Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Phys Med Biol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019053

RESUMO

OBJECTIVE: This study explores the use of neural networks (NNs) as surrogate models for Monte-Carlo (MC) simulations in predicting the dose-averaged linear energy transfer (LETd) of protons in proton-beam therapy based on the planned dose distribution and patient anatomy in the form of computed tomography (CT) images. As LETdis associated with variability in the relative biological effectiveness (RBE) of protons, we also evaluate the implications of using NN predictions for normal tissue complication probability (NTCP) models within a variable-RBE context. Approach: The predictive performance of three-dimensional NN architectures was evaluated using five-fold cross-validation on a cohort of brain tumor patients (n=151). The best-performing model was identified and externally validated on patients from a different center (n=107). LETdpredictions were compared to MC-simulated results in clinically relevant regions of interest. We assessed the impact on NTCP models by leveraging LETdpredictions to derive RBE-weighted doses, using the Wedenberg RBE model. Main results: We found NNs based solely on the planned dose profile, i.e. without additional usage of CT images, can approximate MC-based LETddistributions. Root mean squared errors (RMSE) for the median LETdwithin the brain, brainstem, CTV, chiasm, lacrimal glands (ipsilateral/contralateral) and optic nerves (ipsilateral/contralateral) were 0.36, 0.87, 0.31, 0.73, 0.68, 1.04, 0.69 and 1.24~keV/µm, respectively. Although model predictions showed statistically significant differences from MC outputs, these did not result in substantial changes in NTCP predictions, with RMSEs of at most 3.2 percentage points. Significance: The ability of NNs to predict LETdbased solely on planned dose profiles suggests a viable alternative to the compute-intensive MC simulations in a variable-RBE setting. This is particularly useful in scenarios where MC simulation data are unavailable, facilitating resource-constrained proton therapy treatment planning, retrospective patient data analysis and further investigations on the variability of proton RBE.

2.
J Radiol Prot ; 44(2)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38834051

RESUMO

The measurement of linear energy transfer (LET) is crucial for the evaluation of the radiation effect in heavy ion therapy. As two detectors which are convenient to implant into the phantom, the performance of CR-39 and thermoluminescence detector (TLD) for LET measurement was compared by experiment and simulation in this study. The results confirmed the applicability of both detectors for LET measurements, but also revealed that the CR-39 detector would lead to potential overestimation of dose-averaged LET compared with the simulation by PHITS, while the TLD would have a large uncertainty measuring ions with LET larger than 20 keVµm-1. The results of this study were expected to improve the detection method of LET for therapeutic carbon beam and would finally be benefit to the quality assurance of heavy ion radiotherapy.


Assuntos
Radioterapia com Íons Pesados , Transferência Linear de Energia , Dosimetria Termoluminescente , Dosimetria Termoluminescente/instrumentação , Imagens de Fantasmas , Carbono , Desenho de Equipamento , Polietilenoglicóis
3.
Phys Imaging Radiat Oncol ; 30: 100581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38711920

RESUMO

Background and purpose: Ion beams exhibit an increased relative biological effectiveness (RBE) with respect to photons. This study determined the RBE of oxygen ion beams as a function of linear energy transfer (LET) and dose in the rat spinal cord. Materials and methods: The spinal cord of rats was irradiated at four different positions of a 6 cm spread-out Bragg-peak (LET: 26, 66, 98 and 141 keV/µm) using increasing levels of single and split oxygen ion doses. Dose-response curves were established for the endpoint paresis grade II and based on ED50 (dose at 50 % effect probability), the RBE was determined and compared to model predictions. Results: When LET increased from 26 to 98 keV/µm, ED50 decreased from 17.2 ± 0.3 Gy to 13.5 ± 0.4 Gy for single and from 21.7 ± 0.4 Gy to 15.5 ± 0.5 Gy for split doses, however, at 141 keV/µm, ED50 rose again to 15.8 ± 0.4 Gy and 17.2 ± 0.4 Gy, respectively. As a result, the RBE increased from 1.43 ± 0.05 to 1.82 ± 0.08 (single dose) and from 1.58 ± 0.04 to 2.21 ± 0.08 (split dose), respectively, before declining again to 1.56 ± 0.06 for single and 1.99 ± 0.06 for split doses at the highest LET. Deviations from RBE-predictions were model-dependent. Conclusion: This study established first RBE data for the late reacting central nervous system after single and split doses of oxygen ions. The data was used to validate the RBE-dependence on LET and dose of three RBE-models. This study extends the existing data base for protons, helium and carbon ions and provides important information for future patient treatments with oxygen ions.

