evaluate the data. RESULTS: The hyperosmotic stress activated autophagy in a pressure- and time-dependent manner in LECs. Beclin 1 protein expression and conversion of LC3B II to LC3B I increased, whereas sequestosome-1 (SQSTM1) protein expression decreased. Transient Ca2+ influx was stimulated caused by hyperosmotic stress, levels of mammalian target of rapamycin (mTOR) phosphorylation decreased, and the level of AMP-activated protein kinase (AMPK) phosphorylation increased in the early stage. Based on this evidence, autophagy activation through the Ca2+-dependent AMPK/mTOR pathway might represent an adaptation process in LECs under hyperosmotic stress. Hyperosmotic stress decreased cellular viability and accelerated apoptosis in LECs and cellular migration decreased. Inhibition of autophagy by ATG7 knockdown had similar results. TRPV1 overexpression increased autophagy and might be crucial in the occurrence of autophagy promoted by hyperosmotic stress. CONCLUSION: A combination of hyperosmotic stress and autophagy inhibition may be a promising approach to decrease the number of LECs in the capsular bag and pave the way for improving prevention of posterior capsular opacification and capsular fibrosis.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38516850

RESUMO

The mouse ocular lens is an excellent vertebrate model system for studying hexagonal cell packing and shape changes during tissue morphogenesis and differentiation. The lens is composed of two types of cells, epithelial and fiber cells. During the initiation of fiber cell differentiation, lens epithelial cells transform from randomly packed cells to hexagonally shaped and packed cells to form meridional row cells. The meridional row cells further differentiate and elongate into newly formed fiber cells that maintain hexagonal cell shape and ordered packing. In other tissues, actomyosin contractility regulates cell hexagonal packing geometry during epithelial tissue morphogenesis. Here, we use the mouse lens as a model to study the effect of two human disease-related non-muscle myosin IIA (NMIIA) mutations on lens cellular organization during fiber cell morphogenesis and differentiation. We studied genetic knock-in heterozygous mice with NMIIA-R702C motor domain or NMIIA-D1424N rod domain mutations. We observed that while one allele of NMIIA-R702C has no impact on lens meridional row epithelial cell shape and packing, one allele of the NMIIA-D1424N mutation can cause localized defects in cell hexagonal packing. Similarly, one allele of NMIIA-R702C motor domain mutation does not affect lens fiber cell organization while the NMIIA-D1424N mutant proteins disrupt fiber cell organization and packing. Our work demonstrates that disease-related NMIIA rod domain mutations (D1424N or E1841K) disrupt mouse lens fiber cell morphogenesis and differentiation.

3.
Heliyon ; 10(4): e26044, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390089

RESUMO

Research on the pathogenesis of cataracts is ongoing and the number of publications on this topic is increasing annually. This study offers an overview of the research status, popular topics, and scholarly tendencies in the field of cataract pathogenesis over recent decades,which helps to guide future research directions, and optimize resource allocation. In the present study, we performed a bibliometric analysis of cataract pathogenesis. Publications from January 1, 1999, to December 20, 2023, were collected from the Web of Science Core Collection (WoSCC), and the extracted data were quantified and analyzed. We analyzed and presented the data using Microsoft Excel, VOSviewer, CiteSpace, and Python. In all, 4006 articles were evaluated based on various characteristics, including publication year, authors, countries, institutions, journals, citations, and keywords. This study utilized VOSviewer to conduct visualized analysis, including co-authorship, co-citation, co-occurrence, and network visualization. The CiteSpace software was used to identify keywords with significant bursts of activity. The number of annual global publications climbed from 76 to 277 between 1999 and 2023, a 264.47% rise. Experimental Eye Research published the most manuscripts (178 publications), whereas Investigative Ophthalmology & Visual Science received the most citations (6675 citations). The most influential and productive country, institution, and author were the United States (1244 publications, 54,456 citations), University of California system (136 publications, 5401 citations), and Yao Ke (49 publications, 838 citations), respectively. The top 100 ranked keywords are divided into four clusters through co-occurrence analysis: (1) secondary cataracts, (2) oxidative stress, (3) gene mutations and protein abnormalities, and (4) alteration of biological processes in lens epithelial cells. Further discussions on the four subtopics outline the research topics and trends. In conclusion, the specific mechanism of cataract formation remains a popular topic for future research and should be explored in greater depth.

