Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 500
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892380

RESUMO

Levosimendan's calcium sensitizing effects in heart muscle cells are well established; yet, its potential impact on skeletal muscle cells has not been evidently determined. Despite controversial results, levosimendan is still expected to interact with skeletal muscle through off-target sites (further than troponin C). Adding to this debate, we investigated levosimendan's acute impact on fast-twitch skeletal muscle biomechanics in a length-dependent activation study by submersing single muscle fibres in a levosimendan-supplemented solution. We employed our MyoRobot technology to investigate the calcium sensitivity of skinned single muscle fibres alongside their stress-strain response in the presence or absence of levosimendan (100 µM). While control data are in agreement with the theory of length-dependent activation, levosimendan appears to shift the onset of the 'descending limb' of active force generation to longer sarcomere lengths without notably improving myofibrillar calcium sensitivity. Passive stretches in the presence of levosimendan yielded over twice the amount of enlarged restoration stress and Young's modulus in comparison to control single fibres. Both effects have not been described before and may point towards potential off-target sites of levosimendan.


Assuntos
Cálcio , Fibras Musculares de Contração Rápida , Simendana , Simendana/farmacologia , Animais , Camundongos , Cálcio/metabolismo , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Contração Muscular/efeitos dos fármacos , Sarcômeros/metabolismo , Sarcômeros/efeitos dos fármacos , Masculino , Miofibrilas/metabolismo , Miofibrilas/efeitos dos fármacos
2.
Cureus ; 16(5): e59490, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38826972

RESUMO

Levosimendan is a medication with a range of pharmacological effects, making it appropriate for use in several clinical settings, including advanced heart failure with pulmonary hypertension, cardiogenic shock, and acute heart failure. This case report details the perioperative management of a male in their 40s with a complex medical history, including primary hypoparathyroidism, cirrhosis, and severe pulmonary hypertension, who underwent urgent cadaveric donor liver transplantation. Information available on the perioperative use of levosimendan is still insufficient to be able to regulate behaviors that can guide its management on a regular basis.

3.
ESC Heart Fail ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761030

RESUMO

AIMS: We report the results of a real-world study based on heart failure (HF) patients' continuous remote monitoring strategy using the CardioMEMS system to assess the impact of this device on healthcare outcomes, costs, and patients' management and quality of life. METHODS AND RESULTS: We enrolled seven patients (69.00 ± 4.88 years; 71.43% men) with HF, implanted with CardioMEMS, and daily remote monitored to optimize both tailored adjustments of home therapy and/or hospital infusions of levosimendan. We recorded clinical, pharmacological, biochemical, and echocardiographic parameters and data on hospitalizations, emergency room access, visits, and costs. Following the implantation of CardioMEMS, we observed a 50% reduction in the total number of hospitalizations and a 68.7% reduction in the number of days in the hospital. Accordingly, improved patient quality of life was recorded with EQ-5D (pre 58.57 ± 10.29 vs. 1 year post 84.29 ± 19.02, P = 0.008). Echocardiographic data show a statistically significant improvement in both systolic pulmonary artery pressure (47.86 ± 8.67 vs. 35.14 ± 9.34, P = 0.022) and E/e' (19.33 ± 5.04 vs. 12.58 ± 3.53, P = 0.023). The Quantikine® HS High-Sensitivity Kit determined elevated interleukin-6 values at enrolment in all patients, with a statistically significant reduction after 6 months (P = 0.0211). From an economic point of view, the net savings, including the cost of CardioMEMS, were on average €1580 per patient during the entire period of observation, while the analysis performed 12 months after the implant vs. 12 months before showed a net saving of €860 per patient. The ad hoc analysis performed on the levosimendan infusions resulted in 315 days of hospital avoidance and a saving of €205 158 for the seven patients enrolled during the observation period. CONCLUSIONS: This innovative strategy prevents unplanned access to the hospital and contributes to the efficient use of healthcare facilities, human resources, and costs.