4.
J Cancer Res Clin Oncol ; 150(5): 226, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696003

RESUMO

High-linear energy transfer (LET) radiation is a promising alternative to conventional low-LET radiation for therapeutic gain against cancer owing to its ability to induce complex and clustered DNA lesions. However, the development of radiation resistance poses a significant barrier. The potential molecular mechanisms that could confer resistance development are translesion synthesis (TLS), replication gap suppression (RGS) mechanisms, autophagy, epithelial-mesenchymal transition (EMT) activation, release of exosomes, and epigenetic changes. This article will discuss various types of complex clustered DNA damage, their repair mechanisms, mutagenic potential, and the development of radiation resistance strategies. Furthermore, it highlights the importance of careful consideration and patient selection when employing high-LET radiotherapy in clinical settings.


Assuntos
Transferência Linear de Energia , Neoplasias , Tolerância a Radiação , Humanos , Neoplasias/radioterapia , Neoplasias/patologia , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Animais
5.
Phys Med Biol ; 69(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38815613

RESUMO

Objective.There is an increasing interest in calculating and measuring linear energy transfer (LET) spectra in particle therapy in order to assess their impact in biological terms. As such, the accuracy of the particle fluence energy spectra becomes paramount. This study focuses on quantifying energy depositions of distinct proton, helium, carbon, and oxygen ion beams using a silicon pixel detector developed at CERN to determine LET spectra in silicon.Approach.While detection systems have been investigated in this pursuit, the scarcity of detectors capable of providing per-ion data with high spatial and temporal resolution remains an issue. This gap is where silicon pixel detector technology steps in, enabling online tracking of single-ion energy deposition. The used detector consisted of a 300µm thick silicon sensor operated in partial depletion.Main results.During post-processing, artifacts in the acquired signals were identified and methods for their corrections were developed. Subsequently, a correlation between measured and Monte Carlo-based simulated energy deposition distributions was performed, relying on a two-step recalibration approach based on linear and saturating exponential models. Despite the observed saturation effects, deviations were confined below 7% across the entire investigated range of track-averaged LET values in silicon from 0.77 keVµm-1to 93.16 keVµm-1.Significance.Simulated and measured mean energy depositions were found to be aligned within 7%, after applying artifact corrections. This extends the range of accessible LET spectra in silicon to clinically relevant values and validates the accuracy and reliability of the measurements. These findings pave the way towards LET-based dosimetry through an approach to translate these measurements to LET spectra in water. This will be addressed in a future study, extending functionality of treatment planning systems into clinical routine, with the potential of providing ion-beam therapy of utmost precision to cancer patients.


Assuntos
Transferência Linear de Energia , Método de Monte Carlo , Silício , Radiometria/instrumentação
6.
Phys Med Biol ; 69(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38774985