4.
J Cell Physiol ; 239(5): e31211, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38304971

RESUMO

Cataract, a leading cause of blindness, is characterised by lens opacification. Type 2 diabetes is associated with a two- to fivefold higher prevalence of cataracts. The risk of cataract formation increases with the duration of diabetes and the severity of hyperglycaemia. Hydroxyapatite deposition is present in cataractous lenses that could be the consequence of osteogenic differentiation and calcification of lens epithelial cells (LECs). We hypothesised that hyperglycaemia might promote the osteogenic differentiation of human LECs (HuLECs). Osteogenic medium (OM) containing excess phosphate and calcium with normal (1 g/L) or high (4.5 g/L) glucose was used to induce HuLEC calcification. High glucose accelerated and intensified OM-induced calcification of HuLECs, which was accompanied by hyperglycaemia-induced upregulation of the osteogenic markers Runx2, Sox9, alkaline phosphatase and osteocalcin, as well as nuclear translocation of Runx2. High glucose-induced calcification was abolished in Runx2-deficient HuLECs. Additionally, high glucose stabilised the regulatory alpha subunits of hypoxia-inducible factor 1 (HIF-1), triggered nuclear translocation of HIF-1α and increased the expression of HIF-1 target genes. Gene silencing of HIF-1α or HIF-2α attenuated hyperglycaemia-induced calcification of HuLECs, while hypoxia mimetics (desferrioxamine, CoCl2) enhanced calcification of HuLECs under normal glucose conditions. Overall, this study suggests that high glucose promotes HuLEC calcification via Runx2 and the activation of the HIF-1 signalling pathway. These findings may provide new insights into the pathogenesis of diabetic cataracts, shedding light on potential factors for intervention to treat this sight-threatening condition.


Assuntos
Calcinose , Catarata , Subunidade alfa 1 de Fator de Ligação ao Core , Glucose , Hiperglicemia , Fator 1 Induzível por Hipóxia , Cristalino , Humanos , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/genética , Calcinose/etiologia , Calcinose/metabolismo , Calcinose/patologia , Catarata/etiologia , Catarata/metabolismo , Catarata/patologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Glucose/metabolismo , Hiperglicemia/complicações , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Cristalino/metabolismo , Cristalino/patologia , Osteocalcina/metabolismo , Osteocalcina/genética , Transdução de Sinais , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo
5.
Exp Eye Res ; 241: 109837, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382576

RESUMO

The lens is an avascular tissue, where epithelial cells (LECs) are the primary living cells. The role of LECs-derived exosomes (LEC-exos) is largely unknown. In our study, we determined the anti-angiogenic role of LEC-exos, manifested as regressed retinal neovascularization (NV) using the oxygen-induced retinopathy (OIR), and reduced choroidal NV size and pathological vascular leakage using the laser-induced choroidal neovascularization (laser-induced CNV). Furthermore, the activation and accumulation of microglia were also restricted by LEC-exos. Based on Luminex multiplex assays, the expressions of chemokines such as SCYB16/CXCL16, MCP-1/CCL2, I-TAC/CXCL11, and MIP 3beta/CCL19 were decreased after treatment with LEC-exos. Transwell assays showed that LEC-exos restricted the migration of the mouse microglia cell line (BV2 cells). After incubation with LEC-exos-treated BV2 cells, human umbilical vein endothelial cells (hUVECs) were collected for further evaluation using tube formation, Transwell assays, and 5-ethynyl-2'-deoxyuridine (EDU) assays. Using in vitro experiments, the pro-angiogenic effect of microglia was restricted by LEC-exos. Hence, it was investigated that LEC-exos attenuated ocular NV, which might attribute to the inhibition of microglial activation and accumulation.