4.
Biomedicines ; 12(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38790971

RESUMO

Hypovolemic shock is a circulatory failure, due to a loss in the effective circulating blood volume, that causes tissue hypoperfusion and hypoxia. This condition stimulates reactive oxygen species (ROS) and pro-inflammatory cytokine production in different organs and also in the central nervous system (CNS). Levosimendan, a cardioprotective inodilator, and dobutamine, a ß1-adrenergic agonist, are commonly used for the treatment of hypovolemic shock, thanks to their anti-inflammatory and antioxidant effects. For this reason, we aimed at investigating levosimendan and dobutamine's neuroprotective effects in an "in vitro" model of lipopolysaccharide (LPS)-induced neuroinflammation. Human microglial cells (HMC3) were challenged with LPS (0.1 µg/mL) to induce an inflammatory phenotype and then treated with levosimendan (10 µM) or dobutamine (50 µM) for 24 h. Levosimendan and dobutamine significantly reduced the ROS levels and markedly increased Nrf2 and HO-1 protein expression in LPS-challenged cells. Levosimendan and dobutamine also decreased p-NF-κB expression and turned off the NLRP3 inflammasome together with its downstream signals, caspase-1 and IL-1ß. Moreover, a reduction in TNF-α and IL-6 expression and an increase in IL-10 levels in LPS-stimulated HMC3 cells was observed following treatment. In conclusion, levosimendan and dobutamine attenuated LPS-induced neuroinflammation through NF-κB pathway inhibition and NLRP3 inflammasome activation via Nrf2/HO-1 signalling, suggesting that these drugs could represent a promising therapeutic approach for the treatment of neuroinflammation consequent to hypovolemic shock.

5.
World J Pediatr Congenit Heart Surg ; : 21501351241239306, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766718

RESUMO

Background: Various inotropes and inodilators have been utilized to treat low cardiac output syndrome after the arterial switch operation. The use of levosimendan, a calcium sensitizer has been limited in this setting. This study compares the effects of levosimendan with milrinone in managing low cardiac output after the arterial switch operation. Methods: A retrospective, comparative study was conducted in a tertiary care hospital on patients weighing up to 3 kg undergoing the arterial switch operation between January 2017 and January 2022. Patients received a loading dose followed by continuous infusion of either levosimendan or milrinone. Echocardiographic, hemodynamic and biochemical parameters were compared. Results: Forty-three patients received levosimendan and 42 patients received milrinone as the primary test drug. Cardiac index of less than 2.2 L/min/m2 on postoperative day 1 and 2 was found in 9.3% and 2.3% of patients receiving levosimendan versus 26.2% and 11.9% in those receiving milrinone, respectively (P = .04 and .08, respectively). Early lactate-clearance and better central venous oxygen saturations were noted in the levosimendan group. Prevalence of acute kidney injury was higher in the milrinone group (50% vs 28%; P = .03). Use of peritoneal dialysis in the milrinone group versus levosimendan was 31% and 16.3%, respectively (P = .11). There was no difference in hospital mortality between the groups (milrinone, 3; levosimendan, 2, P = .62). Conclusions: Levosimendan is safe and as effective as milrinone to treat low cardiac output syndrome occurring in neonates after the arterial switch operation. In addition we found that levosimendan was renal protective when compared with milrinone.

6.
Can J Anaesth ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782851

RESUMO

PURPOSE: Pulmonary hypertension (PH) is a common cause of postoperative mortality in cardiac surgery that is commonly treated with conventional inhaled therapies, specifically nitric oxide and prostacyclin. Alternative therapies include inhaled milrinone and levosimendan, which are receiving more research interest and are increasing in clinical use as they may cut costs while allowing for easier administration. We sought to conduct a scoping review to appraise the evidence base for the use of these two novel inhaled vasodilators as an intervention for PH in cardiac surgery. SOURCE: We searched Embase and MEDLINE for relevant articles from 1947 to 2022. PRINCIPAL FINDINGS: We identified 17 studies including 969 patients. The included studies show that inhaled milrinone and levosimendan are selective pulmonary vasodilators with potential benefits ranging from ease of weaning from cardiopulmonary bypass to reduction in ventricular dysfunction. Nevertheless, high-quality data are limited, and study design and comparators are extremely heterogeneous, limiting the potential validity and generalizability of findings. CONCLUSION: The findings of this scoping review suggest that milrinone and levosimendan may be effective alternatives to current inhaled therapies for cardiac dysfunction in the setting of PH. Nevertheless, randomized trials have focused on specific agents and consistent outcome measures are needed to better validate the early-stage promise of these agents. STUDY REGISTRATION: Open Science Framework ( https://osf.io/z3k6f/ ); first posted 21 July 2022.