RESUMO

Objective.This work investigates the use of passive luminescence detectors to determine different types of averaged linear energy transfer (LET-) for the energies relevant to proton therapy. The experimental results are compared to reference values obtained from Monte Carlo simulations.Approach.Optically stimulated luminescence detectors (OSLDs), fluorescent nuclear track detectors (FNTDs), and two different groups of thermoluminescence detectors (TLDs) were irradiated at four different radiation qualities. For each irradiation, the fluence- (LET-f) and dose-averaged LET (LET-d) were determined. For both quantities, two sub-types of averages were calculated, either considering the contributions from primary and secondary protons or from all protons and heavier, charged particles. Both simulated and experimental data were used in combination with a phenomenological model to estimate the relative biological effectiveness (RBE).Main results.All types ofLET-could be assessed with the luminescence detectors. The experimental determination ofLET-fis in agreement with reference data obtained from simulations across all measurement techniques and types of averaging. On the other hand,LET-dcan present challenges as a radiation quality metric to describe the detector response in mixed particle fields. However, excluding secondaries heavier than protons from theLET-dcalculation, as their contribution to the luminescence is suppressed by ionization quenching, leads to equal accuracy betweenLET-fandLET-d. Assessment of RBE through the experimentally determinedLET-dvalues agrees with independently acquired reference values, indicating that the investigated detectors can determineLET-with sufficient accuracy for proton therapy.Significance.OSLDs, TLDs, and FNTDs can be used to determineLET-and RBE in proton therapy. With the capability to determine dose through ionization quenching corrections derived fromLET-, OSLDs and TLDs can simultaneously ascertain dose,LET-, and RBE. This makes passive detectors appealing for measurements in phantoms to facilitate validation of clinical treatment plans or experiments related to proton therapy.


Assuntos
Transferência Linear de Energia , Método de Monte Carlo , Terapia com Prótons , Terapia com Prótons/instrumentação , Doses de Radiação , Eficiência Biológica Relativa
7.
Phys Med Biol ; 69(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38714191

RESUMO

Objective.This study aims to address the limitations of traditional methods for calculating linear energy transfer (LET), a critical component in assessing relative biological effectiveness (RBE). Currently, Monte Carlo (MC) simulation, the gold-standard for accuracy, is resource-intensive and slow for dose optimization, while the speedier analytical approximation has compromised accuracy. Our objective was to prototype a deep-learning-based model for calculating dose-averaged LET (LETd) using patient anatomy and dose-to-water (DW) data, facilitating real-time biological dose evaluation and LET optimization within proton treatment planning systems.Approach. 275 4-field prostate proton Stereotactic Body Radiotherapy plans were analyzed, rendering a total of 1100 fields. Those were randomly split into 880, 110, and 110 fields for training, validation, and testing. A 3D Cascaded UNet model, along with data processing and inference pipelines, was developed to generate patient-specific LETddistributions from CT images and DW. The accuracy of the LETdof the test dataset was evaluated against MC-generated ground truth through voxel-based mean absolute error (MAE) and gamma analysis.Main results.The proposed model accurately inferred LETddistributions for each proton field in the test dataset. A single-field LETdcalculation took around 100 ms with trained models running on a NVidia A100 GPU. The selected model yielded an average MAE of 0.94 ± 0.14 MeV cm-1and a gamma passing rate of 97.4% ± 1.3% when applied to the test dataset, with the largest discrepancy at the edge of fields where the dose gradient was the largest and counting statistics was the lowest.Significance.This study demonstrates that deep-learning-based models can efficiently calculate LETdwith high accuracy as a fast-forward approach. The model shows great potential to be utilized for optimizing the RBE of proton treatment plans. Future efforts will focus on enhancing the model's performance and evaluating its adaptability to different clinical scenarios.


Assuntos
Aprendizado Profundo , Transferência Linear de Energia , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador , Terapia com Prótons/métodos , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Método de Monte Carlo , Dosagem Radioterapêutica , Masculino
8.
Front Plant Sci ; 15: 1352564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38693931

RESUMO

Heavy-ion beam, a type of ionizing radiation, has been applied to plant breeding as a powerful mutagen and is a promising tool to induce large deletions and chromosomal rearrangements. The effectiveness of heavy-ion irradiation can be explained by linear energy transfer (LET; keV µm-1). Heavy-ion beams with different LET values induce different types and sizes of mutations. It has been suggested that deletion size increases with increasing LET value, and complex chromosomal rearrangements are induced in higher LET radiations. In this study, we mapped heavy-ion beam-induced deletions detected in Arabidopsis mutants to its genome. We revealed that deletion sizes were similar between different LETs (100 to 290 keV µm-1), that their upper limit was affected by the distribution of essential genes, and that the detected chromosomal rearrangements avoid disrupting the essential genes. We also focused on tandemly arrayed genes (TAGs), where two or more homologous genes are adjacent to one another in the genome. Our results suggested that 100 keV µm-1 of LET is enough to disrupt TAGs and that the distribution of essential genes strongly affects the heritability of mutations overlapping them. Our results provide a genomic view of large deletion inductions in the Arabidopsis genome.