Assuntos
Neovascularização de Coroide , Exossomos , Células-Tronco Mesenquimais , Camundongos , Animais , Humanos , Microglia , Exossomos/metabolismo , Angiogênese , Neovascularização Fisiológica/fisiologia , Células Endoteliais da Veia Umbilical Humana , Neovascularização de Coroide/metabolismo
6.
Int J Radiat Biol ; 100(4): 573-583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38289679

RESUMO

PURPOSE: Exposure to ionizing radiation is one of the known risk factors for the development of lens opacities. It is believed that radiation interactions with lens epithelial cells (LEC) are the underlying cause of cataract development, however, the exact mechanisms have yet to be identified. The aim of this study was to investigate how different radiation dose and fractionation impact normal LEC function. MATERIALS AND METHODS: A human derived LEC cell line (HLE-B3) was exposed to a single acute x-ray dose (0.25 Gy) and 6 fractionated doses (total dose of 0.05, 0.1, 0.25, 0.5, 1, and 2 Gy divided over 5 equal fractions). LEC were examined for proliferation using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and migration using a Boyden chamber assay at various time points (0.25, 0.5, 1, 2, 4, 7, 9, 11, and 14 d) post-irradiation. Transcriptomic analysis through RNA sequencing was also performed to identify differentially expressed genes and regulatory networks in cells following 4 different acute exposures and 1 fractionated exposure. RESULTS: Exposure to an acute dose of 0.25 Gy significantly increased proliferation and migration rates, peaking at 7 d post irradiation (20% and 240% greater than controls, respectively), before returning to baseline levels by day 14. Fractionated exposures had minimal effects up to a dose of 0.5 Gy, but significantly reduced proliferation and migration after 1 and 2 Gy by up to 50%. The largest transcriptional response occurred 12 h after an acute 0.25 Gy dose, with 362 genes up-regulated and 288 genes down-regulated. A unique panel of differentially expressed genes was observed between moderate versus high dose exposures, suggesting a dose-dependent transcriptional response in LEC that is more pronounced at lower doses. Gene ontology and upstream regulator analysis identified multiple biological processes and molecular functions implicated in the radiation response, in particular differentiation, motility, receptor/ligand binding, cell signaling and epithelial-mesenchymal cell transition. CONCLUSIONS: Overall, this research provides novel insights into the dose and fractionation effects on functional changes and transcriptional regulatory networks in LEC, furthering our understanding of the mechanisms behind radiation induced cataracts.


Assuntos
Catarata , Células Epiteliais , Humanos , Relação Dose-Resposta à Radiação , Células Epiteliais/efeitos da radiação , Radiação Ionizante , Raios X , Catarata/etiologia
7.
FASEB J ; 37(10): e23192, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37682530

RESUMO

Abnormal ocular neovascularization, a major pathology of eye diseases, leads to severe visual loss. The role of lens epithelial cell (LEC)-derived exosomes (Lec-exo) is largely unknown. Thus, we aimed to investigate whether Lec-exo can inhibit abnormal ocular neovascularization and explore the possible mechanisms. In our study, we proved the first evidence that exosomes derived from LECs attenuated angiogenesis in both oxygen-induced retinopathy and laser-induced choroidal neovascularization mice models. Further in vitro experiments proved that Lec-exo inhibited proliferation, migration, and tube formation capability of human umbilical vein endothelial cells in high glucose condition. Further high-throughput miRNAs sequencing analysis detected that miR-146a-5p was enriched in Lec-exo. Mechanistically, exosomal miR-146a-5p was delivered to endothelial cells and bound to the NRAS coding sequence, which subsequently inactivated AKT/ERK signaling pathway. We successfully elucidated the function of Lec-exo in inhibiting abnormal ocular neovascularization, which may offer a promising strategy for treatment of abnormal ocular neovascularization.


Assuntos
Neovascularização de Coroide , Exossomos , MicroRNAs , Humanos , Animais , Camundongos , Células Epiteliais , Neovascularização de Coroide/genética , Células Endoteliais da Veia Umbilical Humana , MicroRNAs/genética
8.
World J Clin Cases ; 11(13): 3010-3016, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37215421

RESUMO

BACKGROUND: Malignant glaucoma, caused by aqueous misdirection, is a challenging post-surgical complication presented with normal/high intraocular pressure and shallowing of the central and peripheral anterior chambers. Its incidence is about 0.6%-4.0%. It can be secondary to filtering surgeries, laser iridotomy, and cataract surgery. Short axial length and a history of angle closure glaucoma are its main risk factors. Here, we report a bilateral malignant glaucoma with bullous keratopathy in the patient's left eye. CASE SUMMARY: We present a case of bilateral malignant glaucoma. The cause of malignant glaucoma for each eye of this patient was different. Hence, the management strategy and selection of surgical methods were also different. However, the normal anterior chamber was ultimately maintained, and maximum visual function was preserved. Even though the left eye received multiple surgeries and corneal endothelial decompensation occurred, the formation of a retroendothelial fibrous membrane partially compensated for the function of the corneal endothelium. CONCLUSION: The formation of a retroendothelial fibrous membrane partially compensated for the function of the corneal endothelium.