RéSUMé: OBJECTIF: L'hypertension pulmonaire (HTP) est une cause fréquente de mortalité postopératoire en chirurgie cardiaque généralement traitée par des thérapies inhalées conventionnelles, en particulier le monoxyde d'azote et la prostacycline. Les thérapies alternatives comprennent la milrinone et le lévosimendan inhalés, qui suscitent de plus en plus d'intérêt dans la recherche et sont de plus en plus utilisés en clinique car ils peuvent réduire les coûts tout en permettant une administration plus facile. Nous avons cherché à réaliser une étude de portée afin d'évaluer la base de données probantes concernant l'utilisation de ces deux nouveaux vasodilatateurs inhalés comme intervention pour l'HTP en chirurgie cardiaque. SOURCES: Nous avons cherché des articles pertinents dans Embase et MEDLINE de 1947 à 2022. CONSTATATIONS PRINCIPALES: Nous avons identifié 17 études incluant 969 patient·es. Les études incluses montrent que la milrinone et le lévosimendan inhalés sont des vasodilatateurs pulmonaires sélectifs possédant des avantages potentiels allant de la facilité de sevrage de la circulation extracorporelle à la réduction de la dysfonction ventriculaire. Néanmoins, les données de haute qualité sont limitées, et la conception des études et les comparateurs sont extrêmement hétérogènes, ce qui limite la validité potentielle et la généralisabilité des résultats. CONCLUSION: Les résultats de cette étude de portée suggèrent que la milrinone et le lévosimendan pourraient être des solutions de rechange efficaces aux traitements inhalés actuels pour le dysfonctionnement cardiaque dans un contexte d'HTP. Néanmoins, les études randomisées se sont concentrées sur des agents spécifiques et des mesures cohérentes des résultats sont nécessaires pour mieux valider les promesses de ces agents à un stade précoce. ENREGISTREMENT DE L'éTUDE: Open Science Framework ( https://osf.io/z3k6f/ ); première publication le 21 juillet 2022.

8.
Pharmacol Res ; 203: 107164, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569981

RESUMO

The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.


Assuntos
Doenças Cardiovasculares , Proteínas Mitocondriais , Proteínas Musculares , Humanos , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos
9.
Heliyon ; 10(8): e29300, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644859

RESUMO

Torsades de Pointes (TdP) is a malignant polymorphic ventricular tachycardia with heart rate corrected QT interval (QTc) prolongation, which may be attributed to congenital and acquired factors. Although various acquired factors for TdP have been summarized, levosimendan administration in complex postoperative settings is relatively uncommon. Timely identification of potential causes and appropriate management may improve the outcome. Herein, we describe the postoperative case of a 56-year-old female with initial normal QTc who accepted the administration of levosimendan for heart failure, suffered TdP, cardiac arrest, and possible Takotsubo cardiomyopathy, further genetically confirmed as long QT syndrome type 1 (LQT1). The patient was successfully treated with magnesium sulfate, atenolol, and implantable cardioverter defibrillator implantation. There should be a careful evaluation of the at-risk populations and close monitoring of the electrocardiograms, particularly the QT interval, to reduce the risk of near-fatal arrhythmias during the use of levosimendan.

10.
Int J Cardiol ; 405: 131963, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479497

RESUMO

BACKGROUND: Patients with cardiac amyloidosis (CA) often experience heart failure (HF) episodes. No evidence is available on inotropic therapy. This study aims to fill this gap by examining the safety and efficacy of levosimendan. METHODS: We retrieved all HF patients receiving ≥1 levosimendan infusion from 2013 to 2023. CA patients were matched with HF patients without CA (controls) based on sex, age, and left ventricular ejection fraction (LVEF). The response to levosimendan was measured as changes in daily urinary output, body weight, N-terminal pro-B-type natriuretic peptide (NT-proBNP), and estimated glomerular filtration rate (eGFR). RESULTS: CA patients (median age 77 years, 73% men, 59% with ATTR-CA) and controls were compared. Levosimendan infusion was stopped because of hypotension in 2 cases with CA and (in 1 case) worsening renal function, and in 2 controls because of ventricular tachycardia episodes and (in 1 case) hypotension. CA patients showed a trend toward increased daily urinary output (p = 0.078) and a significant decrease in body weight (p < 0.001), without significant changes in NT-proBNP (p = 0.497) and eGFR (p = 0.732). Both CA patients and controls displayed similar changes in urinary output, weight, and eGFR, but NT-proBNP decreased more significantly among controls (p < 0.001). No differences were noted in rehospitalization rates, but CA patients experienced higher mortality at 6 and 12 months (p = 0.003 and p = 0.001, respectively). CONCLUSIONS: Levosimendan appears safe for CA patients needing inotropic support. The diuretic response and weight decrease during hospitalization were comparable between CA patients and matched HF patients, despite the greater mortality of CA patients after discharge.


