Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Cureus ; 16(6): e61576, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38962590

RESUMO

This case report investigates the management of a 24-week-old neonate with congenital cytomegalovirus (CMV) infection and its sequelae, including severe intrauterine growth restriction, thrombocytopenia, and brain anomalies, ultimately progressing to lissencephaly. The diagnostic challenges included delayed clinical suspicion of congenital CMV, which was not identified until after delivery through CMV DNA polymerase chain reaction, and differentiating its symptoms from other potential causes of the neonate's condition. Aggressive interventions included antibiotics, antiviral therapy with ganciclovir, and supportive measures such as intubation, CPR, respiratory support, blood transfusions, and management of coagulopathy. Despite these efforts, the patient deteriorated due to progressive hypoperfusion, hypoxemic cardiorespiratory failure, and disseminated intravascular coagulopathy. Due to the poor prognosis and extent of multiorgan damage, support was withdrawn per parental consent. This case highlights the complications encountered when managing an advanced-stage neonatal CMV infection and emphasizes the importance of a multidisciplinary and holistic approach to guide diagnosis and treatment.

2.
Epilepsia ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953796

RESUMO

OBJECTIVE: DYNC1H1 variants are involved on a disease spectrum from neuromuscular disorders to neurodevelopmental disorders. DYNC1H1-related epilepsy has been reported in small cohorts. We dissect the electroclinical features of 34 patients harboring de novo DYNC1H1 pathogenic variants, identify subphenotypes on the DYNC1H1-related epilepsy spectrum, and compare the genotype-phenotype correlations observed in our cohort with the literature. METHODS: Patients harboring de novo DYNC1H1 pathogenic variants were recruited through international collaborations. Clinical data were retrospectively collected. Latent class analysis was performed to identify subphenotypes. Multivariable binary logistic regression analysis was applied to investigate the association with DYNC1H1 protein domains. RESULTS: DYNC1H1-related epilepsy presented with infantile epileptic spasms syndrome (IESS) in 17 subjects (50%), and in 25% of these individuals the epileptic phenotype evolved into Lennox-Gastaut syndrome (LGS). In 12 patients (35%), focal onset epilepsy was defined. In two patients, the epileptic phenotype consisted of generalized myoclonic epilepsy, with a progressive phenotype in one individual harboring a frameshift variant. In approximately 60% of our cohort, seizures were drug-resistant. Malformations of cortical development were noticed in 79% of our patients, mostly on the lissencephaly-pachygyria spectrum, particularly with posterior predominance in a half of them. Midline and infratentorial abnormalities were additionally reported in 45% and 27% of subjects. We have identified three main classes of subphenotypes on the DYNC1H1-related epilepsy spectrum. SIGNIFICANCE: We propose a classification in which pathogenic de novo DYNC1H1 variants feature drug-resistant IESS in half of cases with potential evolution to LGS (Class 1), developmental and epileptic encephalopathy other than IESS and LGS (Class 2), or less severe focal or genetic generalized epilepsy including a progressive phenotype (Class 3). We observed an association between stalk domain variants and Class 1 phenotypes. The variants p.Arg309His and p.Arg1962His were common and associated with Class 1 subphenotype in our cohort. These findings may aid genetic counseling of patients with DYNC1H1-related epilepsy.

3.
Neurobiol Dis ; 199: 106577, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914171

RESUMO

Proper topographically organized neural connections between the thalamus and the cerebral cortex are mandatory for thalamus function. Thalamocortical (TC) fiber growth begins during the embryonic period and completes by the third trimester of gestation, so that human neonates at birth have a thalamus with a near-facsimile of adult functional parcellation. Whether congenital neocortical anomaly (e.g., lissencephaly) affects TC connection in humans is unknown. Here, via diffusion MRI fiber-tractography analysis of long-term formalin-fixed postmortem fetal brain diagnosed as lissencephaly in comparison with an age-matched normal one, we found similar topological patterns of thalamic subregions and of internal capsule parcellated by TC fibers. However, lissencephaly fetal brain showed white matter structural changes, including fewer/less organized TC fibers and optic radiations, and much less cortical plate invasion by TC fibers - particularly around the shallow central sulcus. Diffusion MRI fiber tractography of normal fetal brains at 15, 23, and 26 gestational weeks (GW) revealed dynamic volumetric change of each parcellated thalamic subregion, suggesting coupled developmental progress of the thalamus with the corresponding cortex. Moreover, from GW23 and GW26 normal fetal brains, TC endings in the cortical plate could be delineated to reflect cumulative progressive TC invasion of cortical plate. By contrast, lissencephaly brain showed a dramatic decrease in TC invasion of the cortical plate. Our study thus shows the feasibility of diffusion MRI fiber tractography in postmortem long-term formalin-fixed fetal brains to disclose the developmental progress of TC tracts coordinating with thalamic and neocortical growth both in normal and lissencephaly fetal brains at mid-gestational stage.