9.
Pharmaceutics ; 15(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37111720

RESUMO

Posterior capsule opacification (PCO) remains the most common cause of vision loss post cataract surgery. The clinical management of PCO formation is limited to either physical impedance of residual lens epithelial cells (LECs) by implantation of specially designed intraocular lenses (IOL) or laser ablation of the opaque posterior capsular tissues; however, these strategies cannot fully eradicate PCO and are associated with other ocular complications. In this review, we critically appraise recent advances in conventional and nanotechnology-based drug delivery approaches to PCO prophylaxis. We focus on long-acting dosage forms, including drug-eluting IOL, injectable hydrogels, nanoparticles and implants, highlighting analysis of their controlled drug-release properties (e.g., release duration, maximum drug release, drug-release half-life). The rational design of drug delivery systems by considering the intraocular environment, issues of initial burst release, drug loading content, delivery of drug combination and long-term ocular safety holds promise for the development of safe and effective pharmacological applications in anti-PCO therapies.

10.
Int J Ophthalmol ; 16(3): 333-341, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935791

RESUMO

AIM: To evaluate the regulation of the aberrant expression of collagen type IV alpha 1 chain (COL4A1) in the development of age-related cataract (ARC). METHODS: Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot analysis were employed to evaluate the expression of COL4A1 in ARC patients and healthy controls. The proliferation, apoptosis, cell cycle and epithelial-mesenchymal transition (EMT) of human lens epithelial cell (HLE-B3) were further analyzed under the condition of COL4A1 gene silence. Alteration of gene expression at mRNA level after knockdown COL4A1 were also evaluated by qRT-PCR on HLE-B3 cells. RESULTS: The aberrant expression of COL4A1 was identified a clinically associated with the ARC. Silencing of COL4A1 promoted the apoptosis and inhibited the proliferation of HLE-B3 by blocking the cell cycle. Moreover, COL4A1 gene silence didn't affect the cytoskeleton of HLE-B3 but down-regulated the Collagen type IV Alpha 2 Chain (COL4A2), paired box 6 (PAX6), procollagen-lysine 2-oxoglutarate 5-dioxygenases 1 (PLOD1) and procollagen-lysine 2-oxoglutarate 5-dioxygenases 2 (PLOD2) expression levels in HLE-B3 cells. Silencing the COL4A1 gene induced EMT of the HLE-B3 cells by promoting the transforming growth factor beta (TGF-ß) expression. CONCLUSION: Silencing of COL4A1 induces S-phase arrest, also inhibits the proliferation and enhance HLE-B3 apoptosis and EMT, and down-regulates the expression of COL4A2, PAX6, PLOD1 and PLOD2. Thus, the expression alteration of COL4A1 may play a critical role in the pathogenesis of ARC.

11.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36430438

RESUMO

Diabetic cataracts are a common complication that can cause blindness among patients with diabetes mellitus. A novel nitro dihydrocapsaicin (NDHC), a capsaicin analog, was constructed to have a non-pungency effect. The objective of this research was to study the effect of NDHC on human lens epithelial (HLE) cells that lost function from hyperglycemia. HLE cells were pretreated with NDHC before an exposure to high glucose (HG) conditions. The results show that NDHC promoted a deacceleration of cellular senescence in HLE cells. This inhibition of cellular senescence was characterized by a delayed cell growth and lower production of reactive oxygen species (ROS) as well as decreased SA-ß-galactosidase activity. Additionally, the expression of Sirt1 protein sharply increased, while the expression of p21 and phospho-p38 proteins decreased. These findings provide evidence that NDHC could exert a pharmacologically protective effect by inhibiting the senescence program of lens cells during diabetic cataracts.