Assuntos
Amiloidose , Cardiomiopatias , Cardiotônicos , Simendana , Humanos , Simendana/uso terapêutico , Simendana/administração & dosagem , Masculino , Feminino , Idoso , Amiloidose/tratamento farmacológico , Amiloidose/complicações , Amiloidose/mortalidade , Resultado do Tratamento , Idoso de 80 Anos ou mais , Cardiotônicos/uso terapêutico , Cardiotônicos/efeitos adversos , Cardiotônicos/administração & dosagem , Cardiomiopatias/tratamento farmacológico , Estudos Retrospectivos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/mortalidade , Pessoa de Meia-Idade
11.
Dis Model Mech ; 17(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38516812

RESUMO

Interconnected mechanisms of ischemia and reperfusion (IR) has increased the interest in IR in vitro experiments using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). We developed a whole-cell computational model of hiPSC-CMs including the electromechanics, a metabolite-sensitive sarcoplasmic reticulum Ca2+-ATPase (SERCA) and an oxygen dynamics formulation to investigate IR mechanisms. Moreover, we simulated the effect and action mechanism of levosimendan, which recently showed promising anti-arrhythmic effects in hiPSC-CMs in hypoxia. The model was validated using hiPSC-CM and in vitro animal data. The role of SERCA in causing relaxation dysfunction in IR was anticipated to be comparable to its function in sepsis-induced heart failure. Drug simulations showed that levosimendan counteracts the relaxation dysfunction by utilizing a particular Ca2+-sensitizing mechanism involving Ca2+-bound troponin C and Ca2+ flux to the myofilament, rather than inhibiting SERCA phosphorylation. The model demonstrates extensive characterization and promise for drug development, making it suitable for evaluating IR therapy strategies based on the changing levels of cardiac metabolites, oxygen and molecular pathways.


Assuntos
Cálcio , Simulação por Computador , Células-Tronco Pluripotentes Induzidas , Contração Miocárdica , Miócitos Cardíacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Simendana , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Simendana/farmacologia , Simendana/uso terapêutico , Contração Miocárdica/efeitos dos fármacos , Cálcio/metabolismo , Hipóxia Celular/efeitos dos fármacos , Oxigênio/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Modelos Biológicos
12.
Front Pharmacol ; 15: 1358735, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523635

RESUMO

Objective: We conducted a systematic review to assess the advantages and disadvantages of levosimendan in patients with sepsis compared with placebo, milrinone, and dobutamine and to explore the clinical efficacy of different concentrations of levosimendan. Methods: PubMed, Web of Science, Cochrane Library, Embase, CNKI, Wanfang data, VIP, and CBM databases were searched using such keywords as simendan, levosimendan, and sepsis. The search time was from the establishment of the database to July 2023. Two researchers were responsible for literature screening and data collection respectively. After the risk of bias in the included studies was evaluated, network meta-analysis was performed using R software gemtc and rjags package. Results: Thirty-two randomized controlled trials (RCTs) were included in the network meta-analysis. Meta-analysis results showed that while levosimendan significantly improved CI levels at either 0.1 µg/kg/min (mean difference [MD] [95%CrI] = 0.41 [-0.43, 1.4]) or 0.2 µg/kg/min (MD [95%CrI] =0.54 [0.12, 0.99]). Levosimendan, at either 0.075 µg/kg/min (MD [95% CrI] =0.033 [-0.75, 0.82]) or 0.2 µg/kg/min (MD [95% CrI] = -0.014 [-0.26, 0.23]), had no significant advantage in improving Lac levels. Levosimendan, at either 0.1 µg/kg/min (RR [95% CrI] = 0.99 [0.73, 1.3]) or 0.2 µg/kg/min (RR [95% CrI] = 1.0 [0.88, 1.2]), did not have a significant advantage in reducing mortality. Conclusion: The existing evidence suggests that levosimendan can significantly improve CI and lactate levels in patients with sepsis, and levosimendan at 0.1 µg/kg/min might be the optimal dose. Unfortunately, all interventions in this study failed to reduce the 28-day mortality. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023441220.

