Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Environ Pollut ; : 125100, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39389244

RESUMO

This study investigates the presence, distribution, and potential impacts of perfluoroalkyl substances (PFASs) and hexabromocyclododecanes (HBCDs) on the Antarctic marine environment. The analysis results from the King Sejong Station, the Jang Bogo Station, and Cape Evans revealed the highest concentrations of both PFASs and HBCDs at King Sejong Station, indicating the significant influence of human activity. Short-chain perfluorocarboxylic acids (PFCAs) dominated the seawater samples, with PFPeA at the highest concentration (0.076 ng/L) at King Sejong Station, whereas perfluorosulfonic acids (PFSAs) were prevalent in the sediments, with PFHxS reaching 0.985 ng/g. Total PFASs in benthos ranged from N.D. to 2.40 ng/g WW across all stations. This indicated the effects of long-range transport and glacial meltwater. α-HBCD was the most common diastereomer in benthos samples, detected in 58.3% of samples, suggesting its selective persistency. Although risk quotient analysis revealed low immediate risks to lower-trophic organisms, potential risks remain owing to their persistence and bioaccumulation potential. Contaminant patterns changed after regulations: perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) levels decreased, unregulated PFASs increased, HBCD stereoisomer ratios shifted towards α-HBCD dominance, and overall HBCD concentrations declined. Widespread persistence of regulated substances was observed in Antarctic environments, highlighting the need for comprehensive and long-term monitoring strategies. This study provides essential baseline data on contaminant distributions across the Southern Ocean, contributing to our understanding of emerging pollutants in Antarctic regions and informing future environmental protection efforts.

2.
Sci Total Environ ; 954: 176274, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39304148

RESUMO

This cross-cutting review focuses on the presence and impacts of per- and polyfluoroalkyl substances (PFAS) in the Arctic. Several PFAS undergo long-range transport via atmospheric (volatile polyfluorinated compounds) and oceanic pathways (perfluorinated alkyl acids, PFAAs), causing widespread contamination of the Arctic. Beyond targeting a few well-known PFAS, applying sum parameters, suspect and non-targeted screening are promising approaches to elucidate predominant sources, transport, and pathways of PFAS in the Arctic environment, wildlife, and humans, and establish their time-trends. Across wildlife species, concentrations were dominated by perfluorooctane sulfonic acid (PFOS), followed by perfluorononanoic acid (PFNA); highest concentrations were present in mammalian livers and bird eggs. Time trends were similar for East Greenland ringed seals (Pusa hispida) and polar bears (Ursus maritimus). In polar bears, PFOS concentrations increased from the 1980s to 2006, with a secondary peak in 2014-2021, while PFNA increased regularly in the Canadian and Greenlandic ringed seals and polar bear livers. Human time trends vary regionally (though lacking for the Russian Arctic), and to the extent local Arctic human populations rely on traditional wildlife diets, such as marine mammals. Arctic human cohort studies implied that several PFAAs are immunotoxic, carcinogenic or contribute to carcinogenicity, and affect the reproductive, endocrine and cardiometabolic systems. Physiological, endocrine, and reproductive effects linked to PFAS exposure were largely similar among humans, polar bears, and Arctic seabirds. For most polar bear subpopulations across the Arctic, modeled serum concentrations exceeded PFOS levels in human populations, several of which already exceeded the established immunotoxic thresholds for the most severe risk category. Data is typically limited to the western Arctic region and populations. Monitoring of legacy and novel PFAS across the entire Arctic region, combined with proactive community engagement and international restrictions on PFAS production remain critical to mitigate PFAS exposure and its health impacts in the Arctic.

3.
J Hazard Mater ; 478: 135459, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39137552

RESUMO

Understanding the occurrence and fate of current-use pesticides (CUPs) in coastal and open marine waters is essential for conducting exposure and risk assessments to ensure the protection of marine ecosystems from chemical pollution. While CUPs have been frequently studied in freshwater systems, knowledge of their behavior in marine environments remains fragmentary. This study investigated 28 CUPs across 50 sites along a transect from the Baltic outflow to pristine Arctic waters using ships of opportunity with installed FerryBox system. Overall, 14 CUPs were detected at least at one site at concentrations ranging from sub-ng/L to ng/L. CUP concentrations were higher in the Baltic outflow and decreased along the transect. Atrazine, simazine, tebuconazole, and propiconazole were detected in > 40 % of samples, including remote open sea regions, suggesting their potential for long-range marine transport. This Baltic Sea was identified as a major source of CUPs to connected marine systems. Additional CUPs were detected in the Baltic outflow, encompassing diuron, isoproturon, metazachlor, metolachlor, pyrazon, terbuthylazine, and chlortoluron. Ecotoxicological assessment indicated a moderate risk posed by metolachlor to algae. The use of the described infrastructure holds great promise for advancing our understanding of the occurrence and fate of CUPs in marine environments.