Assuntos
Catarata , Sirtuína 1 , Humanos , Regulação para Cima , Sirtuína 1/genética , Capsaicina/farmacologia , Senescência Celular , Células Epiteliais
12.
Acta Med Okayama ; 76(4): 415-421, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36123156

RESUMO

Posterior capsule opacification (PCO) is a post-surgery complication of cataract surgery, and lens epithelial cells (LECs) are involved in its development. A suppressive effect on LECs is exerted by the non specific chloride channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) exerts. Herein, the growth and migration inhibitory effects of NPPB on LECs were assessed, and the mechanism underlying the effects were investigated by focusing on Ca2+/CaMKII signaling. LECs were treated with different concentrations of NPPB, and the changes in cell viability, cell-cycle distribution, anchorage-dependent growth, migration, Ca2+ level, and CaMKII expression were evaluated. NPPB inhibited LECs' proliferation and induced G1 cell-cycle arrest in the cells. Regarding LECs' mobility, NPPB suppressed the cells' anchorage-dependent growth ability and inhibited their migration. Changes in cell phenotypes were associated with an increased intracellular Ca2+ level and down-regulation of CaMKII. Together these results confirmed the inhibitory effect of NPPB on the proliferation and migration of LECs, and the effect was shown to be associated with the induced level of Ca2+ and the inhibition of CaMKII signaling transduction.


Assuntos
Ácido Benzoico , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Ácido Benzoico/metabolismo , Ácido Benzoico/farmacologia , Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Proliferação de Células , Canais de Cloreto/metabolismo , Células Epiteliais/metabolismo , Nitrobenzoatos
13.
Bioengineered ; 13(4): 11072-11081, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35481411

RESUMO

Cataract is a global ophthalmic disease that blinds the eye, and oxidative stress is one of its primary causes. Apoptosis of lens epithelial cells (LECs) is considered the major cytological basis of many cataracts except congenital cataracts. The purpose of this study was to investigate whether diosmetin could reduce oxidative stress-induced damage to LECs, and explore its regulatory pathway. Lens epithelial cell line SRA01/04 was used as the object of study. Using ultraviolet B (UVB) and hydrogen peroxide (H2O2) as sources of oxidative stress, the protective effects of diosmetin at different concentrations on cells were investigated, including inhibition of proliferation, apoptosis, and oxidative stress. Molecular docking was then used to predict the target proteins and validation was performed at the cellular and protein levels. The oxidative stress of SRA01/04 was induced by UVB and H2O2, and inhibition of proliferation and apoptosis were observed. Here, diosmetin has a dose-dependent cell-protecting effect. This effect is achieved by targeting the MEK2 protein and inhibiting the MAPK signaling. In conclusion, diosmetin reduces H2O2- and UVB-induced inhibition of SRA01/04 proliferation and apoptosis by reducing oxidative stress-induced activation of the MAPK pathway.


Assuntos
Catarata , Proteínas Quinases Ativadas por Mitógeno , Catarata/metabolismo , Células Epiteliais/metabolismo , Flavonoides , Humanos , Peróxido de Hidrogênio/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Estresse Oxidativo
14.
Cells ; 11(7)2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35406761

RESUMO

Cataracts are a serious complication of diabetes. In long-term hyperglycemia, intracellular Ca2+ concentration ([Ca2+]i) and reactive oxygen species (ROS) are increased. The apoptosis of lens epithelial cells plays a key role in the development of cataract. We investigated a potential role for transient receptor potential vanilloid 2 (TRPV2) in the development of diabetic cataracts. Immunohistochemical and Western blotting analyses showed that TRPV2 expression levels were significantly increased in the lens epithelial cells of patients with diabetic cataracts as compared with senile cataract, as well as in both a human lens epithelial cell line (HLEpiC) and primary rat lens epithelial cells (RLEpiCs) cultured under high-glucose conditions. The [Ca2+]i increase evoked by a TRPV2 channel agonist was significantly enhanced in both HLEpiCs and RLEpiCs cultured in high-glucose media. This enhancement was blocked by the TRPV2 nonspecific inhibitor ruthenium red and by TRPV2-specific small interfering (si)RNA transfection. Culturing HLEpiCs or RLEpiCs for seven days in high glucose significantly increased apoptosis, which was inhibited by TRPV2-specific siRNA transfection. In addition, ROS inhibitor significantly suppressed the ROS-induced increase of TRPV2-mediated Ca2+ signal and apoptosis under high-glucose conditions. These findings suggest a mechanism underlying high-glucose-induced apoptosis of lens epithelial cells, and offer a potential target for developing new therapeutic options for diabetes-related cataracts.