13.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338853

RESUMO

Worsening heart failure (WHF) is a severe and dynamic condition characterized by significant clinical and hemodynamic deterioration. It is characterized by worsening HF signs, symptoms and biomarkers, despite the achievement of an optimized medical therapy. It remains a significant challenge in cardiology, as it evolves into advanced and end-stage HF. The hyperactivation of the neurohormonal, adrenergic and renin-angiotensin-aldosterone system are well known pathophysiological pathways involved in HF. Several drugs have been developed to inhibit the latter, resulting in an improvement in life expectancy. Nevertheless, patients are exposed to a residual risk of adverse events, and the exploration of new molecular pathways and therapeutic targets is required. This review explores the current landscape of WHF, highlighting the complexities and factors contributing to this critical condition. Most recent medical advances have introduced cutting-edge pharmacological agents, such as guanylate cyclase stimulators and myosin activators. Regarding device-based therapies, invasive pulmonary pressure measurement and cardiac contractility modulation have emerged as promising tools to increase the quality of life and reduce hospitalizations due to HF exacerbations. Recent innovations in terms of WHF management emphasize the need for a multifaceted and patient-centric approach to address the complex HF syndrome.


Assuntos
Insuficiência Cardíaca , Qualidade de Vida , Humanos , Insuficiência Cardíaca/tratamento farmacológico , Hospitalização , Contração Miocárdica , Volume Sistólico
14.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339102

RESUMO

Levosimendan is used for the short-term treatment of severe heart failure or other cardiac conditions. The area of existing clinical applications for levosimendan has increased significantly. This study aimed to assess whether levosimendan and its metabolites impact the mechanisms related to platelet activation. In this study, we included patients with coronary artery disease receiving antiplatelet therapy. We analyzed the pharmacodynamic profile using three independent methods to assess platelet activity. The results of the conducted studies indicate a mechanism of levosimendan that affects the function of platelets, causing higher inhibition of platelet receptors and, thus, their aggregation. It is essential to clarify whether levosimendan may affect platelets due to the need to maintain a balance between bleeding and thrombosis in patients treated with levosimendan. This is especially important in the case of perioperative bleeding. This study was conducted in vitro; the research should be continued and carried out in patients to check the complete pharmacokinetic and pharmacodynamic profile.


Assuntos
Inibidores da Agregação Plaquetária , Agregação Plaquetária , Humanos , Simendana/farmacologia , Simendana/uso terapêutico , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Projetos Piloto , Ativação Plaquetária , Plaquetas
15.
Neurocrit Care ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326535

RESUMO

BACKGROUND: Delayed cerebral ischemia associated with cerebral vasospasm (CVS) in aneurysmal subarachnoid hemorrhage significantly affects patient prognosis. Levosimendan has emerged as a potential treatment, but clinical data are lacking. The aim of this study is to decipher levosimendan's effect on cerebral hemodynamics by automated quantitative measurements of brain computed tomography perfusion (CTP). METHODS: We conducted a retrospective analysis of a database of a neurosurgical intensive care unit. All patients admitted from January 2018 to July 2022 for aneurysmal subarachnoid hemorrhage and treated with levosimendan for CVS who did not respond to other therapies were included. Quantitative measurements of time to maximum (Tmax), relative cerebral blood volume (rCBV), and relative cerebral blood flow (rCBF) were automatically compared with coregistered CTP before and after levosimendan administration in oligemic regions. RESULTS: Of 21 patients included, CTP analysis could be performed in 16. Levosimendan improved Tmax from 14.4 s (interquartile range [IQR] 9.1-21) before treatment to 7.1 s (IQR 5.5-8.1) after treatment (p < 0.001). rCBV (94% [IQR 79-103] before treatment and 89% [IQR 72-103] after treatment, p = 0.63) and rCBF (85% [IQR 77-90] before treatment and 87% [IQR 73-98] after treatment, p = 0.98) remained stable. The subgroup of six patients who did not develop cerebral infarction attributed to delayed cerebral ischemia showed an approximately 10% increase (rCBV 85% [IQR 79-99] before treatment vs. 95% [IQR 88-112] after treatment, p = 0.21; rCBF 81% [IQR 76-87] before treatment vs. 89% [IQR 84-99] after treatment, p = 0.4). CONCLUSIONS: In refractory CVS, levosimendan use was associated with a significant reduction in Tmax in oligemic regions. However, this value remained at an abnormal level, indicating the presence of a persistent CVS. Further analysis raised the hypothesis that levosimendan causes cerebral vasodilation, but other studies are needed because our design does not allow us to quantify the effect of levosimendan from that of the natural evolution of CVS.

16.
ESC Heart Fail ; 11(3): 1352-1376, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38419326

RESUMO

Heart failure is the final stage of several cardiovascular diseases, and the key to effectively treating heart failure is to reverse or delay ventricular remodelling. Levosimendan is a novel inotropic and vasodilator agent used in heart failure, whereas the impact of levosimendan on ventricular remodelling is still unclear. This study aims to investigate the impact of levosimendan on ventricular remodelling in patients with left ventricular systolic dysfunction. Electronic databases were searched to identify eligible studies. A total of 66 randomized controlled trials involving 7968 patients were included. Meta-analysis results showed that levosimendan increased left ventricular ejection fraction [mean difference (MD) = 3.62, 95% confidence interval (CI) (2.88, 4.35), P < 0.00001] and stroke volume [MD = 6.59, 95% CI (3.22, 9.96), P = 0.0001] and significantly reduced left ventricular end-systolic volume [standard mean difference (SMD) = -0.52, 95% CI (-0.67, -0.37), P < 0.00001], left ventricular end-diastolic volume index [SMD = -1.24, 95% CI (-1.61, -0.86), P < 0.00001], and left ventricular end-systolic volume index [SMD = -1.06, 95% CI (-1.43, -0.70), P < 0.00001]. In terms of biomarkers, levosimendan significantly reduced the level of brain natriuretic peptide [SMD = -1.08, 95% CI (-1.60, -0.56), P < 0.0001], N-terminal pro-brain natriuretic peptide [SMD = -0.99, 95% CI (-1.41, -0.56), P < 0.00001], and interleukin-6 [SMD = -0.61, 95% CI (-0.86, -0.35), P < 0.00001]. Meanwhile, levosimendan may increase the incidence of hypotension [risk ratio (RR) = 1.24, 95% CI (1.12, 1.39), P < 0.0001], hypokalaemia [RR = 1.57, 95% CI (1.08, 2.28), P = 0.02], headache [RR = 1.89, 95% CI (1.50, 2.39), P < 0.00001], atrial fibrillation [RR = 1.31, 95% CI (1.12, 1.52), P = 0.0005], and premature ventricular complexes [RR = 1.86, 95% CI (1.27, 2.72), P = 0.001]. In addition, levosimendan reduced all-cause mortality [RR = 0.83, 95% CI (0.74, 0.94), P = 0.002]. In conclusion, our study found that levosimendan might reverse ventricular remodelling when applied in patients with left ventricular systolic dysfunction, especially in patients undergoing cardiac surgery, decompensated heart failure, and septic shock.


Assuntos
Simendana , Disfunção Ventricular Esquerda , Remodelação Ventricular , Simendana/uso terapêutico , Simendana/farmacologia , Simendana/administração & dosagem , Humanos , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/fisiopatologia , Remodelação Ventricular/efeitos dos fármacos , Função Ventricular Esquerda/fisiologia , Função Ventricular Esquerda/efeitos dos fármacos , Volume Sistólico/fisiologia , Volume Sistólico/efeitos dos fármacos , Cardiotônicos/uso terapêutico , Sístole
17.
Eur J Pharmacol ; 966: 176336, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38272343