9.
Front Oncol ; 14: 1328147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482200

RESUMO

Purpose: This study develop a novel linear energy transfer (LET) optimization method for intensity-modulated proton therapy (IMPT) with minimum monitor unit (MMU) constraint using the alternating direction method of multipliers (ADMM). Material and methods: The novel LET optimization method (ADMM-LET) was proposed with (1) the dose objective and the LET objective as the optimization objective and (2) the non-convex MMU threshold as a constraint condition. ADMM was used to solve the optimization problem. In the ADMM-LET framework, the optimization process entails iteratively solving the dose sub-problem and the LET sub-problem, simultaneously ensuring compliance with the MMU constraint. Three representative cases, including brain, liver, and prostate cancer, were utilized to evaluate the performance of the proposed method. The dose and LET distributions from ADMM-LET were compared to those obtained using the published iterative convex relaxation (ICR-LET) method. Results: The results demonstrate the superiority of ADMM-LET over ICR-LET in terms of LET distribution while achieving a comparable dose distribution. More specifically, for the brain case, the maximum LET (unit: keV/µm) at the optic nerve decreased from 5.45 (ICR-LET) to 1.97 (ADMM-LET). For the liver case, the mean LET (unit: keV/µm) at the clinical target volume increased from 4.98 (ICR-LET) to 5.50 (ADMM-LET). For the prostate case, the mean LET (unit: keV/µm) at the rectum decreased from 2.65 (ICR-LET) to 2.14 (ADMM-LET). Conclusion: This study establishes ADMM-LET as a new approach for LET optimization with the MMU constraint in IMPT, offering potential improvements in treatment outcomes and biological effects.

10.
Phys Imaging Radiat Oncol ; 29: 100553, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38419802

RESUMO

Background and Purpose: Nuclear interaction correction (NIC) and trichrome fragment spectra modelling improve relative biological effectiveness-weighted dose (DRBE) and dose-averaged linear energy transfer (LETd) calculation for carbon ions. The effect of those novel approaches on the clinical dose and LET distributions was investigated. Materials and Methods: The effect of the NIC and trichrome algorithm was assessed, creating single beam plans for a virtual water phantom with standard settings and NIC + trichrome corrections. Reference DRBE and LETd distributions were simulated using FLUKA version 2021.2.9. Thirty clinically applied scanned carbon ion treatment plans were recalculated applying NIC, trichrome and NIC + trichrome corrections, using the LEM low dose approximation and compared to clinical plans (base RS). Four treatment sites were analysed: six prostate adenocarcinoma, ten head and neck, nine locally advanced pancreatic adenocarcinoma and five sacral chordoma. The FLUKA and clinical plans were compared in terms of DRBE deviations for D98%, D50%, D2% for the clinical target volume (CTV) and D50% in ring-like dose regions retrieved from isodose curves in base RS plans. Additionally, region-based median LETd deviations and global gamma parameters were evaluated. Results: Dose deviations comparing base RS and evaluation plans were within ± 1% supported by γ-pass rates over 97% for all cases. No significant LETd deviations were reported in the CTV, but significant median LETd deviations were up to 80% for very low dose regions. Conclusion: Our results showed improved accuracy of the predicted DRBE and LETd. Considering clinically relevant constraints, no significant modifications of clinical protocols are expected with the introduction of NIC + trichrome.

11.
Phys Med Biol ; 69(4)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38232394

RESUMO

Objective. Helium, oxygen, and neon ions in addition to carbon ions will be used for hypofractionated multi-ion therapy to maximize the therapeutic effectiveness of charged-particle therapy. To use new ions in cancer treatments based on the dose-fractionation protocols established in carbon-ion therapy, this study examined the cell-line-specific radioresponse to therapeutic helium-, oxygen-, and neon-ion beams within wide dose ranges.Approach. Response of cells to ions was described by the stochastic microdosimetric kinetic model. First, simulations were made for the irradiation of one-field spread-out Bragg peak beams in water with helium, carbon, oxygen, and neon ions to achieve uniform survival fractions at 37%, 10%, and 1% for human salivary gland tumor (HSG) cells, the reference cell line for the Japanese relative biological effectiveness weighted dose system, within the target region defined at depths from 90 to 150 mm. The HSG cells were then replaced by other cell lines with different radioresponses to evaluate differences in the biological dose distributions of each ion beam with respect to those of carbon-ion beams.Main results. For oxygen- and neon-ion beams, the biological dose distributions within the target region were almost equivalent to those of carbon-ion beams, differing by less than 5% in most cases. In contrast, for helium-ion beams, the biological dose distributions within the target region were largely different from those of carbon-ion beams, more than 10% in several cases.Significance.From the standpoint of tumor control evaluated by the clonogenic cell survival, this study suggests that the dose-fractionation protocols established in carbon-ion therapy could be reasonably applied to oxygen- and neon-ion beams while some modifications in dose prescription would be needed when the protocols are applied to helium-ion beams. This study bridges the gap between carbon-ion therapy and hypofractionated multi-ion therapy.


Assuntos
Carbono , Hélio , Humanos , Neônio/uso terapêutico , Carbono/uso terapêutico , Hélio/uso terapêutico , Oxigênio/uso terapêutico , Íons , Eficiência Biológica Relativa
12.
Biochem Biophys Res Commun ; 696: 149500, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38219488

RESUMO

Carbon ion radiotherapy (CIRT) is a heavy ion charge particle therapy with 29 years of prominent use. Despite advantages like high relative biological effectiveness (RBE), improved quality of life, and reduced treatment time, challenges persist, especially regarding heavy nuclear fragments. Our research addresses these challenges in horizontal irradiation, aiming to comprehend Monoenergetic and Spread-Out Bragg peak (SOBP) carbon ion beam trajectories using cell survival analysis and visualizing biological effects through DNA damage (γ-H2AX). This reveals repair-related protein foci near the Bragg peak. CR-39, a plastic nuclear track detector, was explored to understand high-linear energy transfer (LET) tracks and radiation quality near the Bragg peak. Findings unveil high-LET DNA damage signatures through aligned γ-H2AX foci, correlating with LET values in SOBP. CR-39 visualized high-LET particle exposure, indicating comet-type etch-pits at the Bragg peak and suggesting carbon ion fragmentation. Unexpectedly, dot-type etch-pits in irradiated and post-Bragg peak regions indicated high-LET neutron production. This investigation highlights the intricate interplay of carbon ion beams, stressing the importance of understanding LET variations, DNA damage patterns, and undesired secondary exposure.


Assuntos
Radioterapia com Íons Pesados , Transferência Linear de Energia , Polietilenoglicóis , Qualidade de Vida , Íons , Carbono , Dano ao DNA , Morte Celular
13.
Med Phys ; 51(1): 637-649, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37558637

RESUMO

BACKGROUND: Predicting biological responses to mixed radiation types is of considerable importance when combining radiation therapies that use multiple radiation types and delivery regimens. These may include the use of both low- and high-linear energy transfer (LET) radiations. A number of theoretical models have been developed to address this issue. However, model predictions do not consistently match published experimental data for mixed radiation exposures. Furthermore, the models are often computationally intensive. Accordingly, there is a need for efficient analytical models that can predict responses to mixtures of low- and high-LET radiations. Additionally, a general formalism to calculate equieffective dose (EQDX) for mixed radiations is needed. PURPOSE: To develop a computationally efficient analytical model that can predict responses to complex mixtures of low- and high-LET radiations as a function of either absorbed dose or EQDX. METHODS: The Zaider-Rossi model (ZRM) was modified by replacing the geometric mean of the quadratic coefficients in the interaction term with the arithmetic mean. This modified ZRM model (mZRM) was then further generalized to any number of radiation types and its validity was tested against published experimental observations. Comparisons between the predictions of the ZRM and mZRM, and other models, were made using two and three radiation types. In addition, a generalized formalism for calculating EQDX for mixed radiations was developed within the context of mZRM and validated with published experimental results. RESULTS: The predictions of biological responses to mixed-LET radiations calculated with the mZRM are in better agreement with experimental observations than ZRM, especially when high- and low-LET radiations are mixed. In these situations, the ZRM overestimated the surviving fraction. Furthermore, the EQDX calculated with mZRM are in better agreement with experimental observations. CONCLUSION: The mZRM is a computationally efficient model that can be used to predict biological response to mixed radiations that have low- and high-LET characteristics. Importantly, interaction terms are retained in the calculation of EQDX for mixed radiation exposures within the mZRM framework. The mZRM has application in a wide range of radiation therapies, including radiopharmaceutical therapy.


Assuntos
Exposição à Radiação , Relação Dose-Resposta à Radiação , Eficiência Biológica Relativa
14.
Med Phys ; 51(1): 622-636, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37877574

RESUMO

BACKGROUND: Applying tolerance doses for organs at risk (OAR) from photon therapy introduces uncertainties in proton therapy when assuming a constant relative biological effectiveness (RBE) of 1.1. PURPOSE: This work introduces the novel dirty and clean dose concept, which allows for creating treatment plans with a more photon-like dose response for OAR and, thus, less uncertainties when applying photon-based tolerance doses. METHODS: The concept divides the 1.1-weighted dose distribution into two parts: the clean and the dirty dose. The clean and dirty dose are deposited by protons with a linear energy transfer (LET) below and above a set LET threshold, respectively. For the former, a photon-like dose response is assumed, while for the latter, the RBE might exceed 1.1. To reduce the dirty dose in OAR, a MaxDirtyDose objective was added in treatment plan optimization. It requires setting two parameters: LET threshold and max dirty dose level. A simple geometry consisting of one target volume and one OAR in water was used to study the reduction in dirty dose in the OAR depending on the choice of the two MaxDirtyDose objective parameters during plan optimization. The best performing parameter combinations were used to create multiple dirty dose optimized (DDopt) treatment plans for two cranial patient cases. For each DDopt plan, 1.1-weighted dose, variable RBE-weighted dose using the Wedenberg RBE model and dose-average LETd distributions as well as resulting normal tissue complication probability (NTCP) values were calculated and compared to the reference plan (RefPlan) without MaxDirtyDose objectives. RESULTS: In the water phantom studies, LET thresholds between 1.5 and 2.5 keV/µm yielded the best plans and were subsequently used. For the patient cases, nearly all DDopt plans led to a reduced Wedenberg dose in critical OAR. This reduction resulted from an LET reduction and translated into an NTCP reduction of up to 19 percentage points compared to the RefPlan. The 1.1-weighted dose in the OARs was slightly increased (patient 1: 0.45 Gy(RBE), patient 2: 0.08 Gy(RBE)), but never exceeded clinical tolerance doses. Additionally, slightly increased 1.1-weighted dose in healthy brain tissue was observed (patient 1: 0.81 Gy(RBE), patient 2: 0.53 Gy(RBE)). The variation of NTCP values due to variation of α/ß from 2 to 3 Gy was much smaller for DDopt (2 percentage points (pp)) than for RefPlans (5 pp). CONCLUSIONS: The novel dirty and clean dose concept allows for creating biologically more robust proton treatment plans with a more photon-like dose response. The reduced uncertainties in RBE can, therefore, mitigate uncertainties introduced by using photon-based tolerance doses for OAR.


Assuntos
Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Prótons , Transferência Linear de Energia , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Água , Planejamento da Radioterapia Assistida por Computador/métodos
16.
Molecules ; 28(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38138632

RESUMO

(1) Background: Radioprotective agents have garnered considerable interest due to their prospective applications in radiotherapy, public health medicine, and situations of large-scale accidental radiation exposure or impending radiological emergencies. Cystamine, an organic diamino-disulfide compound, is recognized for its radiation-protective and antioxidant properties. This study aims to utilize the aqueous ferrous sulfate (Fricke) dosimeter to measure the free-radical scavenging capabilities of cystamine during irradiation by fast carbon ions. This analysis spans an energy range from 6 to 500 MeV per nucleon, which correlates with "linear energy transfer" (LET) values ranging from approximately 248 keV/µm down to 9.3 keV/µm. (2) Methods: Monte Carlo track chemistry calculations were used to simulate the radiation-induced chemistry of aerated Fricke-cystamine solutions across a broad spectrum of cystamine concentrations, ranging from 10-6 to 1 M. (3) Results: In irradiated Fricke solutions containing cystamine, cystamine is observed to hinder the oxidation of Fe2+ ions, an effect triggered by oxidizing agents from the radiolysis of acidic water, resulting in reduced Fe3+ ion production. Our simulations, conducted both with and without accounting for the multiple ionization of water, confirm cystamine's ability to capture free radicals, highlighting its strong antioxidant properties. Aligning with prior research, our simulations also indicate that the protective and antioxidant efficiency of cystamine diminishes with increasing LET of the radiation. This result can be attributed to the changes in the geometry of the track structures when transitioning from lower to higher LETs. (4) Conclusions: If we can apply these fundamental research findings to biological systems at a physiological pH, the use of cystamine alongside carbon-ion hadrontherapy could present a promising approach to further improve the therapeutic ratio in cancer treatments.


Assuntos
Cistamina , Transferência Linear de Energia , Cistamina/farmacologia , Antioxidantes , Dosímetros de Radiação , Íons , Núcleons , Água/química , Carbono
17.
Precis Radiat Oncol ; 7(1): 15-26, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37868341

RESUMO

EBT-XD model of Gafchromic™ films has a broader optimal dynamic dose range, up to 40 Gy, compared to its predecessor models. This characteristic has made EBT-XD films suitable for high-dose applications such as stereotactic body radiotherapy and stereotactic radiosurgery, as well as ultra-high dose rate FLASH radiotherapy. The purpose of the current study was to characterize the dependence of EBT-XD film response on linear energy transfer (LET) and dose rate of therapeutic protons from a synchrotron. A clinical spot-scanning proton beam was used to study LET dependence at three dose-averaged LET (LETd) values of 1.0 keV/µm, 3.6 keV/µm, and 7.6 keV/µm. A research proton beamline was used to study dose rate dependence at 150 Gy/second in the FLASH mode and 0.3 Gy/second in the non-FLASH mode. Film response data from LETd values of 0.9 keV/µm and 9.0 keV/µm of the proton FLASH beam were also compared. Film response data from a clinical 6 MV photon beam were used as a reference. Both gray value method and optical density (OD) method were used in film calibration. Calibration results using a specific OD calculation method and a generic OD calculation method were compared. The four-parameter NIH Rodbard function and three-parameter rational function were compared in fitting the calibration curves. Experimental results showed that the response of EBT-XD film is proton LET dependent but independent of dose rate. Goodness-of-fit analysis showed that using the NIH Rodbard function is superior for both protons and photons. Using the "specific OD + NIH Rodbard function" method for EBT-XD film calibration is recommended.

18.
Cells ; 12(20)2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37887271

RESUMO

BACKGROUND: Heavy ion irradiation (IR) with high-linear energy transfer (LET) is characterized by a unique depth dose distribution and increased biological effectiveness. Following high-LET IR, localized energy deposition along the particle trajectories induces clustered DNA lesions, leading to low electron density domains (LEDDs). To investigate the spatiotemporal dynamics of DNA repair and chromatin remodeling, we established the automated image analysis of transmission electron micrographs. METHODS: Human fibroblasts were irradiated with high-LET carbon ions or low-LET photons. At 0.1 h, 0.5 h, 5 h, and 24 h post-IR, nanoparticle-labeled repair factors (53BP1, pKu70, pKu80, DNA-PKcs) were visualized using transmission electron microscopy in interphase nuclei to monitor the formation and repair of DNA damage in the chromatin ultrastructure. Using AI-based software tools, advanced image analysis techniques were established to assess the DNA damage pattern following low-LET versus high-LET IR. RESULTS: Low-LET IR induced single DNA lesions throughout the nucleus, and most DNA double-strand breaks (DSBs) were efficiently rejoined with no visible chromatin decondensation. High-LET IR induced clustered DNA damage concentrated along the particle trajectories, resulting in circumscribed LEDDs. Automated image analysis was used to determine the exact number of differently sized nanoparticles, their distance from one another, and their precise location within the micrographs (based on size, shape, and density). Chromatin densities were determined from grayscale features, and nanoparticles were automatically assigned to euchromatin or heterochromatin. High-LET IR-induced LEDDs were delineated using automated segmentation, and the spatial distribution of nanoparticles in relation to segmented LEDDs was determined. CONCLUSIONS: The results of our image analysis suggest that high-LET IR induces chromatin relaxation along particle trajectories, enabling the critical repair of successive DNA damage. Following exposure to different radiation qualities, automated image analysis of nanoparticle-labeled DNA repair proteins in the chromatin ultrastructure enables precise characterization of specific DNA damage patterns.


Assuntos
Cromatina , Elétrons , Humanos , Dano ao DNA , Heterocromatina , DNA
19.
Phys Med Biol ; 68(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37820687

RESUMO

Objective. The goal of the study was to test the hypothesis that shoot-through FLASH proton beams would lead to lower dose-averaged LET (LETD) values in critical organs, while providing at least equal normal tissue sparing as clinical proton therapy plans.Approach. For five neurological tumor patients, pencil beam scanning (PBS) shoot-through plans were made, using the maximum energy of 227 MeV and assuming a hypothetical FLASH protective factor (FPF) of 1.5. The effect of different FPF ranging from 1.2 to 1.8 on the clinical goals were also considered. LETDwas calculated for the clinical plan and the shoot-through plan, applying a 2 Gy total dose threshold (RayStation 8 A/9B and 9A-IonRPG). Robust evaluation was performed considering density uncertainty (±3% throughout entire volume).Main results.Clinical plans showed large LETDvariations compared to shoot-through plans and the maximum LETDin OAR is 1.2-8 times lower for the latter. Although less conformal, shoot-through plans met the same clinical goals as the clinical plans, for FLASH protection factors above 1.4. The FLASH shoot-through plans were more robust to density uncertainties with a maximum OAR D2%increase of 0.6 Gy versus 5.7 Gy in the clinical plans.Significance.Shoot-through proton FLASH beams avoid uncertainties in LETDdistributions and proton range, provide adequate target coverage, meet planning constraints and are robust to density variations.


Assuntos
Neoplasias , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Transferência Linear de Energia , Prótons , Órgãos em Risco , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
20.
Radiol Phys Technol ; 16(4): 443-470, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37882992

RESUMO

Clinical studies of ion beam therapy have been performed at the Lawrence Berkeley Laboratory (LBL), National Institute of Radiological Sciences (NIRS), Gesellschaft für Schwerionenforschung (GSI), and Deutsches Krebsforschungszentrum (DKFZ), in addition to the development of equipment, biophysical models, and treatment planning systems. Although cancers, including brain tumors and pancreatic cancer, have been treated with the Bevalac's neon-ion beam at the LBL (where the first clinical research was conducted), insufficient results were obtained owing to the limited availability of neon-ion beams and immaturity of related technologies. However, the 184-Inch Cyclotron's helium-ion beam yielded promising results for chordomas and chondrosarcomas at the base of the skull. Using carbon-ion beams, NIRS has conducted clinical trials for the treatment of common cancers for which radiotherapy is indicated. Because better results than X-ray therapy results have been obtained for lung, liver, pancreas, and prostate cancers, as well as pelvic recurrences of rectal cancer, the Japanese government recently approved the use of public medical insurance for carbon-ion radiotherapy, except for lung cancer. GSI obtained better results than LBL for bone and soft tissue tumors, owing to dose enhancement enabled by scanning irradiation. In addition, DKFZ compared treatment results of proton and carbon-ion radiotherapy for these tumors. This article summarizes a series of articles (Parts 1-3) and describes future issues of immune ion beam therapy and linear energy transfer optimization.


Assuntos
Radioterapia com Íons Pesados , Neoplasias Pulmonares , Neoplasias Pancreáticas , Masculino , Humanos , Neônio/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Carbono/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...