4.
Epilepsy Behav Rep ; 26: 100670, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725538

RESUMO

Miller-Dieker syndrome (MDS) is characterized by facial abnormalities and lissencephaly and is caused by a microdeletion in the region containing the LIS1 gene at chromosome 17p13.3. We report a case in which postnatal neuroimaging revealed severe lissencephaly. A 9-month-old boy presented with infantile spasms syndrome. Because of the refractory course of seizures and continued poor vitality, total corpus callosotomy was performed at 28 months of age. Intraoperative electroencephalogram (EEG) showed that the bilateral synchronous epileptiform discharges disappeared immediately after the disconnection. Postoperatively, the epileptic spasms (ES) in clusters disappeared, and single ES followed by focal seizures became the main symptom. The patient smiled more and became more responsive to stimuli. Postoperative scalp interictal EEG showed desynchronized multifocal spike and wave discharges with a marked decrease in the bilateral synchronous spike and wave discharges. Our findings suggest that the corpus callosum is involved in the mechanism ES in clusters in MDS-associated lissencephaly, and total callosotomy could be a therapeutic option.

5.
Front Pediatr ; 12: 1367305, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38813542

RESUMO

Tubulin plays an essential role in cortical development, and TUBA1A encodes a major neuronal α-tubulin. Neonatal mutations in TUBA1A are associated with severe brain malformations, and approximately 70% of patients with reported cases of TUBA1A mutations exhibit lissencephaly. We report the case of a 1-year-old boy with the TUBA1A nascent mutation c.1204C >T, p.Arg402Cys, resulting in lissencephaly, developmental delay, and seizures, with a brain MRI showing normal cortical formation in the bilateral frontal lobes, smooth temporo-parieto-occipital gyri and shallow sulcus. This case has not been described in any previous report; thus, the present case provides new insights into the broad disease phenotype and diagnosis associated with TUBA1A mutations. In addition, we have summarized the gene mutation sites, neuroradiological findings, and clinical details of cases previously described in the literature and discussed the differences that exist between individual cases of TUBA1A mutations through a longitudinal comparative analysis of similar cases. The complexity of the disease is revealed, and the importance of confirming the genetic diagnosis from the beginning of the disease is emphasized, which can effectively shorten the diagnostic delay and help clinicians provide genetic and therapeutic counseling.

6.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1559727

RESUMO

Introducción: Las malformaciones del desarrollo cortical se deben a alteraciones en la migración del neuroblasto durante la formación de la corteza cerebral. Se desconoce su frecuencia en embarazos monocoriales. Objetivo: Reportar el caso de un embarazo monocorial con diagnóstico de malformación del desarrollo cortical en uno de los fetos y revisar la literatura referente a su diagnóstico y pronóstico. Método: Mujer de 19 años, embarazo monocorial biamniótico de 26 semanas, que acudió con estudio ecográfico y resonancia fetal que evidenció en uno de los fetos asimetría de los hemisferios cerebrales, hipoplasia de la cisura de Silvio izquierda con simplificación del patrón giral por focos de paquigiria y polimicrogiria, con confirmación posnatal de alteración en la migración neuronal asociada a hipoplasia vermiana. Resultados: Se encontraron en la literatura tres casos de embarazo múltiple monocorial con trastorno de la migración neuronal con recién nacidos vivos. Los hallazgos más comunes fueron microcefalia, lisencefalia e hipoplasia cerebelosa. Conclusiones: El diagnóstico prenatal del trastorno de la migración neuronal se realiza con ecografía y resonancia fetal. La más frecuente es la alteración de la migración neuronal tipo II. El pronóstico depende del tipo de alteración; sin embargo, la mayoría de los casos presentan trastornos epileptiformes con alteraciones del neurodesarrollo.


Introduction: Malformations of cortical development are the result from alterations in the neuroblast migration during the cerebral cortex formation. Its frequency in monochorial multiple pregnancies remains unknown. Objective: To report a case of monochorial multiple pregnancy with diagnosis of malformation of the cortical development in one of the fetuses. In addition, to review the literature regarding the diagnosis and prognosis of this entity. Method: A 19-year-old female with a monochorial diamniotic pregnancy of 26 weeks gestation, arrived with an ultrasound anatomy scan visit, and fetal magnetic resonance imaging, we detected asymmetry in the cerebral hemispheres one of the fetuses, hypoplasia of the left sulcus of Sylvius with simplification of the gyrus pattern due to clusters of pachygyria and polymicrogyria. Those findings were confirmed afterbirth, with a definite diagnosis of neuronal migration disorder associated with vermian hypoplasia. Results: Three cases of monochorial pregnancy with neuronal migration disorder with live newborn, common findings like microcephaly, lissencephaly and vermian hypoplasia. Conclusions: Prenatal diagnosis with neuronal migration disorder is done via ultrasound and magnetic resonance imaging. Neuronal migration disorders type II are the most common of them. Prognosis depends on the type of disorder; however, most patients have epileptiform activity and neurodevelopment impairment.

7.
Neurogenetics ; 25(2): 93-102, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296890

RESUMO

Congenital muscular dystrophies (CMDs) are a group of rare muscle disorders characterized by early onset hypotonia and motor developmental delay associated with brain malformations with or without eye anomalies in the most severe cases. In this study, we aimed to uncover the genetic basis of severe CMD in Egypt and to determine the efficacy of whole exome sequencing (WES)-based genetic diagnosis in this population. We recruited twelve individuals from eleven families with a clinical diagnosis of CMD with brain malformations that fell into two groups: seven patients with suspected dystroglycanopathy and five patients with suspected merosin-deficient CMD. WES was analyzed by variant filtering using multiple approaches including splicing and copy number variant (CNV) analysis. We identified likely pathogenic variants in FKRP in two cases and variants in POMT1, POMK, and B3GALNT2 in three individuals. All individuals with merosin-deficient CMD had truncating variants in LAMA2. Further analysis in one of the two unsolved cases showed a homozygous protein-truncating variant in Feline Leukemia Virus subgroup C Receptor 1 (FLVCR1). FLVCR1 loss of function has never been previously reported. Yet, loss of function of its paralog, FLVCR2, causes lethal hydranencephaly-hydrocephaly syndrome (Fowler Syndrome) which should be considered in the differential diagnosis for dystroglycanopathy. Overall, we reached a diagnostic rate of 86% (6/7) for dystroglycanopathies and 100% (5/5) for merosinopathy. In conclusion, our results provide further evidence that WES is an important diagnostic method in CMD in developing countries to improve the diagnostic rate, management plan, and genetic counseling for these disorders.


Assuntos
Encéfalo , Sequenciamento do Exoma , Distrofias Musculares , N-Acetilglucosaminiltransferases , Humanos , Masculino , Egito , Feminino , Distrofias Musculares/genética , Distrofias Musculares/diagnóstico , Pré-Escolar , Encéfalo/anormalidades , Encéfalo/patologia , Criança , Lactente , Laminina/genética , Receptores Virais/genética , Manosiltransferases/genética , Linhagem , Pentosiltransferases/genética , Variações do Número de Cópias de DNA , Mutação , Adolescente , Malformações do Sistema Nervoso/genética
8.
Acta Neuropathol ; 147(1): 13, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194050

RESUMO

The development of the cerebral cortex involves a series of dynamic events, including cell proliferation and migration, which rely on the motor protein dynein and its regulators NDE1 and NDEL1. While the loss of function in NDE1 leads to microcephaly-related malformations of cortical development (MCDs), NDEL1 variants have not been detected in MCD patients. Here, we identified two patients with pachygyria, with or without subcortical band heterotopia (SBH), carrying the same de novo somatic mosaic NDEL1 variant, p.Arg105Pro (p.R105P). Through single-cell RNA sequencing and spatial transcriptomic analysis, we observed complementary expression of Nde1/NDE1 and Ndel1/NDEL1 in neural progenitors and post-mitotic neurons, respectively. Ndel1 knockdown by in utero electroporation resulted in impaired neuronal migration, a phenotype that could not be rescued by p.R105P. Remarkably, p.R105P expression alone strongly disrupted neuronal migration, increased the length of the leading process, and impaired nucleus-centrosome coupling, suggesting a failure in nucleokinesis. Mechanistically, p.R105P disrupted NDEL1 binding to the dynein regulator LIS1. This study identifies the first lissencephaly-associated NDEL1 variant and sheds light on the distinct roles of NDE1 and NDEL1 in nucleokinesis and MCD pathogenesis.


Assuntos
Lisencefalia , Humanos , Lisencefalia/genética , Movimento Celular/genética , Proliferação de Células , Córtex Cerebral , Dineínas/genética , Proteínas de Transporte , Proteínas Associadas aos Microtúbulos/genética
9.
Development ; 151(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38149472

RESUMO

Lissencephaly is a neurodevelopmental disorder characterized by a loss of brain surface convolutions caused by genetic variants that disrupt neuronal migration. However, the genetic origins of the disorder remain unidentified in nearly one-fifth of people with lissencephaly. Using whole-exome sequencing, we identified a de novo BAIAP2 variant, p.Arg29Trp, in an individual with lissencephaly with a posterior more severe than anterior (P>A) gradient, implicating BAIAP2 as a potential lissencephaly gene. Spatial transcriptome analysis in the developing mouse cortex revealed that Baiap2 is expressed in the cortical plate and intermediate zone in an anterior low to posterior high gradient. We next used in utero electroporation to explore the effects of the Baiap2 variant in the developing mouse cortex. We found that Baiap2 knockdown caused abnormalities in neuronal migration, morphogenesis and differentiation. Expression of the p.Arg29Trp variant failed to rescue the migration defect, suggesting a loss-of-function effect. Mechanistically, the variant interfered with the ability of BAIAP2 to localize to the cell membrane. These results suggest that the functions of BAIAP2 in the cytoskeleton, cell morphogenesis and migration are important for cortical development and for the pathogenesis of lissencephaly in humans.


Assuntos
Lisencefalia , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Movimento Celular/genética , Citoesqueleto/metabolismo , Lisencefalia/genética , Lisencefalia/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo
10.
Heliyon ; 9(11): e22323, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045215

RESUMO

Introduction: Subcortical band heterotopia (SBH) is a rare brain developmental malformation caused by deficient neuronal migration during embryogenesis. Published literature on pediatric SBH cases caused by DCX mutations is limited. Methods: The detailed clinical and genetic features of two pediatric SBH with DCX mutations were analyzed. The available literature on DCX mutations was reviewed. Results: Both patients were girls with varying degrees of developmental delay. Patient 1 was short in stature with peculiar facial features. Patient 2 had an early seizure onset and developed drug-resistant epilepsy. Whole-exome sequencing (WES) revealed two de novo heterozygous variants of DCX (NM_178153.3), including a novel missense variant of c.568A > G (p.K190E) in P1 and a reported nonsense variant of c.814C > T (p.R272*) in P2. We reviewed all the available literature regarding DCX mutations. A total of 153 different mutations have been reported, with the majority of 99 (64.7 %) being missense mutations. Conclusion: Our study expanded the mutational spectrum of DCX, which has important implications for the study of genotype-phenotype correlations. Furthermore, it provided insights to better understand SBH and genetic counseling.

11.
Brain Sci ; 13(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38137102

RESUMO

Lissencephaly (LIS) is a rare neurodevelopmental disorder with severe symptoms caused by abnormal neuronal migration during cortical development. It is caused by both genetic and non-genetic factors. Despite frequent studies about the cortex, comprehensive elucidation of structural abnormalities and their effects on the white matter is limited. The main objective of this study is to analyze abnormal neuronal migration pathways and white matter fiber organization in LIS1-associated LIS using diffusion MRI (dMRI) tractography. For this purpose, slabs of brain specimens with LIS (n = 3) and age and sex-matched controls (n = 4) were scanned with 3T dMRI. Our high-resolution ex vivo dMRI successfully identified common abnormalities across the samples. The results revealed an abnormal increase in radially oriented subcortical fibers likely associated with radial migration pathways and u-fibers and a decrease in association fibers in all LIS specimens.

12.
Pediatr Neurol ; 149: 137-140, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879138

RESUMO

Lissencephaly with cerebellar hypoplasia (LCH) is a rare variant form of lissencephaly, its distinctive neuroradiological phenotype being an important investigation clue regarding the potential involved genes, including variants in RELN gene. We report on a case of LCH whose clinical and neuroradiological features led to the identification of a homozygous pathogenic variant in RELN gene that has not been previously reported in the scientific literature.


Assuntos
Lisencefalia , Malformações do Sistema Nervoso , Humanos , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/genética , Lisencefalia/diagnóstico por imagem , Lisencefalia/genética , Homozigoto , Mutação/genética
14.
Neuroscientist ; : 10738584231190839, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37621149

RESUMO

The cerebral cortex develops through a carefully conscripted series of cellular and molecular events that culminate in the production of highly specialized neuronal and glial cells. During development, cortical neurons and glia acquire a precise cellular arrangement and architecture to support higher-order cognitive functioning. Decades of study using rodent models, naturally gyrencephalic animal models, human pathology specimens, and, recently, human cerebral organoids, reveal that rodents recapitulate some but not all the cellular and molecular features of human cortices. Whereas rodent cortices are smooth-surfaced or lissencephalic, larger mammals, including humans and nonhuman primates, have highly folded/gyrencephalic cortices that accommodate an expansion in neuronal mass and increase in surface area. Several genes have evolved to drive cortical gyrification, arising from gene duplications or de novo origins, or by alterations to the structure/function of ancestral genes or their gene regulatory regions. Primary cortical folds arise in stereotypical locations, prefigured by a molecular "blueprint" that is set up by several signaling pathways (e.g., Notch, Fgf, Wnt, PI3K, Shh) and influenced by the extracellular matrix. Mutations that affect neural progenitor cell proliferation and/or neurogenesis, predominantly of upper-layer neurons, perturb cortical gyrification. Below we review the molecular drivers of cortical folding and their roles in disease.

15.
Am J Med Genet A ; 191(12): 2878-2883, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37621218

RESUMO

Lissencephaly type 10 is a recently reported condition characterized by posterior predominant abnormalities in gyration with associated seizures, developmental delays or intellectual disability. We report a boy who presented at 5 years of age with epilepsy and developmental delays. His family history was notable for epilepsy in two prior generations associated with variable developmental and cognitive impact. Exome sequencing identified a novel missense variant in CEP85L [NM_001042475.2; c.196A>G, p.(Thr66Ala)] which segregated in four affected family members across three generations. Brain imaging of the proband demonstrated a posterior lissencephaly pattern with pachygyria, while other affected family members demonstrated a similar subcortical band heterotopia. This report expands the phenotypic spectrum of this rare disorder by describing a novel variant in CEP85L in a family with variable clinical and neuroimaging findings.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda , Epilepsia , Lisencefalia , Masculino , Humanos , Lisencefalia/diagnóstico por imagem , Lisencefalia/genética , Encéfalo/diagnóstico por imagem , Mutação de Sentido Incorreto , Proteínas do Citoesqueleto/genética , Proteínas de Fusão Oncogênica
16.
Am J Med Genet A ; 191(10): 2656-2663, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37466007

RESUMO

Biallelic pathogenic variants in LAMB1 have been associated with autosomal recessive lissencephaly 5 (OMIM 615191), which is characterized by brain malformations (cobblestone lissencephaly, hydrocephalus), developmental delay, and epilepsy. Pathogenic variants in LAMB1 are rare, with only 11 pathogenic variants and 11 patients reported to date. Here, we report on a 6-year-old patient from a consanguineous family with profound developmental delay, microcephaly, and a history of a perinatal cerebrovascular event. Brain magnetic resonance imaging (MRI) showed cerebellar cystic defects, signal intensity abnormalities, and a hypoplastic corpus callosum. Trio-exome analysis revealed a homozygous in-frame deletion of Exons 23 and 24 of LAMB1 affecting 104 amino acids including the epidermal growth factor (EGF)-like units 11 and 12 in Domain III. To our knowledge, this is the first reported in-frame deletion in LAMB1. Our findings broaden the clinical and molecular spectrum of LAMB1-associated syndromes.


Assuntos
Microcefalia , Malformações do Sistema Nervoso , Gravidez , Feminino , Humanos , Criança , Malformações do Sistema Nervoso/genética , Encéfalo/anormalidades , Microcefalia/genética , Deleção de Sequência/genética , Homozigoto , Laminina
17.
Clin Case Rep ; 11(5): e7328, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37151943

RESUMO

Schizencephaly, an extremely rare anomaly of the cortex, is characterized by abnormal clefts in the cerebral cortex. Very often, this condition is diagnosed early in the childhood period but few instances exist in literature where schizencephaly-associated seizures and hemiparesis have presented later in life too. Here, we report a rare case scenario of a lady in her late 30s who initially presented to us with obstetric concerns wherein schizencephaly remained an incidental finding despite the significantly large cortical cleft along with lobar holoprosencephaly and lissencephaly.

18.
Children (Basel) ; 10(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37189880

RESUMO

Miller-Dieker syndrome (MDS) is a genetic disorder characterized by classic lissencephaly, distinctive facial features, intellectual disability, seizures, and early death. The anesthetic management of patients with MDS should focus on airway manipulation with the risk of potentially difficult intubation, seizure control due to lissencephaly, and any other clinical complications. Herein, we report a case of anesthetic management in a child with MDS and describe relevant clinical features in a perioperative anesthetic setting. This case highlights the importance of difficult airway manipulation using a videolaryngoscope, seizure management with regard to anesthetics use, and the low validity of BIS monitoring in patients with MDS.

19.
Genetics ; 223(3)2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36683334

RESUMO

Traumatic brain injury (TBI) outcomes vary greatly among individuals, but most of the variation remains unexplained. Using a Drosophila melanogaster TBI model and 178 genetically diverse lines from the Drosophila Genetic Reference Panel (DGRP), we investigated the role that genetic variation plays in determining TBI outcomes. Following injury at 20-27 days old, DGRP lines varied considerably in mortality within 24 h ("early mortality"). Additionally, the disparity in early mortality resulting from injury at 20-27 vs 0-7 days old differed among DGRP lines. These data support a polygenic basis for differences in TBI outcomes, where some gene variants elicit their effects by acting on aging-related processes. Our genome-wide association study of DGRP lines identified associations between single nucleotide polymorphisms in Lissencephaly-1 (Lis-1) and Patronin and early mortality following injury at 20-27 days old. Lis-1 regulates dynein, a microtubule motor required for retrograde transport of many cargoes, and Patronin protects microtubule minus ends against depolymerization. While Patronin mutants did not affect early mortality, Lis-1 compound heterozygotes (Lis-1x/Lis-1y) had increased early mortality following injury at 20-27 or 0-7 days old compared with Lis-1 heterozygotes (Lis-1x/+), and flies that survived 24 h after injury had increased neurodegeneration but an unaltered lifespan, indicating that Lis-1 affects TBI outcomes independently of effects on aging. These data suggest that Lis-1 activity is required in the brain to ameliorate TBI outcomes through effects on axonal transport, microtubule stability, and other microtubule proteins, such as tau, implicated in chronic traumatic encephalopathy, a TBI-associated neurodegenerative disease in humans.


Assuntos
Lesões Encefálicas Traumáticas , Proteínas de Drosophila , Lisencefalia , Doenças Neurodegenerativas , Animais , Humanos , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Estudo de Associação Genômica Ampla , Lesões Encefálicas Traumáticas/genética , Mutação , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
20.
Elife ; 122023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36692009

RESUMO

The lissencephaly 1 protein, LIS1, is mutated in type-1 lissencephaly and is a key regulator of cytoplasmic dynein-1. At a molecular level, current models propose that LIS1 activates dynein by relieving its autoinhibited form. Previously we reported a 3.1 Å structure of yeast dynein bound to Pac1, the yeast homologue of LIS1, which revealed the details of their interactions (Gillies et al., 2022). Based on this structure, we made mutations that disrupted these interactions and showed that they were required for dynein's function in vivo in yeast. We also used our yeast dynein-Pac1 structure to design mutations in human dynein to probe the role of LIS1 in promoting the assembly of active dynein complexes. These mutations had relatively mild effects on dynein activation, suggesting that there may be differences in how dynein and Pac1/LIS1 interact between yeast and humans. Here, we report cryo-EM structures of human dynein-LIS1 complexes. Our new structures reveal the differences between the yeast and human systems, provide a blueprint to disrupt the human dynein-LIS1 interactions more accurately, and map type-1 lissencephaly disease mutations, as well as mutations in dynein linked to malformations of cortical development/intellectual disability, in the context of the dynein-LIS1 complex.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda , Proteínas de Saccharomyces cerevisiae , Humanos , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Endorribonucleases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...