Assuntos
Monitoramento Ambiental , Praguicidas , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Praguicidas/análise , Monitoramento Ambiental/métodos , Regiões Árticas , Água do Mar/química , Água do Mar/análise , Europa (Continente) , Triazóis/análise
4.
Environ Sci Pollut Res Int ; 31(40): 53304-53314, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39186206

RESUMO

This study focuses on the chemical composition of cloud water (CW) and rainwater (RW) collected at Sinhagad, a high-altitude station (1450 m AMSL) located in the western region of India. The samples were collected during the monsoon over two years (2016-2017). The chemical analysis suggests that the concentration of total ionic constituents was three times higher in CW than in RW, except for NH4+ (1.0) and HCO3- (0.6). Compared to RW, high concentrations of SO42- and NO3- were observed in CW. The weighted average RW pH (6.5 ± 0.3) was slightly more alkaline than CW pH (6.1 ± 0.5). This can be attributed to the high concentrations of neutralizing ions such as nss-Ca2+, nss-Mg2+, K+, and NH4+, indicating the greater extent of wet scavenging during rainfall. These ions counteract the acidity generated by SO42- and NO3-. A high correlation between Ca2+, Na+, K+, NO3-, and SO42- makes it difficult to estimate the contribution of SO42- from different sources. Anthropogenic sulfur emissions and soil dust significantly influence the ionic composition of clouds and rain. Positive matrix factorization (PMF) was used to identify the contribution of different sources to the samples. In the CW, the extracted factors were cooking and vehicles, aging sea salt, agriculture, and dust. In RW, the factors were industries, cooking and vehicles, agriculture and dust, and aging sea salt. The findings of this study have significant implications for the monsoon build-up, ecosystems, agriculture, and climate change.


Assuntos
Altitude , Monitoramento Ambiental , Chuva , Índia
5.
Sci Total Environ ; 940: 173749, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38844234

RESUMO

Fine particulate matter (PM2.5) is a complex mixture of aerosol particles with varying properties and sources, both local and distant. In areas lacking detailed monitoring of PM2.5 speciation, the common source-apportionment analyses are not applicable. This study demonstrates an alternative framework for estimating sources and processes that affect observed PM2.5 concentrations when information on the particle composition is unavailable. Eight years (2012-2019) of half-hourly PM2.5 observations from 10 air quality monitoring (AQM) stations, clustered according to their airmass transport sector were analyzed, using Non-negative Matrix Factorization (NMF). Factors were determined based on their variation in time, space, and between airmass sectors. Employing a supervised machine-learning model provided insights into the relationships between the extracted factors, meteorological parameters and co-measured airborne pollutants. Factor interpretations were evaluated through comparisons with measurements of PM2.5 species from a nearby Surface PARTiculate mAtter Network (SPARTAN) station. The NMF successfully separated background factors from an urban anthropogenic-activity factor, with the latter accounting for approximately 60 % of the observed PM2.5 levels in Tel Aviv (∼10±6µg/m3). Positive monotonic relationships were observed between the PM2.5 urban anthropogenic-activity factor and measurements of nitrogen oxides (NOx) and absolute humidity (AH), representing the impact of traffic emissions and hygroscopic growth, respectively. The summer background factor was found to represent long-range transport (LRT) from Europe, showing a good agreement (R2 = 0.81) with ammonium sulphate concentrations. Our results demonstrate that a spatial NMF analysis can reliably estimate contributions of different sources with distinct compositions and properties to the total observed PM2.5. Using such an analysis, future environmental health studies could assess health risks associated with exposure to distinct PM2.5 fractions. This information may assist decision makers to set environmental targets for abating PM2.5 with specific compositions and properties.