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a syndrome characterized by impaired cardiovascular reserve in which therapeutic options are scarce. Our aim was to evaluate the inodilator levosimendan in the ZSF1 obese rat model of HFpEF. Twenty-week-old male Wistar-Kyoto (WKY), ZSF1 lean (ZSF1 Ln) and ZSF1 obese rats chronically treated for 6-weeks with either levosimendan (1 mg/kg/day, ZSF1 Ob + Levo) or vehicle (ZSF1 Ob + Veh) underwent peak-effort testing, pressure-volume (PV) haemodynamic evaluation and echocardiography (n = 7 each). Samples were collected for histology and western blotting. In obese rats, skinned and intact left ventricular (LV) cardiomyocytes underwent in vitro functional evaluation. Seven additional ZSF1 obese rats underwent PV evaluation to assess acute levosimendan effects (10 µg/kg + 0.1 µg/kg/min). ZSF1 Ob + Veh presented all hallmarks of HFpEF, namely effort intolerance, elevated end-diastolic pressures and reduced diastolic compliance as well as increased LV mass and left atrial area, cardiomyocyte hypertrophy and increased interstitial fibrosis. Levosimendan decreased systemic arterial pressures, raised cardiac index, and enhanced LV relaxation and diastolic compliance in both acute and chronic experiments. ZSF1 Ob + Levo showed pronounced attenuation of hypertrophy and interstitial fibrosis alongside increased effort tolerance (endured workload raised 38 %) and maximum O2 consumption. Skinned cardiomyocytes from ZSF 1 Ob + Levo showed a downward shift in sarcomere length-passive tension relationship and intact cardiomyocytes showed decreased diastolic Ca2+ levels and enhanced Ca2+ sensitivity. On molecular grounds, levosimendan enhanced phosphorylation of phospholamban and mammalian target of rapamycin. The observed effects encourage future clinical trials with levosimendan in a broad population of HFpEF patients.


Assuntos
Insuficiência Cardíaca , Humanos , Ratos , Masculino , Animais , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/tratamento farmacológico , Volume Sistólico , Simendana/farmacologia , Ratos Endogâmicos WKY , Obesidade/complicações , Obesidade/tratamento farmacológico , Fibrose , Hipertrofia , Mamíferos
18.
J Cardiothorac Vasc Anesth ; 38(3): 649-659, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228424

RESUMO

OBJECTIVE: To verify the impact of preoperative levosimendan on patients with severe left ventricular dysfunction (ejection fraction <35%) undergoing isolated coronary artery bypass grafting. DESIGN: A meta-analysis. SETTING: Hospitals. PARTICIPANTS: The authors included 1,225 patients from 6 randomized controlled trials. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The authors performed a meta-analysis of trials that compared preoperative levosimendan with placebo or no therapy, reporting efficacy and safety endpoints. Statistical analyses used mean differences and risk ratios (RR), with a random effects model. Six studies were included, comprising 1,225 patients, of whom 615 (50.2%) received preoperative levosimendan, and 610 (49.8%) received placebo/no therapy. Preoperative levosimendan showed a lower risk of all-cause mortality (RR 0.31; 95% CI 0.16-0.60; p < 0.01; I2 = 0%), postoperative acute kidney injury (RR 0.44; 95% CI 0.25-0.77; p < 0.01; I2 = 0%), low-cardiac-output syndrome (RR 0.45; 95% CI 0.30-0.66; p < 0.001; I2 = 0%), and postoperative atrial fibrillation (RR 0.49; 95% CI 0.25-0.98; p = 0.04; I2 = 85%) compared to control. Moreover, levosimendan significantly reduced the need for postoperative inotropes and increased the cardiac index at 24 hours postoperatively. There were no differences between groups for perioperative myocardial infarction, hypotension, or any adverse events. CONCLUSION: Preoperative levosimendan in patients with severe left ventricular dysfunction undergoing isolated coronary artery bypass grafting was associated with reduced all-cause mortality, low-cardiac-output syndrome, acute kidney injury, postoperative atrial fibrillation, and the need for circulatory support without compromising safety.


Assuntos
Injúria Renal Aguda , Fibrilação Atrial , Simendana , Disfunção Ventricular Esquerda , Humanos , Injúria Renal Aguda/etiologia , Fibrilação Atrial/etiologia , Baixo Débito Cardíaco/tratamento farmacológico , Baixo Débito Cardíaco/etiologia , Cardiotônicos/uso terapêutico , Ponte de Artéria Coronária/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Simendana/uso terapêutico
19.
Clin Res Cardiol ; 113(4): 509-521, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37217802

RESUMO

OBJECTIVES: For patients with severe cardiopulmonary failure, such as cardiogenic shock, veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is primarily utilized to preserve their life by providing continuous extracorporeal respiration and circulation. However, because of the complexity of patients' underlying diseases and serious complications, successful weaning from ECMO is often difficult. At present, there have been limited studies on ECMO weaning strategies, so the principal purpose of this meta-analysis is to examine how levosimendan contributes to the weaning of extracorporeal membrane oxygenation. METHODS: The Cochrane Library, Embase, Web of Science, and PubMed were browsed for all potentially related research about clinical benefits of levosimendan in weaning patients receiving VA-ECMO and included 15 of them. The main outcome is success of weaning from extracorporeal membrane oxygenation, with the secondary outcomes of 1-month mortality (28 or 30 days), ECMO duration, hospital or intensive care unit (ICU) length of stay, and use of vasoactive drugs. RESULTS: 1772 patients altogether from 15 publications were incorporated in our meta-analysis. We used fixed and random-effect models to combine odds ratio (OR) and 95% confidence interval (CI) for dichotomous outcomes and standardized mean difference (SMD) for continuous outcomes. The weaning success rate in the levosimendan group was considerably higher in contrast to the comparison (OR = 2.78, 95% CI 1.80-4.30; P < 0.00001; I2 = 65%), and subgroup analysis showed that there was less heterogeneity in patients after cardiac surgery (OR = 2.06, 95% CI, 1.35-3.12; P = 0.0007; I2 = 17%). In addition, the effect of levosimendan on improving weaning success rate was statistically significant only at 0.2 mcg/kg/min (OR = 2.45, 95% CI, 1.11-5.40; P = 0.03; I2 = 38%). At the same time, the 28-day or 30-day proportion of deaths in the sample receiving levosimendan also decreased (OR = 0.47, 95% CI, 0.28-0.79; P = 0.004; I2 = 73%), and the difference was statistically significant. In terms of secondary outcomes, we found that individuals undergoing levosimendan treatment had a longer duration of VA-ECMO support. CONCLUSIONS: In patients receiving VA-ECMO, levosimendan treatment considerably raised the weaning success rate and helped lower mortality. Since most of the evidence comes from retrospective studies, more randomized multicenter trials are required to verify the conclusion.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Oxigenação por Membrana Extracorpórea , Humanos , Simendana/uso terapêutico , Oxigenação por Membrana Extracorpórea/efeitos adversos , Estudos Retrospectivos , Choque Cardiogênico
20.
J Cardiothorac Vasc Anesth ; 38(3): 820-828, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38135567

RESUMO

BACKGROUND: The potential risks associated with the use of levosimendan in the pediatric population has not been systematically evaluated. This study aimed to review the available evidence regarding the safety of this treatment. METHODS: Bio Med Central, PubMed, Embase, and the Cochrane Central Register of clinical trials were searched for studies describing levosimendan administration in the pediatric population in any setting. Relevant studies were independently screened, selected, and their data extracted by two investigators. The authors excluded: reviews, meta-analyses, as well as basic research and trials involving patients >18 years old. The primary outcome was the number and the type of adverse side effects reported during levosimendan administration. RESULTS: The updated systematic review included 48 studies, enrolling a total of 1,271 pediatric patients who received levosimendan as treatment (790 patients in the 11 studies that reported side effects). The primary adverse effects of levosimendan administration were hypotension and cardiac arrhythmias, particularly tachycardia. Hypotension occurred in approximately 28.9% of patients, while arrhythmia occurred in about 12.3% of patients. Meta analysis of RCTs revealed a rate of all-cause mortality of 2.0% (8 out of 385) in the levosimendan group compared to 3.9% (15 out of 378) in the control group (dobutamine, milrinone or placebo) (risk ratio [RR] = 0.55; 95% confidence interval [CI] = 0.25-1.21; P = 0.14; I2 = 0%) CONCLUSIONS: Hypotension and cardiac arrhythmia are the most reported side effects of levosimendan in pediatric patients. However, adverse events remain underreported, especially in randomized trials.


Assuntos
Hipotensão , Piridazinas , Humanos , Criança , Adolescente , Simendana/efeitos adversos , Hidrazonas/efeitos adversos , Piridazinas/efeitos adversos , Dobutamina , Arritmias Cardíacas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...