Assuntos
Catarata , Complicações do Diabetes , Diabetes Mellitus , Canais de Cátion TRPV , Animais , Apoptose , Catarata/genética , Complicações do Diabetes/complicações , Diabetes Mellitus/metabolismo , Células Epiteliais/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Humanos , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
15.
Biochem Biophys Rep ; 29: 101213, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35128081

RESUMO

Oxidative damage to lens epithelial cells plays an important role in the development of age-related cataract, and the health of the lens has important implications for overall ocular health. As a result, there is a need for effective therapeutic agents that prevent oxidative damage to the lens. Thiol antioxidants such as tiopronin or N-(2-mercaptopropionyl)glycine (MPG), N-acetylcysteine amide (NACA), N-acetylcysteine (NAC), and exogenous glutathione (GSH) may be promising candidates for this purpose, but their ability to protect lens epithelial cells is not well understood. The effectiveness of these compounds was compared by exposing human lens epithelial cells (HLE B-3) to the chemical oxidant tert-butyl hydroperoxide (tBHP) and treating the cells with each of the antioxidant compounds. MTT cell viability, apoptosis, reactive oxygen species (ROS), and levels of intracellular GSH, the most important antioxidant in the lens, were measured after treatment. All four compounds provided some degree of protection against tBHP-induced oxidative stress and cytotoxicity. Cells treated with NACA exhibited the highest viability after exposure to tBHP, as well as decreased ROS and increased intracellular GSH. Exogenous GSH also preserved viability and increased intracellular GSH levels. MPG scavenged significant amounts of ROS, and NAC increased intracellular GSH levels. Our results suggest that both scavenging ROS and increasing GSH may be necessary for effective protection of lens epithelial cells. Further, the compounds tested may be useful for the development of therapeutic strategies that aim to prevent oxidative damage to the lens.

16.
Bioengineering (Basel) ; 9(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35049738

RESUMO

The lens of the eye is one of the most radiosensitive tissues. Although the exact mechanism of radiation-induced cataract development remains unknown, altered proliferation, migration, and adhesion have been proposed as factors. Lens epithelial cells were exposed to X-rays (0.1-2 Gy) and radiation effects were examined after 12 h and 7 day. Proliferation was quantified using an MTT assay, migration was measured using a Boyden chamber and wound-healing assay, and adhesion was assessed on three extracellular matrices. Transcriptional changes were also examined using RT-qPCR for a panel of genes related to these processes. In general, a nonlinear radiation response was observed, with the greatest effects occurring at a dose of 0.25 Gy. At this dose, a reduction in proliferation occurred 12 h post irradiation (82.06 ± 2.66%), followed by an increase at 7 day (116.16 ± 3.64%). Cell migration was increased at 0.25 Gy, with rates 121.66 ± 6.49% and 232.78 ± 22.22% greater than controls at 12 h and 7 day respectively. Cell adhesion was consistently reduced above doses of 0.25 Gy. Transcriptional alterations were identified at these same doses in multiple genes related to proliferation, migration, and adhesion. Overall, this research began to elucidate the functional changes that occur in lens cells following radiation exposure, thereby providing a better mechanistic understanding of radiation-induced cataract development.

17.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208226

RESUMO

We investigated the role of nuclear factor of activated T cells 5 (NFAT5) under hyperosmotic conditions in human lens epithelial cells (HLECs). Hyperosmotic stress decreased the viability of human lens epithelial B-3 cells and significantly increased NFAT5 expression. Hyperosmotic stress-induced cell death occurred to a greater extent in NFAT5-knockout (KO) cells than in NFAT5 wild-type (NFAT5 WT) cells. Bcl-2 and Bcl-xl expression was down-regulated in NFAT5 WT cells and NFAT5 KO cells under hyperosmotic stress. Pre-treatment with a necroptosis inhibitor (necrostatin-1) significantly blocked hyperosmotic stress-induced death of NFAT5 KO cells, but not of NFAT5 WT cells. The phosphorylation levels of receptor-interacting protein kinase 1 (RIP1) and RIP3, which indicate the occurrence of necroptosis, were up-regulated in NFAT5 KO cells, suggesting that death of these cells is predominantly related to the necroptosis pathway. This finding is the first to report that necroptosis occurs when lens epithelial cells are exposed to hyperosmolar conditions, and that NFAT5 is involved in this process.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/patologia , Cristalino/patologia , Pressão Osmótica , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Humanos , Soluções Hipertônicas/toxicidade , Inflamação/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Pressão Osmótica/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Estresse Fisiológico/efeitos dos fármacos
18.
Data Brief ; 34: 106657, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33521174

RESUMO

Detailed transcriptomic analyses of differentiated cell populations derived from human pluripotent stem cells is routinely used to assess the identity and utility of the differentiated cells. Here we provide single cell RNA-sequencing data obtained from ROR1-expressing lens epithelial cells (ROR1e LECs), obtained via directed differentiation of CA1 human embryonic stem cells. Analysis of the data using principal component analysis, heat maps and gene ontology assessments revealed phenotypes associated with lens epithelial cells. These data provide a resource for future characterisation of both normal and cataractous human lens biology. Corresponding morphological and functional data obtained from ROR1e LECs are reported in the associated research article "A simplified method for producing human lens epithelial cells and light-focusing micro-lenses from pluripotent stem cells " (Dewi et al., 2020).

19.
Cutan Ocul Toxicol ; 40(3): 187-197, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33487044

RESUMO

OBJECTIVE: Oxidative stress has been recognised as an important mediator of apoptosis in lens epithelial cells. It also plays an important role in the pathogenesis of cataracts. It is reported that (-)-Epigallocatechin gallate (EGCG), the most abundant component in green tea, exhibits potent antioxidant activity against oxidative stress. This study aimed to investigate the protective effect of EGCG against Ultraviolet B (UVB) induced apoptotic death and the underlying mechanism in human lens epithelial cells (HLECs). METHODS: HLECs were exposed to various concentrations of EGCG under UVB (30 mJ/cm2), and cell viability was monitored by the MTT assay. Next, mitochondrial membrane potential (Δψm), reactive oxygen species (ROS) and apoptosis were detected by flow cytometry. Meanwhile, the total antioxigenic capacity (T-AOC) was determined by enzyme standard instrument, and the expression of apoptosis inducing factor (AIF) and endonuclease G (Endo G) was measured by quantitative PCR (Q-PCR) and western blotting, respectively. Moreover, the localisation of AIF and Endo G within cells was further detected by confocal optical microscopy. RESULTS: The results indicated that EGCG could enhance the cell viability and protect against cell apoptosis caused by UVB irradiation in HLECs. EGCG could also decrease the UVB-induced generation of ROS and collapse of Δψm, increase the T-AOC level. In addition, EGCG could also inhibit the UVB-stimulated increase of AIF and Endo G expression at mRNA and protein levels and ameliorate the UVB-induced mitochondria-nuclear translocation of AIF and Endo G. CONCLUSIONS: UVB irradiation could damage HLECs viability, while EGCG exhibits antioxidant effect and inhibits UVB-induced apoptosis in HLECs through AIF/Endo G signalling pathways. Our findings reveal the underlying mechanism of EGCG against UVB-induced oxidative stress in HLECs.


Assuntos
Catarata/tratamento farmacológico , Catequina/análogos & derivados , Cristalino/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Fator de Indução de Apoptose/metabolismo , Catarata/etiologia , Catarata/patologia , Catequina/farmacologia , Catequina/uso terapêutico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Endodesoxirribonucleases/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/efeitos da radiação , Humanos , Cristalino/citologia , Cristalino/patologia , Cristalino/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos
20.
Exp Eye Res ; 202: 108317, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130031

RESUMO

Here we describe a modified method for harvesting tens-of-millions of human lens epithelial-like cells from differentiated pluripotent stem cell cultures. To assess the utility of this method, we analysed the lens cell population via: light microscopy; single cell RNA-sequencing and gene ontology analyses; formation of light-focusing micro-lenses; mass spectrometry; and electron microscopy. Both individually and collectively, the data indicate this simplified harvesting method provides a large-scale source of stem cell-derived lens cells and micro-lenses for investigating human lens and cataract formation.


Assuntos
Separação Celular/métodos , Células Epiteliais/citologia , Cristalino/citologia , Células-Tronco Pluripotentes/citologia , Diferenciação Celular , Células Epiteliais/metabolismo , Humanos , Cristalino/metabolismo , Espectrometria de Massas , Microscopia , Microscopia Eletrônica , Células-Tronco Pluripotentes/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...