6.
Sci Total Environ ; 938: 173650, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38821284

RESUMO

A clean atmosphere should be provided as a right for human beings to live. The reality is that a significant proportion of the population is exposed to air pollution. This study presents an in-depth investigation into the spatio-temporal dynamics of PM2.5 concentrations in Ankara, Türkiye, spanning over three years. With particular emphasis on the impact of COVID-19 lockdown measures and local air quality management strategies, data from eight air pollution monitoring stations were analyzed. The findings indicate a significant reduction in PM2.5 levels during lockdown periods, with an average decrease of 18 % observed across the city. Implementing the Ankara Provincial Clean Air Action Plan further contributed to a 9.1 % decrease in PM2.5 concentrations in 2021, followed by an additional 6.6 % decrease in 2022 compared to 2020. The spatial distribution of PM2.5 concentrations reveals the influence of industrial and urban areas on pollution levels. Potential Source Contribution Function (PSCF) and Concentration-Weighted Trajectory (CWT) methods were employed to investigate the spatial and temporal variation of long-range transport source regions contributing to the PM2.5 levels in Ankara. PSCF and CWT analyses revealed a decreasing trend in anthropogenic contribution to PM2.5 from 2020 to 2022. The AirQ+ model was employed to predict the long-term mortality rates attributable to PM2.5 across different monitoring stations. Based on the estimations, all stations' average estimated attributable proportion is 9.8 % (3.3 %-27.8 %). The results depict varying trends in estimated mortality rates, emphasizing the importance of targeted interventions to mitigate the public health risks arising from exposure to polluted air. Overall, the results of this study show significant measures for the development of effective clean air quality strategies can effectively change the direction of the adverse impact of air pollution on public health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Monitoramento Ambiental , Avaliação do Impacto na Saúde , Material Particulado , Material Particulado/análise , Poluição do Ar/estatística & dados numéricos , Poluentes Atmosféricos/análise , COVID-19/epidemiologia , Humanos , Análise Espaço-Temporal , Cidades , Exposição Ambiental/estatística & dados numéricos
7.
Sci Total Environ ; 927: 172262, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583605

RESUMO

South and Southeast Asia (SSA) emitted black carbon (BC) exerts potential effects on glacier and snow melting and regional climate change in the Tibetan Plateau. In this study, online BC measurements were conducted for 1 year at a remote village located at the terminus of the Mingyong Glacier below the Meili Snow Mountains. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was used to investigate the contribution and potential effect of SSA-emitted BC. In addition, variations in the light absorption characteristics of BC and brown carbon (BrC) were examined. The results indicated that the annual mean concentration of BC was 415 ± 372 ngm-3, with the highest concentration observed in April (monthly mean: 930 ± 484 ngm-3). BC exhibited a similar diurnal variation throughout the year, with two peaks observed in the morning (from 8:00 to 9:00 AM) and in the afternoon (from 4:00 to 5:00 PM), with even lower values at nighttime. At a short wavelength of 370 nm, the absorption coefficient (babs) reached its maximum value, and the majority of babs values were < 20 Mm-1, indicating that the atmosphere was not overloaded with BC. At the same wavelength, BrC substantially contributed to babs, with an annual mean of 25.2 % ± 12.8 %. SSA was the largest contributor of BC (annual mean: 51.1 %) in the study area, particularly in spring (65.6 %). However, its contributions reached 20.2 % in summer, indicating non-negligible emissions from activities in other regions. In the atmosphere, the SSA BC-induced radiative forcing (RF) over the study region was positive. While at the near surface, the RF exhibited a significant seasonal variation, with the larger RF values occurring in winter and spring. Overall, our findings highlight the importance of controlling BC emissions from SSA to protect the Tibetan Plateau against pollution-related glacier and snow cover melting.

8.
Environ Pollut ; 351: 124031, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38679127

RESUMO

This study performed a back-trajectory analysis to determine the influence of transboundary transport on the extent of aerosol pollution in South Korea, based on 5-year PM2.5 measurements (2015-2019) in five cities covering South Korea. A transboundary transport case was selected if a back trajectory passed over a dedicated region (BOX 1 and BOX 2) in the Yellow Sea. First, we found that the frequency of transboundary transport largely increases in the high pollution case, and this pattern is almost consistent for all months and all five cities, indicating the importance of investigating the horizontal direction of air mass movement associated with PM2.5, which has been discussed extensively in previous studies. In this study, we also examined the altitude change and straight moving distance (defined as travel distance) of back trajectories regarding the extent of local PM2.5. Consequently, we found that back trajectories in high aerosol pollution showed much lower altitudes and shorter travel differences, implying a significant contribution of surface emissions and stagnant air conditions to severe aerosol pollution. As a result, the local PM2.5 level was not significantly enhanced when the air mass passed over the Yellow Sea if transboundary transport occurred at high altitudes with rapid movement (i.e., high altitude and long travel distance back-trajectory). Based on these results, we suggest utilizing the combined information of the horizontal direction, altitude variation, and length of back trajectories to better evaluate transboundary transport.


Assuntos
Aerossóis , Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , República da Coreia , Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poluição do Ar/estatística & dados numéricos , Material Particulado/análise , Cidades
9.
Appl Radiat Isot ; 206: 111252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422941

RESUMO

This study analyzed 16070 daily and 608 weekly air filter samples from the Helsinki metropolitan area collected between 1962 and 2005. The aim was to use the Potential Source Contribution Function (PSCF) to determine potential sources of silicon (Si), zinc (Zn), lead (Pb), and radioactive isotope 210Pb. The main sources for Si and Pb were industrial activities, particularly mining, metal industry, and traffic. Common source areas for Zn and 210Pb were identified in the eastern and southeastern parts of the measuring site.

10.
Chemosphere ; 352: 141303, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280650

RESUMO

The present study focuses on the two consecutive and markedly intense Saharan dust intrusion episodes that greatly affected southern Spain (Málaga) and, to a lesser extent, the Canary Islands (Tenerife), in March 2022. These two episodes were the result of atypical meteorological conditions in the region and resulted in record levels of aerosols in the air at the Málaga location. The activity levels of various natural and artificial radionuclides (7Be, 210Pb, 40K, 137Cs, 239Pu, 240Pu, 239+240Pu) and radioactive indicators (gross alpha and gross beta) were impacted by these events and the results are described herein. These episodes caused, for example, the activities of 137Cs in aerosol samples at the Málaga monitoring station to reach the highest concentrations ever recorded since high-volume aerosol monitoring started at this site in 2009. A link between the activity levels of 137Cs, 40K and gross alpha in the atmospheric aerosols and daily PM10 concentrations during the episodes is also reported. In addition, isotopic ratios are discussed in the context of the source and destination of the various anthropogenic radionuclides measured. The atmospheric residence time of aerosols during these episodes is also evaluated because it concerns how intrusions to the Canary Islands should be analysed. Finally, for the first time, the concentrations of 137Cs deposition by rainwater during a Saharan dust intrusion are reported and the deposition rate of these radionuclides during these episodes is discussed.


Assuntos
Radioisótopos de Césio , Poeira , Poeira/análise , Espanha , África do Norte , Radioisótopos de Césio/análise , Aerossóis/análise
11.
Mar Pollut Bull ; 198: 115867, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056292

RESUMO

Atmospheric deposition of nitrogen is one of the most important external nutrient sources. We investigated the concentrations of NO3- and NH4+ in airborne particles at both an offshore and an inshore site in the Yellow Sea. At the offshore site, devoid of local sources and located downwind from the highly developed areas of Korea and China, the concentrations of atmospheric particulate NO3- and NH4+ were ∼88 ± 101 nmol m-3 and ∼102 ± 102 nmol m-3, respectively, likely due to the transboundary long-range transport of pollutants. The inshore site showed a concentration ∼2 times higher than the offshore site. Considering not only dry inorganic nitrogen deposition but also wet and organic material deposition, the total atmospheric nitrogen deposition was estimated to contribute roughly 10 % to the new production in the Yellow Sea.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Nitrogênio/análise , Poeira/análise , China , Monitoramento Ambiental
12.
J Environ Manage ; 351: 119722, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061092

RESUMO

The potential cause-effect relationship between synoptic meteorological conditions and levels of criteria air pollutants, including CO, NO2, O3, PM10, PM2.5 and SO2, in Bahia Blanca, Argentina, was assessed for the period of 2018-2019. Daily back-trajectories and global meteorological data fields were employed to characterize the primary transport paths of air masses reaching the study site, and to identify the synoptic meteorological patterns responsible for these atmospheric circulations. Time series of surface-level meteorological parameters and midday mixing layer height were collected to examine the impact of the synoptic meteorological patterns on local meteorology. Furthermore, the NAAPS global aerosol model was utilized to identify days when contributions from long-range transport processes, such as dust and/or biomass burning smoke, impacted air quality. By applying this methodology, it was determined that the air masses coming from the N, NW and W regions significantly contributed to increased mean concentrations of coarse particles in this area through long-range transport events involving dust and smoke. Indeed, the high average levels of PM10 recorded in 2018-2019 (annual mean values of 47 and 52 µg/m3, respectively) represent the main air quality concern in Bahía Blanca. Moreover, PM10, PM2.5 and NO2 emissions should be reduced in order to meet recommended air quality guidelines. On the other hand, the results from this study suggest that the sources and meteorological processes leading to the increase in the concentrations of CO and SO2 have a local-regional origin, although these air pollutants did not reach high values probably as a consequence of the strong wind speed registered in this region during any synoptic meteorological pattern.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Argentina , Dióxido de Nitrogênio , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Poeira/análise , Vento , Fumaça , Material Particulado/análise , China , Estações do Ano
13.
Sci Total Environ ; 912: 169451, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38143007

RESUMO

PM2.5 samples (n = 34) were collected from January to April 2017 over Shillong (25.7°N, 91.9°E; 1064 m amsl), a high-altitude site situated in the northeastern Himalaya. The main aim was to understand the sources, characteristics, and optical properties of local vs long-range transported carbonaceous aerosols (CA) using chemical species and dual carbon isotopes (13C and 14C). Percentage biomass burning (BB)/biogenic fraction (fbio, calculated from 14C) varied from 67 to 92 % (78 ± 7) and correlated well with primary BB tracers like f60, and K+, suggesting BB as a considerable source. Rain events are shown to reduce the fbio fraction, indicating majority of BB-derived CA are transported. Further, δ13C (-26.6 ± 0.4) variability was very low over Shillong, suggesting it's limitations in source apportionment over the study region, if used alone. Average ratio of absorption coefficient of methanol-soluble BrC (BrCMS) to water-soluble BrC (BrCWS) at 365 nm was 1.8, indicating a significant part of BrC was water-insoluble. A good positive correlation between fbio and mass absorption efficiency of BrCWS and BrCMS at 365 nm with the higher slope for BrCMS suggests BB derived water-insoluble BrC was more absorbing. Relative radiative forcing (RRF, 300 to 2500 nm) of BrCWS and BrCMS with respect to EC were 11 ± 5 % and 23 ± 16 %, respectively. Further, the RRF of BrCMS was up to 60 %, and that of BrCWS was up to 22 % with respect to EC for the samples with fbio ≥ 0.85 (i.e., dominated by BB), reflecting the importance of BB in BrC RRF estimation.

14.
Environ Sci Pollut Res Int ; 30(46): 102687-102707, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37668783

RESUMO

The present study focused on the temporal variability, meteorological influences, potential sources, and long-range transport of atmospheric aerosols over two contrasting environments during 2011-2013. We have chosen Agartala (AGR) city in Northeast India as one of our sites representing the rural-continental environment and Patiala (PTA) as an urban site in Northwest India. The seasonal averaged equivalent black carbon (eBC) concentration in AGR ranges from 1.55 to 38.11 µg/m3 with an average value of 9.87 ± 8.17 µg/m3, whereas, at an urban location, PTA value ranges from 1.30 to 15.57 µg/m3 with an average value of 7.83 ± 3.51 µg/m3. The annual average eBC concentration over AGR was observed to be ~ 3 times higher than PTA. Two diurnal peaks (morning and evening) in eBC have been observed at both sites but were observed to be more prominent at AGR than at PTA. Spectral aerosol optical depth (AOD) has been observed to be in the range from 0.33 ± 0.09 (post-monsoon) to 0.85 ± 0.22 (winter) at AGR and 0.47 ± 0.04 (pre-monsoon) to 0.74 ± 0.09 (post-monsoon) at PTA. The concentration of eBC and its diurnal and seasonal variation indicates the primary sources of eBC as local sources, synoptic meteorology, planetary boundary layer (PBL) dynamics, and distant transportation of aerosols. The wintertime higher values of eBC at AGR than at PTA are linked with the transportation of eBC from the Indo-Gangetic Plain (IGP). Furthermore, it is evident that eBC aerosols are transported from local and regional sources, which is supported by concentration-weighted trajectory (CWT) analysis results.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Meteorologia , Monitoramento Ambiental/métodos , Estações do Ano , Índia , Aerossóis/análise , Fuligem/análise
15.
Environ Pollut ; 338: 122608, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37742857

RESUMO

The sources, biogeochemical controls and sinks of perfluoroalkyl substances, such as perfluoroalkyl acids (PFAAs), in polar coastal regions are largely unknown. These were evaluated by measuring a large multi-compartment dataset of PFAAs concentrations at coastal Livingston and Deception Islands (maritime Antarctica) during three austral summers. PFAAs were abundant in atmospheric-derived samples (aerosols, rain, snow), consistent with the importance of atmospheric deposition as an input of PFAAs to Antarctica. Such PFAAs deposition was unequivocally demonstrated by the occurrence of PFAAs in small Antarctic lakes. Several lines of evidence supported the relevant amplification of PFAAs concentrations in surface waters driven by snow scavenging of sea-spray aerosol-bound PFAAs followed by snow-melting. For example, vertical profiles showed higher PFAAs concentrations at lower-salinity surface seawaters, and PFAAs concentrations in snow were significantly higher than in seawater. The higher levels of PFAAs at Deception Island than at Livingston Island are consistent with the semi-enclosed nature of the bay. Concentrations of PFOS decreased from 2014 to 2018, consistent with observations in other oceans. The sink of PFAAs due to the biological pump, transfer to the food web, and losses due to sea-spray aerosols alone are unlikely to have driven the decrease in PFOS concentrations. An exploratory assessment of the potential sinks of PFAAs suggests that microbial degradation of perfluoroalkyl sulfonates should be a research priority for the evaluation of PFAAs persistence in the coming decade.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Regiões Antárticas , Oceanos e Mares , Água do Mar , Aerossóis , Fluorocarbonos/análise , Monitoramento Ambiental , Ácidos Alcanossulfônicos/análise , Poluentes Químicos da Água/análise
16.
Sci Total Environ ; 904: 166747, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659526

RESUMO

Based on in-situ measurement of black carbon (BC) and carbon monoxide (CO), the characteristics of BC emissions and wet scavenging were comprehensively investigated in Nanning, South China. The average annual BC concentration was 1.02 ± 0.53 µg m-3 with higher pollution levels during winter. In winter, a higher net BC/CO (ΔBC/ΔCO) ratio of 3.3 ± 0.3 ng m-3 ppb-1 along with an increased absorption Ångström exponent (AAE) and BC mass from biomass burning (BCbb), indicated a significant contribution of biomass burning to BC emissions. However, emissions from the traffic sector consistently exerted a dominant influence throughout the year. Cluster analysis of backward trajectories identified three types of air masses with distinct origins. Cluster #1 originated from Guangxi province and its vicinity, intermittently influencing the sampling site throughout the year with varying effects between winter and summer. This air mass brought in clean sea breeze in summer whereas transported a higher proportion of BCbb to the site during wintertime due to local open biomass burning. Cluster #3 primarily arrived in autumn and winter (October-December) from polluted central China, resulting in substantially high BC mass at the site. Cluster #2 coincided with the period (January-March) when extensive surface open biomass burning events occurred in Southeast Asia (SEA) regions. These BC aerosols in cluster#2 initially rose to higher altitudes above SEA before being regionally transported, but were significantly scavenged by clouds and precipitation during vertical uplift. The remaining BC exhibited a notably lower BC loss rate on relative humidity (RH) of -0.01 ng m-3 ppb-1 %-1 compared to cluster #1 (-0.03) and cluster #3 (-0.06), corresponding to an average BC transport efficiency of 0.85, 0.73, and 0.53, respectively. Nonetheless, air masses in cluster #2 could still transport considerably high BC mass to Nanning due to dry conditions and less wet scavenging along trajectory pathways. These findings provide valuable insights for policymakers and government officials in regulating and mitigating BC pollution in South China.

17.
Sci Total Environ ; 903: 166227, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37574073

RESUMO

Long-range atmospheric and oceanic transport play a crucial role in the accumulation of persistent organic pollutants (POPs), including hexachlorocyclohexanes (HCHs), in the Arctic Ocean. Herein, transient tracers, specifically chlorofluorocarbon-12 and sulfur hexafluoride, were used to determine the ventilation time of HCHs. Results revealed that dissolved HCHs can penetrate to a depth of ~500 m in the western Arctic Ocean, corresponding to water masses with a mean age of 45 ± 14 years. The average long-range transport time for α-HCH from initial atmospheric release to entering the western Arctic Ocean was estimated to be >30 ± 5 years, indicating continued moderate to high ecological risks from HCHs in the Arctic. This study demonstrates that transient tracers serve as effective water dating tools to elucidate the transport history of stable POPs in the ocean, contributing to a better understanding of their environmental characteristics and fate.

18.
Sci Total Environ ; 903: 166173, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37562613

RESUMO

An exceptionally strong and very fast (120h) mineral dust inflow from North Africa to Poland was predicted by NMMB/BSC-Dust and NAAPS models on 10-11 June 2019. Simultaneous measurements with two complex lidar systems at the EARLINET-ACTRIS urban site in Warsaw (Central Poland) and the PolWET peatland site in Rzecin (Western Poland) captured the evolution of this dust event. The advected air masses had different source areas in North Africa, they were reaching each station via independent pathways, and thus, were unlikely mixed with each other. The excellent capabilities of the next generation PollyXT lidar and the mobile EMORAL lidar allowed for the derivation of full datasets of aerosol optical properties profiles that enabled comparative study of the advected dust properties evolution. Within a mere 350 km distance between Warsaw and Rzecin, distinctly different dust properties were measured, respectively: dry mineral dust composed mainly of coarse mode dust particles (50 ± 5 % of the total particle backscattering profile) versus the wet mineral dust dominated by fine dust particles (58 ± 4 %). A new parameter fine-to-coarse dust ratio (FCDR) is proposed to describe more intuitively mineral dust composition.

19.
Environ Sci Technol ; 57(30): 11195-11205, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459505

RESUMO

Phthalate esters (PAEs) have been investigated in paired air and seawater samples collected onboard the research vessel SONNE in the South China Sea in the summer of 2019. The concentrations of ∑7PAEs ranged from 2.84 to 24.3 ng/m3 with a mean of 9.67 ± 5.86 ng/m3 in air and from 0.96 to 8.35 ng/L with a mean of 3.05 ng/L in seawater. Net air-to-seawater deposition dominated air-sea exchange fluxes of DiBP, DnBP, DMP, and DEP, while strong water-to-air volatilization was estimated for bis(2-ethylhexyl) phthalate (DEHP). The estimated net atmospheric depositions were 3740 t/y for the sum of DMP, DEP, DiBP, and DnBP, but DEHP volatilized from seawater to air with an average of 900 t/y. The seasonally changing monsoon circulation, currents, and cyclones occurring in the Pacific can significantly influence the concentration of PAEs, and alter the direction and magnitude of air-sea exchange and particle deposition fluxes. Consequently, the dynamic air-sea exchange process may drive the transport of PAEs from marginal seas and estuaries toward remote marine environments, which can play an important role in the environmental transport and cycling of PAEs in the global ocean.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Dibutilftalato , Ésteres , China
20.
ACS Nano ; 17(15): 14442-14448, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37489978

RESUMO

Atomically thin transition metal dichalcogenides (TMDs), a subclass of two-dimensional (2D) layered materials, have numerous fascinating properties that make them a promising platform for photonic and optoelectronic devices. In particular, excited state transport by TMDs is important in energy harvesting and photonic switching; however, long-range transport in TMDs is challenging due to the lack of availability of large area films. Whereas most previous studies have focused on small, exfoliated monolayer flakes, in this work we demonstrate metal-organic chemical vapor deposition grown centimeter-scale monolayers of WS2 that support polariton propagation lengths of up to 60 µm. The polaritons form through the strong coupling of excitons with Bloch surface waves (BSWs) supported by all-dielectric photonic structures. We observe that the propagation length increases with the number of dielectric pairs due to the increased quality factor of the supporting distributed Bragg reflector. Furthermore, a longer propagation length is observed as the guided or BSW content of the polariton is increased. Our results provide a practical approach for the systematic engineering of long-range energy transport mediated by exciton-polaritons in TMD layers. Along with the accessibility of large area TMDs, our work enables applications for practical TMD-based polaritonic devices that operate at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA