Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38954247

RESUMO

According to the World Health Organization vector-borne diseases account for more than 17% of all infectious diseases, causing more than 700,000 deaths annually. Vectors are organisms that are able to transmit infectious pathogens between humans, or from animals to humans. Many of these vectors are hematophagous insects, which ingest the pathogen from an infected host during a blood meal, and later transmit it into a new host. Malaria, dengue, African trypanosomiasis, yellow fever, leishmaniasis, Chagas disease, and many others are examples of diseases transmitted by insects.Both the diet and the infection with pathogens trigger changes in many metabolic pathways, including lipid metabolism, compared to other insects. Blood contains mostly proteins and is very poor in lipids and carbohydrates. Thus, hematophagous insects attempt to efficiently digest and absorb diet lipids and also rely on a large de novo lipid biosynthesis based on utilization of proteins and carbohydrates as carbon source. Blood meal triggers essential physiological processes as molting, excretion, and oogenesis; therefore, lipid metabolism and utilization of lipid storage should be finely synchronized and regulated regarding that, in order to provide the necessary energy source for these events. Also, pathogens have evolved mechanisms to hijack essential lipids from the insect host by interfering in the biosynthesis, catabolism, and transport of lipids, which pose challenges to reproduction, survival, fitness, and other insect traits.In this chapter, we have tried to collect and highlight the current knowledge and recent discoveries on the metabolism of lipids in insect vectors of diseases related to the hematophagous diet and pathogen infection.

2.
Adv Exp Med Biol ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38874888

RESUMO

Insects need to transport lipids through the aqueous medium of the hemolymph to the organs in demand, after they are absorbed by the intestine or mobilized from the lipid-producing organs. Lipophorin is a lipoprotein present in insect hemolymph, and is responsible for this function. A single gene encodes an apolipoprotein that is cleaved to generate apolipophorin I and II. These are the essential protein constituents of lipophorin. In some physiological conditions, a third apolipoprotein of different origin may be present. In most insects, lipophorin transports mainly diacylglycerol and hydrocarbons, in addition to phospholipids. The fat body synthesizes and secretes lipophorin into the hemolymph, and several signals, such as nutritional, endocrine, or external agents, can regulate this process. However, the main characteristic of lipophorin is the fact that it acts as a reusable shuttle, distributing lipids between organs without being endocytosed or degraded in this process. Lipophorin interacts with tissues through specific receptors of the LDL receptor superfamily, although more recent results have shown that other proteins may also be involved. In this chapter, we describe the lipophorin structure in terms of proteins and lipids, in addition to reviewing what is known about lipoprotein synthesis and regulation. In addition, we reviewed the results investigating lipophorin's function in the movement of lipids between organs and the function of lipophorin receptors in this process.

3.
Acta Trop ; 248: 107032, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838024

RESUMO

During its life cycle, Trypanosoma rangeli invades the hemolymph of its invertebrate host and colonizes hemocytes and salivary glands. The parasite cannot synthesize some lipid classes, and during its cycle, it depends on the uptake of these molecules from its vertebrate and invertebrate hosts to meet growth and differentiation requirements. However, until now, knowledge on how the parasite affects the lipid physiology of individual insect organs has been largely unknown. Herein, the biochemical and molecular dynamics of triatomine R. prolixus lipid metabolism in response to acute T. rangeli infection were investigated. Biochemical and microscopic assays revealed the lipid droplet profile and the levels of the different identified lipid classes. In addition, a qRT‒PCR approach was used to determine the expression profile of 6 protein-coding genes involved in the R. prolixus lipid physiology. We observed that triacylglycerol (TAG), monoacylglycerol (MAG), phosphatidylethanolamine (PE) and phosphatidylcholine (PC) levels in the fat body decreased in infected insects. On the other hand, high levels of free fatty acids were observed in the hemolymph during infection. Analysis by confocal microscopy revealed a decrease in lipid droplets size from infected fat bodies, and investigations by scanning electron microscopy revealed a significant number of parasites adhered to the surface of the organ. T. rangeli infection upregulated the transcript levels of the protein-coding gene for the acetyl-CoA carboxylase, the first enzyme in the de novo fatty acid synthesis pathway, responsible for the production of malonyl-CoA. On the other hand, downregulation of lipophorin receptor was observed. In conclusion, this study reveals a new set of molecular events that occur within the vector in response to the challenge imposed by the parasite.


Assuntos
Rhodnius , Trypanosoma rangeli , Trypanosoma , Animais , Trypanosoma rangeli/genética , Rhodnius/parasitologia , Metabolismo dos Lipídeos , Glândulas Salivares/metabolismo , Lipídeos , Trypanosoma/genética
4.
BMC Biol ; 20(1): 198, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071487

RESUMO

BACKGROUND: Drosophila melanogaster lipophorin receptors (LpRs), LpR1 and LpR2, are members of the LDLR family known to mediate lipid uptake in a range of organisms from Drosophila to humans. The vertebrate orthologs of LpRs, ApoER2 and VLDL-R, function as receptors of a glycoprotein involved in development of the central nervous system, Reelin, which is not present in flies. ApoER2 and VLDL-R are associated with the development and function of the hippocampus and cerebral cortex, important association areas in the mammalian brain, as well as with neurodevelopmental and neurodegenerative disorders linked to those regions. It is currently unknown whether LpRs play similar roles in the Drosophila brain. RESULTS: We report that LpR-deficient flies exhibit impaired olfactory memory and sleep patterns, which seem to reflect anatomical defects found in a critical brain association area, the mushroom bodies (MB). Moreover, cultured MB neurons respond to mammalian Reelin by increasing the complexity of their neurite arborization. This effect depends on LpRs and Dab, the Drosophila ortholog of the Reelin signaling adaptor protein Dab1. In vitro, two of the long isoforms of LpRs allow the internalization of Reelin, suggesting that Drosophila LpRs interact with human Reelin to induce downstream cellular events. CONCLUSIONS: These findings demonstrate that LpRs contribute to MB development and function, supporting the existence of a LpR-dependent signaling in Drosophila, and advance our understanding of the molecular factors functioning in neural systems to generate complex behaviors in this model. Our results further emphasize the importance of Drosophila as a model to investigate the alterations in specific genes contributing to neural disorders.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Corpos Pedunculados , Receptores Citoplasmáticos e Nucleares , Animais , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/farmacologia , Corpos Pedunculados/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Reelina , Serina Endopeptidases/metabolismo
5.
J Insect Sci ; 19(4)2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31346627

RESUMO

In insects, lipid transfer to the tissues is mediated by lipophorin, the major circulating lipoprotein, mainly through a nonendocytic pathway involving docking receptors. Currently, the role of such receptors in lipid metabolism remains poorly understood. In this work, we performed a histological characterization of the fat body of the Chagas' disease vector, Panstrongylus megistus (Burmeister), subjected to different nutritional conditions. In addition, we addressed the role of the ß-chain of ATP synthase (ß-ATPase) in the process of lipid transfer from lipophorin to the fat body. Fifth-instar nymphs in either fasting or fed condition were employed in the assays. Histological examination revealed that the fat body was composed by diverse trophocyte phenotypes. In the fasting condition, the cells were smaller and presented a homogeneous cytoplasmic content. The fat body of fed insects increased in size mainly due to the enlargement of lipid stores. In this condition, trophocytes contained abundant lipid droplets, and the rough endoplasmic reticulum was highly developed and mitochondria appeared elongated. Immunofluorescence assays showed that the ß-ATPase, a putative lipophorin receptor, was located on the surface of fat body cells colocalizing partially with lipophorin, which suggests their interaction. No changes in ß-ATPase expression were found in fasting and fed insects. Blocking the lipophorin-ß-ATPase interaction impaired the lipophorin-mediated lipid transfer to the fat body. The results showed that the nutritional status of the insect influenced the morphohistological features of the tissue. Besides, these findings suggest that ß-ATPase functions as a lipophorin docking receptor in the fat body.


Assuntos
Complexos de ATP Sintetase/metabolismo , Corpo Adiposo/citologia , Proteínas de Insetos/metabolismo , Metabolismo dos Lipídeos , Lipoproteínas/metabolismo , Panstrongylus/citologia , Animais , Corpo Adiposo/enzimologia , Ninfa/citologia , Ninfa/enzimologia , Panstrongylus/enzimologia , Panstrongylus/crescimento & desenvolvimento
6.
Results Probl Cell Differ ; 63: 403-434, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28779328

RESUMO

In insect physiology, the mechanisms involved in the buildup and regulation of yolk proteins in developing oocytes have been thoroughly researched during the last three decades. Comparatively, the study of lipid metabolism in oocytes had received less attention. The importance of this issue lies in the fact that lipids make up to 40% of the dry weight of an insect egg, being the most important supply of energy for the developing embryo. Since the oocyte has a very limited capacity to synthesize lipids de novo, most of the lipids in the mature eggs arise from the circulation. The main lipid carriers in the insect circulatory system are the lipoproteins lipophorin and vitellogenin. In some species, the endocytosis of lipophorin and vitellogenin may account for about 10% of the lipids present in mature eggs. Thus, most of the lipids are transferred by a lipophorin-mediated pathway, in which the lipoprotein unloads its lipid cargo at the surface of oocytes without internalization. This chapter recapitulates the current status on lipid storage and its utilization in insect oocytes and discusses the participation of key factors including lipoproteins, transfer proteins, lipolytic enzymes, and dynamic organelles such as lipid droplets. The new findings in the field of lipophorin receptors are presented in the context of lipid accumulation during egg maturation, and the roles of lipids beyond energy source are summarized from the perspective of oogenesis and embryogenesis. Finally, prospective and fruitful areas of future research are suggested.


Assuntos
Insetos/citologia , Metabolismo dos Lipídeos , Lipídeos , Oócitos/metabolismo , Animais , Desenvolvimento Embrionário , Oogênese
7.
J Insect Physiol ; 96: 82-92, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27983943

RESUMO

Lipophorin is the main lipoprotein in the hemolymph of insects. During vitellogenesis, lipophorin delivers its hydrophobic cargo to developing oocytes by its binding to non-endocytic receptors at the plasma membrane of the cells. In some species however, lipophorin may also be internalized to some extent, thus maximizing the storage of lipid resources in growing oocytes. The ectopic ß chain of ATP synthase (ß-ATPase) was recently described as a putative non-endocytic lipophorin receptor in the anterior midgut of the hematophagous insect Panstrongylus megistus. In the present work, females of this species at the vitellogenic stage of the reproductive cycle were employed to investigate the role of ß-ATPase in the transfer of lipids to the ovarian tissue. Subcellular fractionation and western blot revealed the presence of ß-ATPase in the microsomal membranes of the ovarian tissue, suggesting its localization in the plasma membrane. Immunofluorescence assays showed partial co-localization of ß-ATPase and lipophorin in the membrane of oocytes as well as in the basal domain of the follicular epithelial cells. Ligand blotting and co-immunoprecipitation approaches confirmed the interaction between lipophorin and ß-ATPase. In vivo experiments with an anti-ß-ATPase antibody injected to block such an interaction demonstrated that the antibody significantly impaired the transfer of fatty acids from lipophorin to the oocyte. However, the endocytic pathway of lipophorin was not affected. On the other hand, partial inhibition of ATP synthase activity did not modify the transfer of lipids from lipophorin to oocytes. When the assays were performed at 4°C to diminish endocytosis, the results showed that the antibody interfered with lipophorin binding to the oocyte plasma membrane as well as with the transfer of fatty acids from the lipoprotein to the oocyte. The findings strongly support that ß-ATPase plays a role as a docking lipophorin receptor at the ovary of P. megistus, similarly to its function in the midgut of such a vector. In addition, the role of ß-ATPase as a docking receptor seems to be independent of the enzymatic ATP synthase activity.


Assuntos
Metabolismo dos Lipídeos , Lipoproteínas/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Oócitos/metabolismo , Panstrongylus/metabolismo , Animais , Endocitose , Feminino , Imunofluorescência , Imunoprecipitação , Ligantes , Ovário/metabolismo
8.
Protist ; 166(3): 297-309, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26017666

RESUMO

Insect trypanosomatids are inhabitants of the insect digestive tract. These parasites can be either monoxenous or dixenous. Plant trypanosomatids are known as insect trypanosomatids once they and are transmitted by phytophagous insects. Such parasites can be found in latex, phloem, fruits and seeds of many plant families. Infections caused by these pathogens are a major cause of serious economic losses. Studies by independent groups have demonstrated the metabolic flow of lipids from the vertebrate host to trypanosomatids. This mechanism is usually present when parasites possess an incomplete de novo lipid biosynthesis pathway. Here, we show that both insect trypanosomatids Phytomonas françai and Leptomonas wallacei incorporate (3)H-palmitic acid and inorganic phosphate. These molecules are used for lipid biosynthesis. Moreover, we have isolated the main hemolymphatic lipoprotein, Lipophorin (Lp) from Oncopeltus fasciatus, the natural insect vector of such parasites. Both parasites were able to incorporate Lp to be utilized both as a lipid and protein source for their metabolism. Also, we have observed the presence of Lp binding sites in the membrane of a parasite. In conclusion, we believe that the elucidation of trypanosomatid metabolic pathways will lead to a better understanding of parasite-host interactions and the identification of novel potential chemotherapy targets.


Assuntos
Interações Hospedeiro-Parasita , Metabolismo dos Lipídeos , Lipoproteínas/metabolismo , Trypanosomatina/metabolismo , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Insetos/química , Insetos/parasitologia , Lipoproteínas/isolamento & purificação , Ácido Palmítico/metabolismo , Fosfatos/metabolismo
9.
Arch Insect Biochem Physiol ; 87(3): 148-63, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25052220

RESUMO

In this study, we have analyzed the changes of the ovarian nutritional resources in Dipetalogaster maxima at representative days of the reproductive cycle: previtellogenesis, vitellogenesis, as well as fasting-induced early and late atresia. As expected, the amounts of ovarian lipids, proteins, and glycogen increased significantly from previtellogenesis to vitellogenesis and then, diminished during atresia. However, lipids and protein stores found at the atretic stages were higher in comparison to those registered at previtellogenesis. Specific lipid staining of ovarian tissue sections evidenced remarkable changes in the shape, size, and distribution of lipid droplets throughout the reproductive cycle. The role of lipophorin (Lp) as a yolk protein precursor was analyzed by co-injecting Lp-OG (where OG is Oregon Green) and Lp-DiI (where DiI is 1,10-dioctadecyl-3,3,30,30-tetramethylindocarbocyanine) to follow the entire particle, demonstrating that both probes colocalized mainly in the yolk bodies of vitellogenic oocytes. Immunofluorescence assays also showed that Lp was associated to yolk bodies, supporting its endocytic pathway during vitellogenesis. The involvement of Lp in lipid delivery to oocytes was investigated in vivo by co-injecting fluorescent probes to follow the fate of the entire particle (Lp-DiI) and its lipid cargo (Lp-Bodipy-FA). Lp-DiI was readily incorporated by vitellogenic oocytes and no lipoprotein uptake was observed in terminal follicles of ovaries at atretic stages. Bodipy-FA was promptly transferred to vitellogenic oocytes and, to a much lesser extent, to previtellogenic follicles and to oocytes of ovarian tissue at atretic stages. Colocalization of Lp-DiI and Lp-Bodipy-FA inside yolk bodies indicated the relevance of Lp in the buildup of lipid and protein oocyte stores during vitellogenesis.


Assuntos
Proteínas de Insetos/metabolismo , Metabolismo dos Lipídeos , Lipoproteínas/metabolismo , Oogênese/fisiologia , Ovário/metabolismo , Reduviidae/metabolismo , Reduviidae/fisiologia , Vitelogênese/fisiologia , Animais , Citoplasma , Feminino , Oócitos/metabolismo
10.
Insect Biochem Mol Biol ; 52: 1-12, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24952172

RESUMO

Lipophorin, the main lipoprotein in the circulation of the insects, cycles among peripheral tissues to exchange its lipid cargo at the plasma membrane of target cells, without synthesis or degradation of its apolipoprotein matrix. Currently, there are few characterized candidates supporting the functioning of the docking mechanism of lipophorin-mediated lipid transfer. In this work we combined ligand blotting assays and tandem mass spectrometry to characterize proteins with the property to bind lipophorin at the midgut membrane of Panstrongylus megistus, a vector of Chagas' disease. We further evaluated the role of lipophorin binding proteins in the transfer of lipids between the midgut and lipophorin. The ß subunit of the ATP synthase complex (ß-ATPase) was identified as a lipophorin binding protein. ß-ATPase was detected in enriched midgut membrane preparations free of mitochondria. It was shown that ß-ATPase partially co-localizes with lipophorin at the plasma membrane of isolated enterocytes and in the sub-epithelial region of the midgut tissue. The interaction of endogenous lipophorin and ß-ATPase was also demonstrated by co-immunoprecipitation assays. Blocking of ß-ATPase significantly diminished the binding of lipophorin to the isolated enterocytes and to the midgut tissue. In vivo assays injecting the ß-ATPase antibody significantly reduced the transfer of [(3)H]-diacylglycerol from the midgut to the hemolymph in insects fed with [9,10-(3)H]-oleic acid, supporting the involvement of lipophorin-ß-ATPase association in the transfer of lipids. In addition, the ß-ATPase antibody partially impaired the transfer of fatty acids from lipophorin to the midgut, a less important route of lipid delivery to this tissue. Taken together, the findings strongly suggest that ß-ATPase plays a role as a docking lipophorin receptor at the midgut of P. megistus.


Assuntos
Complexos de ATP Sintetase/metabolismo , Membrana Celular/metabolismo , Sistema Digestório/metabolismo , Lipoproteínas/metabolismo , Panstrongylus/metabolismo , Ligação Proteica , Animais , Transporte Biológico , Proteínas de Transporte , Metabolismo dos Lipídeos
11.
Mem. Inst. Oswaldo Cruz ; 108(7): 836-844, 1jan. 2013. tab, graf
Artigo em Inglês | LILACS | ID: lil-696009

RESUMO

Lipophorin (Lp) is the main haemolymphatic lipoprotein in insects and transports lipids between different organs. In adult females, lipophorin delivers lipids to growing oocytes. In this study, the interaction of this lipoprotein with the ovaries of Rhodnius prolixus was characterised using an oocyte membrane preparation and purified radiolabelled Lp (125I-Lp). Lp-specific binding to the oocyte membrane reached equilibrium after 40-60 min and when 125I-Lp was incubated with increasing amounts of membrane protein, corresponding increases in Lp binding were observed. The specific binding of Lp to the membrane preparation was a saturable process, with a Kdof 7.1 ± 0.9 x 10-8M and a maximal binding capacity of 430 ± 40 ng 125I-Lp/µg of membrane protein. The binding was calcium independent and pH sensitive, reaching its maximum at pH 5.2-5.7. Suramin inhibited the binding interaction between Lp and the oocyte membranes, which was completely abolished at 0.5 mM suramin. The oocyte membrane preparation from R. prolixus also showed binding to Lp from Manduca sexta. When Lp was fluorescently labelled and injected into vitellogenic females, the level of Lp-oocyte binding was much higher in females that were fed whole blood than in those fed blood plasma.


Assuntos
Animais , Feminino , Metabolismo dos Lipídeos/fisiologia , Lipoproteínas/fisiologia , Oócitos/fisiologia , Rhodnius/fisiologia , Sangue , Comportamento Alimentar , Lipoproteínas/metabolismo , Oócitos/metabolismo , Plasma , Rhodnius/metabolismo
12.
Arch Insect Biochem Physiol ; 84(3): 145-56, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24115378

RESUMO

Lipophorin (Lp) is a major insect lipoprotein and is responsible for lipid transport between organs. In this study, the effect of starvation on Lp properties was analyzed in larval Manduca sexta during the fifth instar. Lp hemolymph concentrations in larvae at days 1 and 2 were around 2-3 mg/ml and at day 3 it increased to 8 mg/ml. When larvae were starved for 24 h, they did not grow, but their body mass and hemolymph volume did not decrease significantly. Differences in Lp densities were observed. In fed larvae, from days 1 to 4, two major Lp populations were found with densities of 1.124 ± 0.002 (high density Lp-larval1 , HDLp-L1 ) and 1.141 ± 0.002 g/ml (HDLp-L2 ). When larvae were starved for 24 h, only one Lp population was present, with density 1.114 ± 0.001 g/ml (HDLp-Ls ). When larvae were abdominally ligated at day 1 or 2 of fifth instar, only HDLp-Ls was found after 24 h, indicating that the formation of this HDLp population was not dependent on any factor released by head. On the other hand, larvae that were ligated at day 3 showed the same Lp populations as the fed ones. In 24-h starved larvae, lipid load in Lp was higher as compared to the fed controls. In 24-h ligated larvae Lp lipid content increased when ligation was performed on day 1 or 2, but not on day 3. So, different responses to starvation can be observed depending on the developmental phase of the same larval instar.


Assuntos
Hemolinfa/metabolismo , Larva/metabolismo , Lipoproteínas/sangue , Manduca/metabolismo , Animais , Transporte Biológico , Ensaio de Imunoadsorção Enzimática , Comportamento Alimentar , Privação de Alimentos , Larva/crescimento & desenvolvimento , Manduca/crescimento & desenvolvimento
13.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;41(1): 18-25, Jan. 2008. graf, tab
Artigo em Inglês | LILACS | ID: lil-469978

RESUMO

Lipid transport in arthropods is achieved by highly specialized lipoproteins, which resemble those described in vertebrate blood. Here we describe purification and characterization of the lipid-apolipoprotein complex, lipophorin (Lp), from adults and larvae of the cowpea weevil Callosobruchus maculatus. We also describe the Lp-mediated lipid transfer to developing oocytes. Lps were isolated from homogenates of C. maculatus larvae and adults by potassio bromide gradient and characterized with respect to physicochemical properties and lipid content. The weevil Lp (465 kDa) and larval Lp (585 kDa), with hydrated densities of 1.22 and 1.14 g/mL, contained 34 and 56 percent lipids and 9 and 7 percent carbohydrates, respectively. In both Lps, mannose was the predominant monosaccharide detected by paper chromatography. SDS-PAGE revealed two apolipoproteins in each Lp with molecular masses of 225 kDa (apolipoprotein-I) and 79 kDa (apolipoprotein-II). The lipids were extracted and analyzed by thin-layer chromatography. The major phospholipids found were phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine in adult Lp, and phosphatidylcholine, phosphatidylethanolamine and sphingomyelin in larval Lp. Hydrocarbons, fatty acids and triacylglycerol were the major neutral lipids found in both Lps. Lps labeled in the protein moiety with radioactive iodine (125I-iodine) or in the lipid moiety with fluorescent lipids revealed direct evidence of endocytic uptake of Lps in live oocytes of C. maculatus.


Assuntos
Animais , Feminino , Hidrocarbonetos/análise , Metabolismo dos Lipídeos/fisiologia , Lipoproteínas/química , Oócitos/crescimento & desenvolvimento , Fosfolipídeos/química , Gorgulhos/química , Apolipoproteínas/química , Apolipoproteínas/isolamento & purificação , Apolipoproteínas/metabolismo , Transporte Biológico , Endocitose/fisiologia , Lipoproteínas/isolamento & purificação , Lipoproteínas/metabolismo , Oócitos/metabolismo , Oogênese/fisiologia , Fosfolipídeos/isolamento & purificação , Fosfolipídeos/metabolismo , Gorgulhos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA